Fundamenta Informaticae 28 (1996) 165-182 165
IOS Press

Satisfiability of Inequalities in a Poset

Vaughan Pratt*
Computer Science Department
Stanford Universily

Stanford, CA 943805
pratt@cs.stanford.edu

Jerzy Tiuryn'

Institute of Informatics

Warsaw University

Banacha 2, 02-097 Warsaw, POLAND

tiuryn@mimuw. edu.pl

Abstract. We consider tractable and intractable cases of the satisfiability problem for
conjunctions of inequalities between variables and constants in a fixed finite poset. We
show that crowns are intractable. We study members and closure properties of the
class of tractable posets. We define a feasible poset to be one whose potential obstacles
to satisfiability are representable by a certain formula of the first-order extended by
the least fixed operator. For bipartite posets we give a complete classification of hard
posets and feasible ones.

1. Introduction

We investigate the computational complexity of the P-satisfiability problem. This is the
problem of deciding whether a given finite set of inequalities is simultaneously satisfiable in
a given poset P, which we assume throughout to be finite. The permitted operands of the
inequalities are constants and variables. The permitted constants are the elements of P. An
assignment of elements of P to variables satisfies the set of inequalities when it makes all of
them true. The set of inequalities is called P-satisfiable when there exists such a satisfying

assignment.
(/)

Figure 1.1. Poset P;.

*The first author is supported by ONR under grant number N00014-92-J-1974.
tThe second author is partly supported by NSF Grants CCR-9417382, CCR-9304144, and by Polish KBN
Grant 2 P301 031 06.

166 V. Pratt and J. Tiuryn|Satisfiability of Inequalities in a Poset

For example take P = P; as per Figure 1.1, and consider the inequalities ¢ < 0, z < y,
y < z. Assigning either 1 or 2 to = would falsify = < 0, whence z = 0 in any satisfying
assignment. Since 0 < 2 does not hold in P, y and z must each be either 0 or 1. Of these
four possibilities, y < z rules out y = 1,z = 0, and the remaining three assignments are all
satisfying assignments. Hence this set of inequalities is P-satisfiable, in three ways.

We write P-SAT for the set of those P-satisfiable sets of inequalities that have a “succinct
certificate,” namely a satisfying assignment. Such an assignment when straightforwardly
presented can be checked in time linear in the size of the presentation in symbols, simply
by evaluating each inequality to verify its truth for that assignment. It follows that for
all posets P, P-SAT is in the class NP of problems solvable on a Turing machine in time
nondeterministic in the size of the set of inequalities. When P-SAT is in the class PTIME of
problems solvable in deterministic polynomial time, we say that P is tractable. We introduce
a notion of feasible poset: P is feasible when there exists a predicate on sets of inequalities
asserting in a certain language that the given set is P-satisfiable; this predicate can be
evaluated for each given set in time polynomial in the length of presentation of the set.

In section 2 we shall show that there exist posets P for which P-SAT is an NP-complete
problem, namely crowns. Section 3 introduces and treats aspects of tractable and feasible
posets. Section 4 gives several transformations of posets and shows constructively that they
preserve feasibility, by showing how to transform the predicate associated to that poset. In
section 5 we give a complete classification of bipartite posets with respect to tractability of
the satisfiability problem.

1.1. Background

Our interest in the poset satisfiability problem is motivated by the area of type reconstruction
problems? for the case of simply typed lambda calculus with subtyping. The reader is referred
to J. Mitchell’s paper [Mitchell84] for introduction to that area as well as the basic reduction
of the original problem of type reconstruction to the problem of poset satisfiability. O’Keefe
and Wand [OKeefeWand89] treat a similar reduction.

The NP-hardness result of section 2 of this paper has been used by Mitchell and Lincoln
[MitchellLincoln92] to show that the type reconstruction problem for simply typed A-calculus
with subtyping is NP-hard for certain posets of atomic subtypes.

The second author has shown [Tiuryn92)] that solving inequalities in simple types (more
general than the atomic types treatable with the results of the present paper) is PSPACE-
hard, and that when the poset of atomic subtypings is a disjoint union of lattices then the
type reconstruction problem is in PTIME.

With M. Wand [TiurynWand93], the second author has investigated the problem of type
reconstruction for simple types with subtyping and recursive types. This naturally leads
to a generalization of the problem of solving inequalities: instead of solving finite systems
of inequalities in a finite poset one can consider solving an infinite system presented as a
regular expression (or finite-state automaton). This problem is PSPACE hard for nontrivial
posets and in PTIME otherwise.

M. Benke generalizes [Tiuryn92] in two ways. He shows [Benke93] that the PTIME
property holds for a larger class of posets, namely those satisfying the Helly property,
which include trees.? And in [Benke95] he generalizes the PSPACE-hardness construction
of [Tiuryn92] via a suitable generalization of the conditions under which the NP-hardness
result for the “flat” system treated in this paper can be transferred to the general subtype
inequality system (over the same poset) yielding a PSPACE lower bound on complexity.

1The problem of type reconstruction for a type system 7 is: given a term M of pure (untyped) lambda
calculus, decide whether M can be decorated with types so that is becomes correctly typable in 7. This
problem has practical motivations coming from typed functional programming languages, such as ML.
2These posets naturally arise in connection with class inheritance.

V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset 167

More recently, Hoang and Mitchell have shown [HoangMitchell95] that the general alge-
braic problem of solving subtype inequalities (see [Tiuryn92]) is PTIME equivalent to the

type reconstruction problem for simple types with subtyping.
A natural generalization of the satisfiability problem for posets is satisfiability in an
arbitrary relational structure, which has been studied by Feder and Vardi [FederVardi93).

1.2. Satisfiability and Retractability

The P-satisfiability problem is of a logical nature. However it has a straightforward trans-
lation into an equivalent algebraic problem, that of P-retractability. '

A function f is idempotent when fo f = f, equivalently when its image or range coincides
with the set of its fixpoints. A retraction of a poset () is an idempotent monotone function
f:Q — Q; we say that f retracts Q) onto its image f(Q), and call f(Q) a retract of Q. For
a given poset P, the P-retractability problem is that of deciding whether P is a retract of a
given extension @) of P.

The example above of P-satisfiability has an evident reformulation as a P-retractability
problem. We extend P; to () by adjoining to P the variables z,y, z treated as new points,
ordered as in the inequalities, as shown in Figure 1.2.

A
\/

Figure 1.2. Poset Q.

X

Theorem 1.1. P-SAT is polynomial-time equivalent to the P-retractibility problem.

Proof:

To reduce the P-retractibility problem to P-SAT, translate the given extension @ of P to a
set of inequalities by taking the set of variables to be @) — P and taking the set of inequalities
to be the graph of @, i.e. all ¢ < ¢’ holding in §. Then @ retracts to P if and only if the
set of inequalities is simultaneously satisfiable in P. ‘

To reduce P-SAT to P-retractibility, translate the given set of inequalities to an exten-
sion) of P whose non-P elements are the variables appearing in the inequalities, ordered
according to the reflexive transitive closure of the given inequalities. @) is a preordered set:
reflexive and transitive but not necessarily antisymmetric. Identify all equivalent elements,
those pairs «,y such that z <y < z. (This extension might not be conservative, in the sense
that for some p # ¢ € P, p < ¢ might hold in @ but not in P, in which case @ cannot retract
to P.) The given inequalities are then satisfiable in P if and only if Q retracts to P. 0O

Viewing a poset P, defined as an irreflexive transitive relation, as an acyclic directed graph,
we associate to P the undirected graph formed by “erasing arrowheads.” (A common source
of confusion here is that the Hasse diagram for z < y < z conventionally omits the third
edge z < z, obscuring the fact that the associated undirected graph forms a triangle.)
More formally, we define the graph of P (understood henceforth to be undirected) to be the
symmetric closure of P, whose cycles of length two constitute the undirected edges.

We define the distance between two points in a poset as that in its graph, namely the
length in edges of the shortest path, or infinity if the points are not in the same connected
component. This notion of distance can be seen to make a connected poset a metric space. A
monotone function (including retractions) between connected posets is therefore a contrac-
tion or length-nonincreasing function (but not conversely since the contractions of a poset

168 V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset

include the antimonotone functions z <y D f(z) > f(y)). The diameter of a poset is the
greatest distance between any two of its points, whence a chain of n > 2 elements has unit
diameter.

A zigzag of length n is a poset whose graph is a simple path of length n, equivalently n+1
elements in alternating order, either as o < 27 2 2z, < ...2, 0r o > 71 < T3 > ... Ty, these
being the two minimal posets of diameter n connecting zo to z,. We refer to the former
zigzag as an upper zigzag from zo to z, and to the latter zigzag as a lower zigzag from zo
to r,. Call a zigzag proper if all its elements are pairwise different. We shall make frequent
use of zigzags as bits of string tying elements together; these create nonlinear constraints on
retractions when the strings go taut, the basis for our NP-complete problems.

2. Intracta‘ble Cases

An n-crown C, is a poset with 2n elements 0,1,2,..., 2n — 1 partially ordered such that
the only comparisons are 2 < 2¢ &+ 1 (using addition modulo 2n so that 2n —1 < 0 is in
the order). The 4-crown Cy can be depicted as in Figure 2.1(a), but is less cluttered if we
permit duplication of elements as in Figure 2.1(b).

MV AV \/ (VAN

Figure 2.1. The 4-crown Cjy (a) usual view (b) unrolled.

Theorem 2.1. C,-SAT is NP-complete for n > 2.

Proof:

We reduce 3SAT? to C,-SAT. We give separate though similar proofs for n = 2 and n > 3.
The common geometric intuition underlying the respective constructions is clearer for the
latter and so we give it first. ‘

Assume n > 3. For each CNF formula ¢ with v variables (hence at most 2v literals) and
k clauses we construct a formula 4 with (9n — 3)v + nk variables and (17n — 2)v + (n + 2)k
inequalities which is satisfiable in C, if and only if ¢ is satisfiable in {0,1}.

The basic idea will be to simulate each literal of ¢ with a copy of C, interded to retract
bijectively to C,, itself. We then give constructions that (i) permit only two such retractions of
each copy, which we associate with the two possible truth values of the corresponding literal;
(ii) interpret — standardly by forcing each literal = to retract oppositely to its negation —z;
and (iii) enforce the constraints implied by the k clauses of ¢. -

Associate to each of the 2v literals ¢ (which if negative will be of the form) a copy of
Cn. Thinking of C, as a circular crown, rotate the copy 1/2n of a full circle; Figure 2.2
illustrates the case n = 3. Each element of the copy that is midway between p and p + 2
(mod 2n) of the original C, is named z,,42. At this stage we have 2n variables per literal
so 4nv variables altogether.

xxxxi%x%&l
0 T2 2 T4 4 T 40 0

Figure 2.2. C; and copy.

33SAT is the set of satisfiable conjunctive normal form formulas having 3 literals per clause.

V. Pratt and J. Tiuryn /Satisfiability of Inequalities in a Poset 169

We now impose constraints (i)-(iii).
(i) At the 2n places where the edges of C), intersect the edges of the copy, place 2n

additional elements, as shown in Figure 2.3. The element on the edge connecting p to p+1
(mod 2n) is named 2, p41. This doubles the number of variables, to 8nv. We can now count

the inequalities; thus far we have 16nv.

AVAVAVAVAVAVA
/\/\/Ku”\/\/\

Zo2 T24 T40

51

Figure 2.3. Connecting C), to its copy.

Now consider the possible retracts of the poset of Figure 2.3 to C,. If x5 is sent to 0 then
so 1S T40, whence z45 is sent to 5, whence so is x35, and so on. Conversely if x50 is sent to
5 then so is z5;, whence zg; is sent to 0, whence so is zg2, and so on. It follows that this
poset has just two retracts to P, one sending every z,, to p, the other sending every z,, to
q. These will correspond, as poset valuations of zp, in P, to truth valuations of z in {0,1},
respectively false and true.

(i1) For each of the v variables = of ¢, we tie the literal pair 2 and Z together in such a
way that when z,, retracts to p, Z,, can retract only to ¢. That is, the z and T crowns can
only rotate in opposite directions when retracted, corresponding to always having opposite
truth values. This is accomplished by a mechanism that can be visualized as a piece of
string connecting a point of the z crown to a diametrically opposite point of the T crown
(in the unretracted position). We use the fact that if these two crowns retract in the same
direction (which we want to avoid), these diametrically opposite points remain diametrically
opposite. The trick is to prevent this possibility by making the string one “notch” shorter
than a half-perimeter of the crown.

The “string” is realized as a zigzag of length n — 2 from 3,1, to Zp—; ;n+1, a8 shown
in Figure 2.4, for n = 5 (where 23,11 = 91 and zp_1 41 = :c46) and again for n = 6
(22n-11 = z11,1 and Tt n+1 = x57) toillustrate the treatment of odd and even n respectlvely
The n —3 variables a, b, c, . .. per variable of ¢ are new variables not used elsewhere, bringing
the variable count to (9n——3)v. The n—2 inequalities bring the inequality count to (17n—2)v.

AVAN \VAVA

Z46

Figure 2.4. Inequalities making -z the complement of .

Any retraction to C, must conform the string to one side or the other of C,. Now the
distance around C, from 2n — 1 to n — 1 is n (whichever way we go around), while the
distance from 2n — 1 to n 4+ 1 is n — 2 when measured around the n +2,n + 3,... side (and
n + 2 around the other side). Hence if a retract sends x3,,_1,1 to 2n — 1 it must send Z,—3 n41
to n + 1 in order that the “string” be able to retract to C,. Likewise if x3,_1; retracts to 1
then Z,_1n4+1 must retract to n — 1. This achieves this desired contrary motion of z and Z.

(iii) We implement each clause z V y V z of ¢ by a more elaborate version of the above
diameter trick. We first run a string of length 4 from an arbitrary point on z to a suitable
point on ¥ in such a way that the string becomes taut (in the sense of having a unique
retraction) just when both z and y are false. We then run a second string, of length n — 2, -
from the midpoint of the first string to a point on z, such that when the first (short) string

170 V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset

becomes taut the second (long) string forces z to the true position. When there is slack in the

first string, this gives the second string just enough extra slack that it does not constrain z.
The length 4 string runs from z2n,_1,0 to §o1, while the length n — 2 string runs from the

midpoint w of the first string to z,—3,. This is illustrated for n = 5 in Figure 2.5.

A /)y(\/

HTs) w
Figure 2.5. Poset for clause z Vy V z, case n = 5.

Now z false forces u = n — 1, while y false forces v = 1. Hence both false forces w = 0,
which in turn forces z,_3, = n — 2, i.e. z true. If however z is true, i.e. zgp—10 = 0, then
u = 1, w = 2 becomes possible regardless of the truth of y. Then z,,-2 can be either n (z
false, making the long string taut) or n — 2 (z true, and the first zigzag of the long string
can “idle” by setting b = w). When z is false but y is true, i.e. Jo; = 0, then v = n — 1,
w=mn-—2,u=n—1 becomes possible. In this case the long string can be run around the
n—2,n —3,... side, allowing 2,_,, to be either n — 2 (making the long string taut) or n
(slack).

Hence no retract makes all of z, y, 2 false, and this is the only constraint on the truth values
of variables imposed by this construct. The construct adds n variables and n +2 inequalities
per clause, making the final totals (9n — 3)v 4+ nk variables and (17n — 2)v + (n + 2)k
inequalities.

(Side remark: For n > 5 the length 4 string could have been attached to crown tips;
attaching it to crown intersections in effect further shortens the string to length 2 when z
and y are both false, preventing it from going around the other side of the crown when n is
3 or 4. This yields a uniform construction for all n > 3.)

This completes the proof for the case n > 3. We now treat the case n = 2. We proceed
as for n > 3, but omit the explicit representation of z.

The formula ¢ having v variables and k clauses translates to a formula + having 8v + 3k
variables and 16v + 6k inequalities. We retain construction (i), which gives 8v variables
and 16v inequalities. Without the Z construction, (ii) is no longer relevant. In place of -
construction (iii), when all three literals of £ V y V z are positive we use the construction of
Figure 2.6 for each of the k clauses, giving the remaining 3k variables (3 new variables per
clause) and 6k inequalities (6 edges per clause).

NN
X

Figure 2.6. Poset for clause ¢V y V z when n = 2.

This works as follows. When z and y are both false, u = 1 and v = 3, forcing w = 0 (since
0 < w) and hence 2z = 0, i.e. z is forced to true. But if z is true, then u = v = w=3
becomes possible, which removes all constraints on y and 2. Similarly y true permits u =
v = w = 1, removing all constraints on z and 2.

Clauses with negative literals are accommodated by using zo;, y23, and zgy, in both the
figure and the proof, when the corresponding variables are negated. For example when the
clause is ~z V y V -z, we replace 12 by zo; and 299 by 29, throughout. The proof then goes
through when we interchange true and false for and z (equivalently, if we replace z and z
by —z and -z). ’

This completes the proof.]

V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset 171

3. Tractable Cases

This section introduces the notion of obstacle for a poset as a formula characterizing its
non-retractible extensions. Subsection 3.1. motivates the notion of obstacle, 3.2. defines it
and establishes its reliability as an indicator of non-retractibility.

3.1. Some Motivating Examples

By way of motivation, we start with the simplest case, that of a lattice. Let us first notice
the following easy observation which implies that every lattice is a tractable poset.

Proposition 3.1. If Q extends a lattice P, then Q retracts to P.

Proof:
Retract every point ¢ € () to meet of all points in P which are above gq. O

Next, consider the poset P, of Figure 1.1. Again it is easy to check for P-retractability.
Proposition 3.2. Let Q extend P;. @ retracts to P, iff {0,2} has no lower bound in Q.

Proof:

The necessity is obvious. For sufficiency, retract every point ¢ € @) to meet of all points in
P; which are above ¢. This leaves unretracted points whose set of upper bounds in P, is P;.
By the assumption there are no such points in Q). O

For the next example take the following four element zigzag P, presented in Fig.3.2.

N

Figure 3.2. Poset P,.

Again it follows from the next result that P; is tractable.

Proposition 3.3. Let Q) extend P,. @ retracts on P iff there are no elements z,y € Q
which satisfy the following constraints 0 > ¢ <y > 3.

Proof:

Such z and y clearly prevent any retraction, so it suffices to show that their absence permits
a retraction. Their absence immediately implies the retractibility to 3 of the elements above
3, and to 0 of those below 0, which we therefore perform. No element strictly below 3 can
be above either 0 or 1, and therefore all such may retract to 2. No element not yet retracted
to P, can be below either 0 or 2, or above 3, whence all such may retract to 1, yielding the
desired retraction to P,. a

The following example illustrates a different form of condition. Let P3 = {0,1} be the
discrete two-element poset, for which the distance from 0 to 1 is infinite.

Proposition 3.4. Let () extend P3. @ retracts to P iff there is no path in Q which connects
0 and 1.

Proof: _
If 0 is not connected to 1 then it is possible to retract to 0 the elements connected to 0,'and
everything else to 1, Conversely, when 0 is connected to 1 in @ their distance is finite, which '

retraction cannot increase, but this contradicts the infinite distance from 0 to 1 in P;. ' O

172 V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset

In section 4 we will present machinery for producing some tractable posets, P; through

P; being special cases.
As the last example, take the poset Py of Fig.3.3

4
0 2
Figure 3.3. Poset P;.

Proposition 3.5. Let Q) extend Py. @ retracts to Py iff there is no path in ¢) which connects
0 and 2 and whose all points are bounded above by 1 and 3.

Proof:

Necessity is easily shown by induction on the length of such a path. For sufficiency, retract
each point ¢ € () to the meet in P, of the set of elements of Py above ¢ in (), when that meet
exists. This leaves unretracted only those points whose set of upper bounds is either P or
{1,3,4}. The path condition rules out existence of a point of the former kind. Any point ¢
of the latter kind can lie only on a path of points of the latter kind reaching at most one of
0 or 2: retract ¢ to that one, or to 0 by default if ¢ is connected to neither 0 or 2. O

The common feature of the above examples was that we were able to single out some finite
set of obstacles which prevented @) from being retracted onto P and proved that these were
the only possible obstacles for the existence of a retraction on P. Each such obstacle was
decidable in time polynomial in the size of the given extension (), giving a polynomial-time
algorithm for P-retractability. In this section we will generalize this method by introducing
a language for expressing obstacles. This will be a fragment of the first-order language with
the least fixed-point operator. We prove that the obstacles expressible in this fragment are
always guaranteed to be sound (i.e. closed under retractions) and that they are decidable in
polynomial time for any poset. We call a poset P feasible if there is a finite set of obstacles
expressible in the above-mentioned language such that any extension @ of P retracts to P
iff none of the obstacles holds in (). In section 4 we study some order-theoretic constructions
under which feasible posets are closed.

3.2. Feasible Posets

We assume that we have a countable set of individual variables z,y, z,... and a countable
set of predicate variables X,Y, Z, ... for each arity n > 0.
Let P be a fixed poset. Our language has one constant symbol ¢, for each element p € P.
A P-term is either an individual variable or a constant symbol c,. '
The set of P-formulas is the least set of formulas which satisfies the following conditions.

o BEvery atomic formula, t; < {3, t; = o, or X(t1,...,%,) is a P-formula, where t;,...,t,
are P-terms, and X is n-ary predicate variable.

o If ¢ and 9 are P-formulas, then so are (¢ V ¥), (¢ A), and (Iz.).

o If © is a P-formula, X is n-ary predicate variable, ¥ = =i,...,%, is a vector of n
individual variables, and { = ty,...,t, is a vector of n P-terms, then (pX,Z. ¢)(f) is
also a P-formula.

We interpret P-formulas as follows. A P-model @) is any poset which contains P as a-
subposet. A valuation v in @) assigns to each individual variable z an element v(z) € @, and
to each n-ary predicate variable X an n-ary predicate v(X) C @™. All valuations assign to
the constant ¢, the element p. We write vZ for the valuation differing from v only at the

V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset 173

individual variable z, where it satisfies v4(z) = d and otherwise satisfies vZ(y) = v(y) and
v4(X) = v(X). ‘ .
A similar notation applies to predicate variables X and predicates S in @ as well, namely

vy. This notation is naturally extended to vectors of elements and individual variables,

namely vg.

The semantics of P-formulas is defined recursively with the help of the predicate @ = ¢[v],
where Q is a P-model, ¢ is a P-formula and v is a valuation in Q. These data suffice to
determine a truth value for Q | [v], defined by induction on the height of ¢. @ and v
determine in the evident way the truth value of atomic P-formulas as well as that of P-
formulas of the form (¢ V %), (¢ A %), and (3z.¢), leaving only one more form of P-formula
to be explained. . :

The P-formula (pX, &.)(t) asserts X (f) where the n-ary relation X is defined recursively
by X (&) = ¢ where ¢ may refer recursively to X and any or all of the variables in . As an
example of its use consider the paths described in Proposition 3.5. We state formally that
such a path exists by asserting X (0, 2) where the binary relation X is defined recursively by

z<yVy<z—X(z,y)
Az[X(z,2) A X(z,y) Az <1 A2 < 3] - X(z,y)

By taking the recursive definition for ¢ we may combine it and the assertion in the one
P-formula (uX,z,y.(z <yVy <z - X(z,9)) AN (32[X(2,2) A X(z,y) N2 < 1A 2L 3] —
X(z,9)))(0,2). The latter form is less convenient for application, but more convenient for
metatheory.

If m distinct variables other than those in Z occur free in ¢, and if the sum of the arities of
the free predicate symbols other than X occurring free in ¢ is w, then @ |= ¢ is a predicate
on Qm*" x 29" that is, a function F, : Q™ x 29", We reorganize this by moving the
portion associated with X and 7 inwards to make it F,, : Q™ x 29" x 29" x Q" — 2 and then
further “curry” it to yield F,:Qmx 29" — (29" — 29"). Hence each possible valuation

v of all variables and predicate symbols determines an element ¢ € Q™ x 29 and hence a
function F,, : 29" — 297, namely F),(¢). We then define the n-ary relation pX,Z. ¢ to
be the least fixpoint of Fi,,. The logical connectives of our language all being monotone,
F, ., must be monotone on the complete lattice 29", whence by Tarski-Knaster this fixpoint
exists. When ¢ = |Q| as in our application, the fixpoint is given explicitly by qu,q:)((0) where
F*) denotes the k-fold composition of F' with itself. This yields a simple algorithm for
computing the fixpoint which can then be tuned for greater efficiency.

Now uX,Z. ¢ takes two arguments, namely the valuation v and the n-tuple over @ at
which the fixpoint is to be evaluated. Alternatively we may assume that the n-tuple consists
of P-terms, since we may then apply v to map them to elements of (). The latter convention
leads naturally to the order of application (X, Z. ¢)(f)[v]. Omitting the valuation then
leaves us with a P-formula (uX,Z. ¢)(f)[v] whose interpretation for any given valuation v is
(1 X, E. ¢)(t)[v] as just defined.

A special situation of using the least fixed point operator is that of a transitive closure
operator of a 2n-ary relation. Let n > 1 and let ¢ be a P-formula, let Z, 7 be n-vectors of
individual variables and let {1, ¢, be n-vectors of P-terms. By TC(A &,9. <p)(t_{,t;) we will
denote the P-formula® '

(1X,3,7. oV 32, (X(3,2) A X))@, 53)

We introduce a subset of the set of all P-formulas. Transitive closure P-formulas form the
least set of P-formulas which satisfies the following conditions.

4We assume that X does not occur free in ¢.

174 V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset

e Every atomic formula t; < t,, or t; = ¢; is a transitive closure P-formula.
e If ¢ and 9 are transitive closure P-formulas, then so are

(P V), (pAY), (3a9), and TC(AE,7. ¢)(f1,12)
where &, § are n-vectors of individual variables and #1,f; are n-vectors of P-terms.

A P-retraction consists of a pair of P-models @)y, @), forming a chain of P C)2 C @, of
poset embeddings, together with a retraction of ()1 onto Q);.
Let f: Q1 — Q2 be a function and let v be a valuation in @,. Define a valuation fv in.

@2, as follows.

and

fo(X) ={(f(d1),..., f(dn)) | (d1,...,dn) € v(X)}
Theorem 3.1. Let f : Q1 — Q2 be a P-retraction. For every P-sentence p, we have the
following equivalence: @y = ¢ iff Q2 = .

Proof:
Let f: @, — Q2 be a P-retraction.

Let ¢ be a P-formula, v a valuation in ¢, and u a valuation in),. We prove by induction
on ¢ the following two statements.

if Q1 = ¢[v], then Q2 = ¢[fv] | (1)
if Q2 |= ¢[u], then Q1 = ¢[u] (2)

The case of ¢ being an atomic formula, a disjunction, conjunction, or existential quantifica-
tion is obvious and we omit the details.
Let us consider ¢ being of the form (uX, Z. ¥)(%), and let

Qi (X, 2. $)(H)[] (3)

Let Fy, be the functional in @, associated with 3 and v (with respect to the choice of X
and). And similarly, let Fy ¢, be the functional in @, associated with ¢ and fv. We prove

by induction on k£ > 0 that for all de Q7.)
if d € F5,(0), then f(d) € F¥ , (0) (4)
For k = 0 (4) is obvious. Assume that (4) holds for k and let

de Fit (0) = Fy o (F5(0))

Hence,
Qi F 'P[UJP;'?%"(@)J]
By induction assumption (1) for ¢ we get ‘
@ ol g™ | ®)
It follows that .
flogs ™) = ()3 6

where

S ={f(e) | € F},(0)}

V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset 175

hence by induction assumption (4),
S (—: Fj,fv(ﬂ)
Since X occurs only positively in ¢, it follows from the above inclusion, (5) and (6) that

Fk . (0).5(d)

Q2 = d[(fo)x's)]

Hence, by the definition of Fy t,, we conclude that

f(d) € Fy 1o(Fy 1,(0)) = Ft(0)

This proves (4). From (4) and (3) we immediately get

Q2 = (nX, 7.)(@)[f]
This completes proof (1). Proof of (2) is just the same. 0

Call a poset P feasible if there is a P-sentence ¢ such that for every P-model @), Q retracts
to P iff @ }~ ¢. We call such a ¢ a complete obstacle for P. A P-obstacle is any P-sentence
¢ such that P (£ ¢. It follows from Theorem 3.1., that if ¢ is a P-obstacle and Q |= ¢, then
@ does not retract to P. Call a poset P T'C-feasible if it has a complete obstacle which is a
transitive closure P-formula.

It follows from Proposition 3.1. that every lattice is TC-feasible. By Propositions 3.2.,
3.3., 3.4., and 3.5. we conclude that posets P, P, P53, and P, are TC-feasible. For example,
a complete obstacle for P, is

TC(Az,y. (x<yVy<z)Ae<1Az<3Ay<1Ay<3)0,2)

Proposition 3.6. Every feasible poset is tractable. Moreover the retraction problem for
every TC-feasible poset is in NLOGSPACE.

Proof:

It is well known that validity of a sentence of the first-order language with least fixed-point
operator in a finite model can be checked in time polynomial in the size of the model. If the
sentence is a transitive closure P-formula then validity can be checked in NLOGSPACE. O

For any P-model Q, let og be Jz;...2,. oy, where {z;,...,2,} =Q — P and og is the
conjunction of all formulas of the form ¢ < ¢/, where ¢,¢’ € Q) and t < ¢’ holds in (). The
next result is a corollary of Theorem 3.1.

Proposition 3.7. For every P-model @, @Q retracts to P iff P |= oq, i.e. iff o is not a
P-obstacle.

Proof:
If Q retracts to P, then since o¢ is a P-sentence which holds in @, by Theorem 3.1. it must
hold in P. Conversely, if P |= o, then the solution to og defines a retraction of () to P. O

It follows that if we were allowed to write in our language infinite disjunctions (which
make sense and yield formulas which still are preserved under retractions, but are hardly
polynomial-time computable), then the infinite disjunction

V 7q
Q does not retract to P

would always be a complete obstacle for P. Feasible posets are those where this disjunction
can be replaced by one P-sentence.

176 V. Pratt and J. Tiuryn /Satisfiability of Inequalities in a Poset

4. Constructions Preserving Feasibility

In this section we will study several constructs on posets which preserve feasibility: finite
products, disjoint union, and retractions. We also show that feasible posets are closed under
taking dual posets and under isomorphism, and that they properly contain posets satisfying

Helly property.

4.1. Duality and Isomorphism

Proposition 4.1. The class of feasible posets is closed under iSomofphisms. Also the class
~ of TC-feasible posets is closed under isomorphisms.

Proof:

Let f : P, — P, be an isomorphism of posets. For every P;-formula ¢ let ¢ be a P;-formula
which is obtained from ¢ by replacing each constant ¢, for p € P, by a constant cy(,). Clearly
if ¢ is a transitive closure Pj-formula, then ¢y is a transitive closure P,-formula.

For a P; model @ let Qs denote a P;-model which is obtained from @ by replacing each
element p € P, by f(p). Let g5 : @ — @y be the isomorphism resulting from the above
construction. The proof now follows from the following two obvious observations. '

For every poset ¢} which extends P,

@ retracts to Py iff Qs retracts to P,

For every poset () which extends P, for every valuation v in @), and for every P;-formu-

la ¢,
Q FE elv]iff Qs = slgs v]
It follows from the above two observations that ¢ is a complete obstacle for P, iff s is a
complete obstacle for P. o

Proposntlon 4.2. A poset dual to a feasible poset is feasible. A poset dual to a TC-feasible
poset is TC- feasible.

Proof:

Let Pt be the dual of a poset P. A complete obstacle ¢t for P+ is obtained from a complete
obstacle ¢ for P by replacing every occurence of < in ¢ by <~! (i.e. by >). The details are
left for the reader. a

4.2. Finite Products

In this section we show that feasible (TC-feasible) posets are closed under finite products.
Let P, and P, be two finite posets.

Proposition 4.3. Let Q) be a poset which extends P, x P;. Let a € P, and b € P, be
arbitrary elements. Then @ retracts on P, X P, iff Q) retracts on both: P, x {b} and
{a} X P2. : . ‘

Proof:
The “if” part follows from the observation that P, X P, retracts on P; x {b} via retraction
which sends (z,y) to (z,b). Similarly P; X P; retracts on {a} x P;.

For the proof of “only if” take two retractions fi : Q — P, x {b} and f,: Q — {a} X P,
and define f : Q — P, x P; by f(q) = (71f1(q), 72f2(q)), for ¢ € Q, where x; denotes the

projection on ¢-th component. It is easy to check that f is a retraction. ar

V. Pratt and J. Tiuryn | Satisfiability of Inequalities in a Poset 177

Theorem 4.1. If P, and P, are feasible, then so is P, X P,. Also TC-feasible posets are
closed under finite products.

Proof: :

Take any @ € P, and b € P,. Let y; be a complete obstacle for P,. Since P, x {b} is
isomorphic to P, it follows that ¢, is a complete obstacle for P; x {b}, where 4, is obtained
from ¢; by replacing each constatnt ¢, by ¢, for p € P, (see Proposition 4.1.). By a
similar construction we obtain a complete obstacle 4, for {a} X P,. By Proposition 4.3. it
follows that 1 V @, is a complete obstacle for P; x P,. O

4.3. Helly Posets

In this section we show that a broad class of posets which satisfy Helly property is contained
in TC-feasible posets. We start with some definitions.

A disc D in a poset P is specified by its center p € P and by a pair of non negative
integers ny,n,. Given the above data, D is defined as the set of all points of P which are
reachable from p via a lower zigzag of length at most n; and via an upper zigzag of legth
at most ny. Of course if the difference between n; and n, is larger than 1, then D can be
equally specified by ny,ny + 1, if ny < ng, or by ny + 1, ns, if ny < ny.

A poset P satisfies Helly propoerty (see [Benke93, NevermannRival85]) if for every finite
family Dy, ..., Dy of discs, if D; N... Dy = 0, then for some 7,5 € {1,...k}, D; N D; = 0.

Call an extension @) of P isometric if for every two points p;,p, € P and for every n,
if py is accessible in @ from p; via a lower (resp. upper) zigzag of length n, then it is also
accessible in P from p; via a lower (resp. upper) zigzag of length n.

The following result shows that Helly posets are feasible.

Theorem 4.2. (Benke93)
Let P be a poset satisfying Helly property. An extension Q) of P retracts on P iff Q is
isometric over P.

Corollary 4.1. Every poset satisfying the Helly property is TC-feasible.
Proof:

A combplete obstacle for P is a disjunction of formulas which express the property that p; is
accessible from p, via a lower (or an upper) zigzag of length at most n — 1, where n is the
length of the shortest lower (or upper) zigzag in P from p, to ps.]

Poset P, of Fig.3.3 is an example of a TC-feasible poset which doesn’t satisfy Helly
property. Forp € {0,2} let D, = {z € Py |p< =z} andforge {1,3}let D, ={z € Py |z <
q}. The reader can easily check that Dy, Dy, Dy, D3 are discs such that DyN.D;ND,ND3 = §,
but every two (even every three) discs have non empty intersection.

We conclude this section with a result which will be used at the end of the paper. Let’s
call a poset P a generalized zigzag if for every two points py,p; € P there is at most one
proper zigzag from p; to p;. For example posets represented at Figures: 1.1, 2.4, 2.5, and 3.2
are all generalized zigzags, while poset P4 of Fig.3.3 is not since there are two zigzags from 0
to 2: 0,3,2 and 0,1,2. Let us also observe that every generalized zigzag contains no chain of
length greater than 1. Indeed, if @ < b < ¢ then we have two different proper zigzags from a
to b: a,b and a,c,b.

Proposition 4.4. If P is a generalized zigzag, then it satisfies Helly property.

Proof:
Take any family of discs Dy,..., D, in P such that D;N...N D, =@, but D;ND; # @ for
all ,57 € {1,...,n}. Let n be the smallest with this property. Let A=D;N...ND,_;. It
follows that A # 0.

178 V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset

Take the family of all proper zigzags from the center d of D, to an element in A. This
family is non empty sine D, has nonempty intersection with each D; for ¢ < n. Take a proper
zigzag from this family of a minimal length. Let a € A be the right end of that zigzag. Since
AN D, =0 it follows that d ¢ A. Let b # a be the element adjacent to a on that zigzag. By
the minimality condition it follows that b ¢ A. Hence there is k € {1,...,n — 1} such that
b¢ Dy.

¢We claim that DyND, = 0. Assume that ¢ € D,ND,. Take the unique zigzag connecting
d with the center e of Dj. By the zigzag uniqueness condition it follows that a, b and ¢ belong
to that zigzag. Since a € Dy, and b € Dy, again it follows by the zigzag uniqueness condition
that ¢ being an element of Dy must be positioned on that zigzag to the right of . On the
other hand since ¢ & D,, and since a is a right neighbor of b on that zigzag, it follows that
no element to the right of b can belong to D,. Obtained contradiction proves the claim that

DN D, =0. O

4.4. Disjoint Union
In this subsection we show the following result.

Theorem 4.3. Feasible posets are closed under taking disjoint unions. Also TC-feasible
posets are closed under disjoint unions.

Proof:
Let P, P, be disjoint feasible posets with complete obstacles ¢; and p,, respectively. Let
P = P UP,. 1t is very easy to prove that a P-model @) retracts to P iff there is no path in
@ which connects points in P; and P, and if for ¢ = 1,2, Q; retracts to P;, where Q; is the
set of all elements of ¢) which are connected by a path to an element in P;. What we have
to do is to make this observation into a P-formula.

Let o(z) be any P-formula such that z is its only free variable. For every P-formula ¢
we define its relativization p? as follows.

¢ If ¢ is atomic, then ¢7 is ¢.

o (1 A p2) is (] A ¢]), and similar for V.

o (Jz. ¢)? is Jz. (o(z/2) A 7).

o (1X,Z. o)D) is (uX,Z. ¢°)(7).
In case of transitive closure formulas the relativization of TC is slightly different.

. (TCO, . o)) (65, i ..

TC(AZ, . ¢° A Nioy o(zif/2) AN, 0(yi/2))(t, t2).

The above construction has the following property. Let @ be a P-model and let o(z) be a
P-formula such that z is its only free variable. Let Q, = {a € Q | Q |= o[a]} be a subposet

of @ with its partial order being a restriction of that in Q. Let P, = PNQ,. Then for every
valuation v in @, and for every P,-formula ¢ the following equivalence holds:

QE¢] i Qo Fol] NG

The proof of (7) is by routine induction on ¢.
Now, to conclude the proof of our Theorem, let Path be the following predicate.

TC(Az,y.z<yVy<uz)

Let o be the disjunction

\/ Path(a,b)

a€P, beR,

V. Pratt and J. Tiuryn /Satisfiability of Inequalities in a Poset 179

and for ¢ = 1,2, let o;(z) be the formula

V Path(z,a)

a€P;

It follows from the above that
Y1V’ Vo

is a complete P-obstacle. | O

4.5. Retractions

Let P, be an extension of a poset P and let Q be a P-model. We construct a P;-model Q*
as follows. Add to Q the new elements in P, — P, (without loss of generality we may assume
that P, — P and Q are disjoint). The order relation <, in @7 is defined as follows. z <,y
iff one of the following holds.

e z < y holds in Q.
o There exists z € P, such that z < z holds in) and 2 < y holds in P,.
o There exists z € P, such that z-< z holds in P, and z < y holds in Q.
e z <y holds in P;.

We have the following easy result.

Proposition 4.5.
(i) <4 is a partial order in Q*.
(ii) P* is order-isomorphic to P;.
(iil) If @ retracts to P, then Q% retracts to P;.
(iv) If Py retracts to P, then for every P-model @), @ retracts to P, iff Q% retracts to P;.

Proof:

(i) is proved by case analysis. (ii) is obvious. The proof of (iii) is also easy. Let f: Q — P
be a retraction and let g : Q* — P, be the extension of f which is identity on elements in
P, — P. A simple case analysis shows that g is monotone and therefore a retraction on P,.
(iv) obviously follows from (iii).]

Now, let us assume that P has at least two elements, say 0,1 € P and let k be the least
integer such that |P, — P| < 2. Given any P-model Q we encode a € Q% by a € Q! as
follows. Every a € @ is encoded by @ = (0,a,...,a) (0 followed by & a’s). Everya € P, — P
is encoded by @ = (1,e€1,...,€k), where €1,...,€; is a binary encoding of a.

We now give a P-formula D describing the domain of encoding, i.e., the set of all k + 1-
tuples of elements of @) which are codes of the elements of Q*. We define D(z,y,,...,yx) to
be

(@=0Ay=...=y)V \/ (@=1Ap=(@nA.. Ay =(a)).
a€P,~P

The P-formula LE below translates the definition of a <, b as defined on Q% into the
definition of inequality between the codes of a and b, respectively. That is, LE defines a
binary relation between k + 1-tuples of elements of @) each coding an element of Q.

Define LE(z,{, x’,g;") to be
D(z,7) A D(z',y") A disjunction of clauses defining <. .
For example, the first clause in the definition of <+ takes the form |

r=0A2"=0Ay <y,

180 V. Pratt and J. Tiuryn/Satisfiability of Inequalities in a Poset

while the second clause becomes

z=0Az" =1A v (1 <aAyl =B A Ayl = (b))
(a,b)eA :

where A = {(a,b) |a € P, b€ P, — P, a <b}.

Next, for every Pj-formula ¢ with n free variables we construct a P-formula ¢ with
n(k + 1) free variables. The role of ¢ when evaluated in @ is to mimic the evaluation of ¢ in
Q*. Since the variables of ¢ are confined to @), we use k + 1-tuples of elements of @ to code
single elements of @*. The coding is accomplished with the help of the formulas D and LE

defined earlier.

The construction is by induction on ¢. To simplify the notation, for every individual
variable z, let & denote the (k + 1)-vector of variables (zo,z1,...,2%). We assume that
the variables (zo,z1,...,zx) are all pairwise different and that the assignment of & to z
is one-to-one. This gives us an obvious transformation which maps every P;-term t into
a (k + 1)-vector of P-terms, i.e. a P, constant a is transformed to @ and a variable z is

transformed to Z. Similarly, for every n-ary predicate variable X, let X denote a n(k+1)-ary
predicate variable. The construction of ¢ follows.

o t < t'is translated into LE(,).
o X(t1,...,t,) is translated into X (f1,...,5) AD(&) A... A D(,).
e (¢ V) is translated into ¢ V ., and similarly (¢ A1) is translated into @ A .
e Jz. ¢ is translated into 3. (D(Z) A @).
. Finf).lly, (uX,21 ..., 2n. ¢)(t1,...,t,) is translated into
(/IX, 2?1 ey fn (ﬁ)({], v ,t;t)

For the case of transitive closure formulas we have the following defining condition.
o TC(Azy,..., Tny Y1,y Yn- ©)(t1,- .-, tny31,...,8,) is translated into
TC(x\:Eh oy Ty Y1y ey Une @ ANy D(E) AN, D) (- -

tnyS1y- -y 8n)-

Theorem 4.4. Feasible posets are closed under retractions. Also TC-feasible posets are
closed under retractions.

Proof: :
One first proves by induction on ¢ the following property. For every P;-formula ¢, for every
P-model @ and every valuation v in Q¥,

Q" ol it Q4] ®

where 9 is any valuation which satisfies the following two conditions for every free variable
z in ¢ and free predicate variable X in ¢,

v(z)=a iff (0(zo),...,0(zx) = &)

where & = zq,..., 2 is the (k + 1)-tuple of variables associated with z, and

if (a1,...,an) € (X), then (dy,...,dn) € v(X)

The proof of (8) is routine and we omit the details. Now, to complete the proof let’s
assume that P, retracts to P and let ¢ be a complete Pj-obstacle. It follows from (8) and
Proposition 4.5. (iv) that ¢ is a complete P-obstacle. -0

3

V. Pratt and J. Tiuryn |/ Satisfiability of Inequalities in a Poset 181

5. Bipartite Posets

Call a poset P bipartite if for all p,q,r € P, if p < ¢ < r, then either p =g or ¢ = r, ie.
these are the posets with all proper chains having at most two elements.

Let us observe that every n-crown C,, is a bipartite poset. Posets P;, P, and P5 introduced
in Section 3.1. are also bipartite. In this section we give a complete classification of bipartite

posets with respect to the retractability problem.

Theorem 5.1. Let P be a bipartite poset.
(i) If for some n > 2, P contains a crown Cy, as a subposet, then P-SAT is NP-complete.
(it) If P contains no crown, then it is TC-feasible, and therefore P-SAT is in NLOGSPACE.

Proof:
For the proof of (i) let us assume that P contains a crown C,, and let n be the smallest

number with this property. We proceed just the same as in the proof of NP-completeness
for C,-SAT (see Theorem 2.1.). The property that P is bipartite ensures that there are
exactly two retractions of the “double crown” of variables. Since C, is minimal, there are
no shortcuts in P which would make the distance between two points of C), smaller. Thus
the “locking mechanism” for expressing negation will work in this encoding.

Also the encoding of clauses works here correctly. For n = 2 the encoding works (see Fig.
2.6) since the forbidden assignment: z,2 = 1, y3o = 3 and 2z = 2 for this clause, yields a
contradiction with the assumption that P is bipartite (retractability under this assignment
implies that there is an element w which is below 1 and 3 and above 0 and 2). For n > 2
the encoding works as well, though for a slightly different reason. Take, for example, the
poset of Fig. 2.5 which encodes a clause for case n = 5. Retractability under the assignment
T12 = 1, yoo = 9 and z53 = 5 would imply that there exists an element w which is below 1 and
9. It cannot be 0 since the distance conditions prevent this possibility. Hence {0,w, 1,9} is a
crown Cy C P. This yields a contradiction with the assumption that P does not contain C;.

In order to prove (ii) let us assume that P contains no crown. Call a set A C P decompos-
able if there is a sequence P, C P, C ... P, such that A = P,, P, has exactly one element,
and for every 1 < ¢ < n, there exists p € P; such that P, — P,_; = {p} and p is comparable
to exactly one element of P;_;.

Clearly every decomposable set, treated as a poset, is connected. Also, by a routine
induction on the number of elements one proves that every decomposable set, treated as
a poset, is a generalized zigzag. The routine argument is left for the reader. Thus, by
Corollary 4.1. and Proposition 4.4. every decomposable set is TC-feasible.

Now, let A C P be a maximal decomposable subset. If A is properly contained in a
connected component of P which contains it, then it follows that there is an element p in
that component such that A U {p} is not decomposable. Hence, p must be comparable to
at least two elements ay,a; € A. Let ay,q1,...,qn, a2 be a path in A which connects a; and
ay. Then ay,q1,...,qn,az,p is a crown. The obtained contradiction proves that A must be
equal to a connected component of P. Thus P is a disjoint union of TC-feasible posets and
therefore (see Theorem 4.3.) is TC-feasible as well. O

References

[Benke93] Marcin Benke. Efficient Type Reconstruction in the Presence of Inheritance. In: A. M.
Borzyszkowski, S. Sokolowski (Eds.) MFCS’93: Mathematical Foundations of Computer
science, Proc. 18th Intern. Symp., pages 272-280, Springer Verlag, LNCS 711, 1993.

[Benke95] Marcin Benke. Subtyping and Alternation. To appear as Technical Report, Institute
of Informatics, Warsaw University, 1995.

182 V. Pratt and J. Tiuryn [Satisfiability of Inequalities in a Poset

[FederVardi93] T.A. Feder and M. Vardi. Monotone monadic SNP and constraint satisfaction. In
Proc. 25th ACM Symp. on Theory of Computing, pages 612-622, 1993.

[HoangMitchell95] My Hoang and John C. Mitchell. Lower Bounds on Type Inference with Sub-
types. In Conf. Rec. 22nd ACM Symposium on Principles of Programming Languages,
pages 176-185, 1995.

[Mitchell84] John C. Mitchell. Coercion and Type Inference (summary). In Conf. Rec. 11th ACM
Symposium on Principles of Programming Languages, pages 175-185, 1984.

[MitchellLincoln92] Patrick Lincoln and John C. Mitchell. Algorithmic Aspects of Type Inference
with Subtypes. In Conf. Rec. 19th ACM Symposium on Principles of Programming
Languages, pages 293-304, 1992.

[NevermannRival85] P. Nevermann and I. Rival. Holes in ordered sets. Graphs and Combinatorics,
pages 339-350, 1985.

[OKeefeWand89] Mitchell Wand and Patrick M. O’Keefe. On the Complexity of Type Inference
with Coercion. In Conf. on Functional Programming Languages and Computer Archi-
tecture, 1989. '

[Tiuryn92] Jerzy Tiuryn. Subtype Inequalities. In Proc. 7th IEEE Symposium on Logic in Com-
puter Science, pages 308-315, 1992.

[TiurynWand93] Jerzy Tiuryn and Mitchell Wand. Type reconstruction with recursive types and
atomic subtyping. In: M.-C. Gaudel and J.-P. Jouannaud (Eds.) TAPSOFT’93: Theory
and Practice of Software Development, Proc. 4th Intern. Joint Conf. CAAP/FASE,
Springer-Verlag LNCS 668, 1993, pp.686-701.

