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1. Introduction

A part of work of Professor Helena Rasiowa was devoted to the development of methods of
algebraic semantics. The very possibility of applying algebraic methods to logics containing
quantifiers is due to a fundamental result which is commonly called the Rasiowa-Sikorski
lemma.

The Rasiowa-Sikorski lemma made it possible to investigate algebraic aspects of many
fundamental problems in first-order logics (classical and non-classical) and in the set theory.
In the former domain they included Godel’s completeness theorem, completeness theorems
for various non-classical logics, Skolem-Lowenheim theorem, Craig interpolation theorem,
and existence and disjunction properties for intuitionistic logic, (cf. [15], {12] and references
therein.) In the later domain the lemma can be used in the proofs of independence of axioms
from a formal theory of sets. The lemma will be of a crucial importance for the considerations
of this paper. _

The algebraic semantics was the area of the most active research in 1950’s and 1960’s.
Logic programming came into being in 1970’s. Although in the theory of logic programming
three valued models are sometimes considered, the two domains never met in a non-superficial
way. ‘

This paper is an invitation for logicians familiar with the algebraic semantics to explore
foundations of logic programming. It is also an invitation for those working on foundations
of logic programming to consider possible uses of the methods of algebraic semantics.

*Work partially supported by NSF grant IRI 9308970.
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We intend to make this paper possibly self-contained, so in Sections 2-4 we will recall
basic definitions of universal algebra, Boolean algebras and algebraic semantics. In Section
5 we will define omega-Herbrand interpretations and reformulate the foundations of logic
programming to make use of this notion. In Section 6 we will give two auxiliary results
whose proofs are very straightforward if one uses methods of algebraic semantics. These
two results will lead in Section 7 to corollaries concerning logic programming. Among the
corollaries there is Clark’s completeness theorem as well as a number of new results.

Assumption 1.1. Throughout the paper we consider only first order languages with finite
alphabets and without equality, unless explicitly assumed otherwise.

2. TUniversal Algebra

Universal algebra is concerned with analysis of properties which are common to all algebras
independently of their type. Its definitions apply equally well to groups, rings, or Boolean
algebras. This last case will be of importance to this paper.

By an algebra one understands any tuple (A, opy,...o0p,) where A is a nonempty set and
opy,- .. op, are arbitrary functions on A. The set is called a universe, the functions are
called operations. Operations of arity 0 are allowed, and they are called constants. By the
signature of the algebra above one understands the sequence (arity(op,), ..., arity(op,)).

Given two algebras of (A,op,,...0p,) and (A’,opy,...op,) of the same signature, one
defines a homomorphism as a function h : A — A’ which preserves all the operations i.e.
satisfies the conditions h(op;(1,- -, Zarity(op,))) = oPi(h(z1), .. h(:z:amy(op')))

By a congruence one understands an equlvalence relation on the universe which is com-
patible with all the operations: if z1 ~ i, ..., Zarity(op,) ~ a“ty(op‘) then op;(zy, ...,
Tarity(op,)) ~ OPi(T1s - - z:,m-ty( OP.-))' The equivalence class determined by an element z will
be denoted by || z ||

Given a congruence ~ on an algebra A, by a quotient algebra A /. one understands the
algebra whose signature is the same as that of A, whose universe is the set of equivalence

classes of ~, and whose operations are defined in the natural way:

opi([|z1]];-- -, |l T arity(op,) 1) =llop;(21,-- ., marit_y(op,—)) [l -

The function A which maps every element z to its equivalence class || z|| is a homomorphism
from A onto the quotient algebra A/. and it is called a canonical quotient homomorphism.

3. Boolean Algebras

In this section we will sketch certain basic definitions and results needed for the algebraic
semantics for first-order classical logic. For more details the reader is referred to [15].
Of all Boolean algebras, the 2-element one is most commonly used in computer science:

2= ({07 1}a—L7T>V7A7 _>

(where L is interpreted as 0 and T is interpreted as 1.) The five operations are called
respectively: zero, unit, join, meet and complement.

To define Boolean algebras in full generality, consider the set of all equalities which are
satisfied in 2. By a Boolean algebra one understands any algebra of the same signature as
2 which satisfies all these equalities. (A finite axiomatization could be given as well.) A
partial order can be induced on any Boolean algebra: z < y iff t Ay = z. The join operation
V corresponds in this order to the least upper bound of two elements. The meet operation A
corresponds in this order to the greatest lower bound of two elements. Additional operations
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— and < can be defined from basic operations of the Boolean Algebra: ¢ — y = -z Vy
and z & y = (z — y) A(y — ). A Boolean algebra is called non-degenerate if T # L.

For example, the algebra P(X) of subsets of a set X is a Boolean algebra (with the five
operatlons interpreted respectively as §, X, U, N and —). If the set X is non-empty then
P(X ) is non-degenerate. Also the algebra of all finite and co-finite subsets of an infinite set
is a Boolean algebra. Another example: a Cartesian product of two Boolean algebras (with
pointwise operations) is a Boolean algebra.

A Boolean homomorphzsm is a function between two Boolean algebras which preserves the
five operations. Recall that in the domain of abstract algebra, ideals of rings are defined to
be kernels of homomorphisms. In the case of algebralc semantics a dual notion is especially
useful: filters are co-kernels of homomorphisms, i.e. every filter V C A is determined by a
homomorphism A : A — A’ in such a way that V it is the set of all the elements of A
which are mapped to T. The following characterization is useful: V C A is a filter iff

1.V £0,

2. z€Vand z < yimpliesy € V,

3. V is closed under A. In Boolean algebras mazimal filters are characterized by any of
the following additional properties:

4. zVy € Vimpliesz € Vory € V,and L €V,

4' for every € A exactly one of z and —z belongs to V.

According to the definition above, Boolean algebra contains only binary operations of joins
and meets. In some situations infinite joins or meets make sense. For instance in P(X) for
every family of elements B C P(X) we can define \/ B = lubB. Still, if P(X) is treated as
a Boolean algebra it is not possible to express these infinite joins or meets in its language.
An infinite join can be coded as (\/,{a; | € I},a) meaning that \/{a; | ¢ € I} = @, and
similarly for infinite meets. One can consider a Boolean algebra with an additional set () of
infinite joins and meets; such an algebra will be called a Q-Boolean algebra.

Given a @-Boolean algebra A and a @’-Boolean algebra A’, by a Q-homomorphism one
understands a Boolean homomorphism from A into A’ which preserves the joins and meets
from Q. Not every Boolean homomorphism from a @-Boolean algebra A into a @’-Boolean
algebra A’ is a @)-homomorphism.

By a Q-filter in A one understands a co-kernel of a - homomorphlsm from A onto 2. By
another characterization, a Q-filer is a maximal (!) filter which preserves the infinite joins
and meets from the set Q:

1. if (\/,{a: | i € I},a) € @ and a € V then there exists ¢ such that a; € V,
2. if (A\,{a: |t € I},a) € Q and a; € V for every i € ] thena € V.

Every filter determines a congruence relation: z ~ &' iff (z < z') € V. Thus, one can define
a quotient of a Boolean algebra by a filter as the quotient by the corresponding congruence:
A/V = A/.. This idea generalizes in a natural way to the case of algebras with infinite
joins and meets: one can divide a ()-Boolean algebra by a @-filter. A quotient of a Boolean
algebra by a maximal filter results in the two-element Boolean algebra as every @-filter
is maximal, the quotient of a @)-Boolean algebra by a Q-filter results in the two- element
Boolean algebra
Now we are ready to state a fundamental result of this theory.

Theorem 3.1. (Rasiowa and Sikorski, 1950) Let A be a non-degenerate Boolean algebra
with a distinguished countable set () of infinite joins or meets. Then the following conditions

hold:

1. The set of all Q-filters is of the second category in the Stone space S(A).
2. Every non-zero element x of A belongs to a Q-filter. -
3. There exists a Q-isomorphical embedding of A into the algebra P(X) of all subsets of

a set X.
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Point 1. is called the Rasiowa-Sikorski lemma; points 2. and 3. follow from 1. The concep-
tual importance of the lemma is well visible in point 3., which spans the category of algebras
and the category of sets. For a logician, point 2. provides a bridge between Boolean algebras
(which represent syntactical aspects the classical logic) and the Tarski semantics.

A crucial corollary to point 2. is that, under the assumptions of the theorem, there exists a
(Q-homomorphism from A onto 2. Indeed, by point 1. there exists a Q-filter V in A, and
one can verify that the canonical homomorphism from A onto the quotient A/V satisfies

the required conditions.

4. Algebraic Semantics

Now, as an example representative of the algebraic semantics, we will sketch the definitions
and constructions leading to the proof of the model existence theorem: every consistent .
theory has a (two-valued) model. ;From this presentation the reader should be able to see
the main ideas behind the algebraic semantics. It is however not in the scope of this paper
to show how this ideas can be further developed and extended onto non-classical logics. For
more details the reader is referred to [15].

As mentioned before, we will consider a first order language without equality and assume that
the alphabet contains finitely or countably many function symbols and predicate symbols
and countably many individual variables zo,z;,... . (Let us mention that by using addi-
tional machinery, results mentioned in this section could be extended to arbitrary, possibly
uncountable, first order languages.)

In the Tarski semantics, which is standard for the first-order classical logic, one considers
interpretations of languages in relational structures. A relational structure has a nonempty
universe D, on which functions are defined, which correspond to the function symbols of the
language, and on which relations are defined, which correspond to the predicate symbols.
The relations have values in the two-element Boolean algebra and serve as interpretations -
of predicate symbols from the language. Given a predicate symbol p, with a corresponding
relation p, and a tuple € of elements of the universe, p(é) has either value true or false,
i.e. a value in the algebra 2. This interpretation of predicate symbols extends by using the
operations of the algebra 2 to the interpretation of arbitrary formulas. For every formula B
and a valuation v : Var — D of variables, B’[v] obtains a value in the algebra 2.

In order to obtain the definition of algebraic interpretations, allow in the Tarski definition
arbitrary non-degenerate (J-Boolean algebra A, allow p(€) to have arbitrary value in A but
require that for every formula B(Z,,Z,), and every tuple &,, the following infinite meets and
joins are in Q:

(Vz, B(%1,%2))![€2/Z2] = A, (B(&1,%2)) [€1/71, €2/ Z2)
(32, B(21,%2)) [62/2:] = V¢, (B(31,%2)) [e1/71, 82/ ]

These infinite meets and joins are used to interpret ¥ and 3. An algebraic interpretation is
an algebraic model for a formula B if it gives the value T to the universal closure of this
formula.

The set Form(L), of all formulas of a first-order language £, can be considered to be an
algebra with operations T, L, A, V, —, for instance, the operation A applied to two formulas
Bi and B, results in the formula B; A B;. This algebra is not a Boolean algebra; notice that
the operation A is not commutative: applying A to B; and B; yields a result different than
applying it to B; and Bjy; the two results are logically equivalent, but they are different.

Given a theory 7 one can consider the following relation on formulas: B, ~ B, iff
T + B, = B,. This relation is a congruence in the algebra of formulas and the quotient
algebra Form(L)/~ is a Boolean algebra. This algebra is denoted by A(7) and is called a”
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Lindenbaum algebra of L modulo T. The elements of A(7) are classes of formulas which are
equivalent in 7, thus different elements of A(7) can be intuitively understood as abstract
ideas which do not coincide in the context of 7. For instance formulas B; A B; and By A By
represent the same element of A(7) and we could say that they represent the same idea. If
the theory 7 is consistent, the Lindenbaum algebra A(7) is non-degenerate.

We will see that every consistent theory 7 has a natural algebraic interpretation /. The
universe of this interpretation is the set of all terms in the language of 7 (the terms may
contain variables.) The function symbols are interpreted on this universe in the natural way:
given a function symbol f, for any tuple ¢ of elements of I, the interpretation is f(t) = f(Z).
The relations on the universe are interpreted in the Lindenbaum algebra A(7): given a
predicate symbol p, for any tuple  of elements of I, the interpretation is p(t) =|| p(?) ||.
This interpretation is a model for 7 and it is called the canonical algebraic model for T .

By the construction of the canonical model we see that the statement: “Every consistent
theory has an algebraic model” is obvious; a more interesting question is whether consistent
theory has a two valued model. Given the Rasiowa-Sikorski lemma, the construction of such
a model is immediate. By point 2 of Theorem 3.1. there exists a Q-filter V in A(7). Now

consider the canonical algebraic model for 7 and divide the algebra A(7) by V.

5. Foundations of Logic Programming using omega-
Herbrand Interpretations

In this section we will sketch certain basic definitions and results of the theory of logic
programming. We will concentrate on the material relevant to the Clark’s completeness
theorem for the SLD-resolution. The reader is referred to [8] or [1] for more details, and to
[2] for an overview of the new directions of research.

Unlike other presentations of this topic, we will use omega-Herbrand interpretations in
place of the conventional Herbrand interpretations. This change will allow us to make a
connection with the algebraic semantics.

Following conventions of the set theory, the set of natural numbers {0,1,2,...} will be
denoted by w — the Greek letter omega; the formula i < w means the same as 1 € w.
According to the standard convention for first-order languages, individual constants are
considered to be function symbols of arity 0. In logical formulas the symbol «+ stands for
the reversed implication A « B is read A provided B, and means B — A; the formula
— B means L « B which is equivalent to ~B; the formula A «— means A « T which is
equivalent to A. According to the terminology of logic programming, a ground term is a
term with no variables, a ground formula is a formula without variables.

By a definite clause or a Horn clause one understands any formula A «— A;A...AA, where
A Ay,..., A, are atomic formulas (n = 0 is allowed, in which case the clause is equivalent to
A and is called a fact.) By a definite program one understands a finite set of definite clauses.
By a definite goal one understands any formula «— A;A...A A, where Ay, ..., A, are atomic
formulas.

With every definite program P one associates a set of formulas P* obtained in the following
way. Transform every clause: p(t) «— B in P to p(z) « 3;((z = ) A B), where all the
variables in the sequence Z are distinct, and where § is the sequence of all free variables that
occur in (Z = t) A B but do not occur in p(z). Then for every predicate p, list all statements
defining this predicate:

p(j) "—Bl IR ) p(j) ‘_Bna
and form p(Z) « By V...V By. If there are no statements defining p, form p(z) « L. Now
turn every « into =. The set of formulas obtained in this way is denoted by P*. (This -

construction was a part of the process of obtaining program completion Comp(P) in [4].)
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The SLD-resolution, introduced in [7], can be viewed as a nondeterministic algorithm
which takes as input a definite program and goal P,« B and attempts to construct so
called SLD-refutation. This construction is either successful or fails or does not halt. If the
construction of the SLD-refutation is successful the algorithm returns as output a substitu-
tion for the variables of B. We will not quote the exact definition, but we will mention these
properties of SLD-resolution which are of importance to our considerations.

The soundness theorem for the SLD-resolution of Clark [5] states that for every definite
program and goal P,« B, if § is a substitution computed by the SLD-resolution then
P + Bl. Clark proved also completeness of SLD-resolution i.e. a certain version of the
converse of this implication. Later in this.paper we will give a proof of Clark’s completeness
result using methods of algebraic semantics. The soundness and completeness together can
be paraphrased in an informal way by saying that the procedural meaning of the program
P, as determined by the SLD-resolution, is the same as the declarative meaning of the set
of formulas P in classical logic. :

Now let us recall the definition of Herbrand universes. Consider a first-order language £. If
L contains at least one function symbol define £’ as £, otherwise define £’ as an extension of
L obtained by adding to its alphabet one new individual constant. By the Herbrand universe
Ug for £ one understands the set of all ground terms of the language L'

Herbrand universes and related notions are basic objects used in the theory of logic
programming. One could argue however that many properties expected of Herbrand inter-
pretations fail to hold, and that the proofs which use Herbrand universes are not always
elegant and contain many seemingly unavoidable technical details. To change this situation
we introduced in [9, 10] a notion of an omega-Herbrand universe.

Definition 5.1. [(omega-Herbrand universe)] Let £ be a first-order language and let £*
result by adding countable set X = {k; | 1 < w} of new individual constants to the alphabet
of £. By the omega-Herbrand universe U for L we understand the set of all ground terms
of the language LX. We refer to members of UY as elements. Members of the set K will be
called free elements.

Let £’ be be the language obtained by removing from £ all predicate symbols except
equality; by U% we denote the (two-valued) interpretation for the language £’ whose universe
is U¢ and in which function symbols are interpreted in the natural way.

In algebraic terms, both the Herbrand universe Us and the omega-Herbrand universe U¥
are free algebras, but the difference between them lies in the number of the free generators:
there are w free generators in U but only one or none in Uz. This detail causes significant
differences in the properties of these notions. We will come back to this issue in Section 7.

The first-order theory which characterizes omega-Herbrand universes was considered in
[9] and [16].

Equipped with the notion of omega-Herbrand universe we define notions analogous to
those for conventional Herbrand universes.

Definition 5.2.

1. By the omega-Herbrand base for L we understand the set BY of all ground atomic
formulas in £*.

2. By an omega-Herbrand interpretation for £ we understand any subset of B%. (Let us
remark that omega-Herbrand interpretations should be viewed as conventional Tarski
interpretations whose universe is U and in which the function symbols are interpreted
in the natural way. The subset of BY mentioned above specifies the interpretation of
predicate symbols in this universe. Identifying an omega-Herbrand interpretation with
a subset of B could paraphrased in the language of model theory by saying that the
omega-Herbrand interpretation is uniquely determined by its diagram.)
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3. Let T' be a set of formulas. By an omega-Herbrand model for I' we understand any
omega-Herbrand interpretation that is a model for I'.

4. The class of omega-Herbrand interpretations for £ (treated as subsets of Bf) are ordered
by inclusion. If among omega-Herbrand models for P there is the least model in this
order, it is denoted Mg and is called the least omega-Herbrand model for P.

5. For a definite program P, the operator T% : 282 — 2BZ on the lattice of omega-
Herbrand interpretations is defined as follows: For any I C BY¢,

Te(I) = {Alv)€ BY| (A~ B)€ P and I | B[v]}.

6. If P is a definite program in language £, then by the SLD-w-success-set of P we un-
derstand the set SLDss%(P) = {A € B¢ | P; — A has an SLD-refutation }.

In the new setting we still have results analogous to those for conventional Herbrand inter-
pretations.

Let us remark that for a definite program P the least omega-Herbrand model M§ always
exists and can be obtained as intersection of all omega-Herbrand models for P.

Before we formulate the next theorem we need to explain the notation. One defines Tgla
as the result of iterating the operator T§ o times starting from the least element of the
lattice 2B2. More formally: T80 = L, T¥la + 1 = T¥(T¥la), and for limit ordinals X,
TE = U, <, Tl The symbol IfpTy is used only if the operator T has the least-fix point,
and it denotes this least fix-point.

The following theorem parallels the results of [17] and [3] using omega-Herbrand inter-
pretations instead of conventional Herbrand interpretations.

Theorem 5.1. For any definite program P,
SLDss3(P) = Tpw = UpTp = Mp = {A€ Bf | P+ A}
Proofs of these equalities are analogous to the proofs in [17],[3] or in [8].

Now let us consider the semantical implication |= restricted to omega-Herbrand interpreta-
tions. !

Definition 5.3. Let I' U { B} be a set of formulas in first-order language £ (possibly con-
taining the symbol of equality). We write I'= B to mean: for every omega-Herbrand inter-
pretation I for £, I =T implies I = B.

By virtue of the next proposition, in all situations which are of a practical importance for
logic programming we can write I'i=" B instead of I'l=/B.

Proposition 5.1. Let £; and £; be two countable first order languages containing a set of
formulas TU{B}. (The languages may contain the symbol of equality.) Then, the conditions
I'=7, B and T=7, B are equivalent.

Before we give the proof let us recall that given languages £; C £,, an interpretation I; for
L, and an interpretation I, for £,, one calls I; an extension of I; if the universe of I; is
contained in the universe of I, and functions and relations of I, restricted to the universe
of I, coincide with those of I;; one calls I; an expansion of I if I, is an extension of I; and
the universes of I; and I, are the same.

Proof:

Without loosing generality we may assume that the predicate symbols of £; are the same
as the predicate symbols of £, and they are precisely the predicate symbols occurring in - -
I' U { B}; this is true because for any two languages L] and £} containing I' U { B} and such
that their alphabets contain the same function symbols, I‘}:Z,l B and FI=Z;B are equivalent.
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Also, without loosing generality we may assume that £; C £,; indeed, if the equivalence
is established for languages satisfying this additional assumption then for arbitrary £ and
L), containing I'U { B} we can reason: F}:ZB iff =2 rupy) B iff Tz, B (where L(TU{B})
denotes the language containing exactly the symbols of I' U { B}).

For the remaining part of the proof these additional assumptions will be in force.

We will show that I'l=; B implies I''=} B. Assume that I'=; B. Let I be an interpre-
tation for £; which expands U such that I = . The task will be to show that I |= B.
Let I' = I|;, be the reduct of I to the language £,. Thus I’ is an interpretation for £,,
over Uy, with the natural interpretation of functions from £, and such that I' = T'. There
exists an isomorphism A : U2 — U% |¢,. We will define an interpretation I” for £, which
expands Uf : for every predicate letter p'"(e1, ..., en) iff p'(h(e1),..., h(es)). By induction
on the structure of formula v one can show that

(xx) I' Ev[e1/z1,e2/z2, ..} if I | v[h(e1)/x1, h(ez)/ e, .. ]

Thus " is an interpretation for £; which expands U%, such that I” =T. By (), I' = B,
and obviously I |= B. This completes the proof of the implication to the right.

Now, we will show that T'=/ B implies 'z, B. Assume that T')=7 B. Let I be an
interpretation for £,, expanding U% such that I |= I'. The task will be to show that I |= B.
Let I' = I|, be the reduct of I to the language £;. Thus I’ is an interpretation for £;, over
U¢, with the natural interpretation of functions from £, and such that I’ |=T'. There exists
an isomorphism A : UZ [, — U% . We will define an interpretation I’ for £, over U, :
for every predicate symbol p we define: p’'(ey, ..., ;) iff p!(k(e1), ..., h(en)). By induction on
the structure of formula v one can show that

(xx) I' = vler/z1, e2/20,..] iff I |= v[h(e1)/21, h(e2)/z2,...].

Thus I' is an interpretation for £;, over Uf,, extending UZ such that I’ |= I'. By (%),
I' =T. Let I" be an expansion of I’ in which the functions of £; — £; are interpreted in a
natural way. I" is an interpretation for £, expanding Uf,, such that I” |=T. By the initial
assumption of this part of the proof, I” |= B and obviously also I' = B. By (xx), [ = B.
This completes the proof of the implication to the left. a

Remark 5.1. One could define relation =% as the restriction of |= to the class of those
interpretations of £ which expand the conventional Herbrand universe for £. However this
relation would essentially depend on the choice £. Indeed, if £; is the first-order language
with the alphabet containing unary predicate sgmbol p and a constant ¢, and if £, contains
in addition a constant ¢, then we have p(c)l=, V.p(z) but p(c) OLQVzp(m). This is one of
the reasons why we needed to reformulate the theory of logic programming, basing it on
omega-Herbrand interpretations instead of conventional Herbrand interpretations.

Remark 5.2. (omega-Herbrand interpretations versus canonical algebraic inter-
pretations) ,

Let I' be a consistent set of formulas in a first-order language £. Consider the canonical
algebraic model I for I'. The universe of the interpretation I is the set of all terms (possibly
with variables) of £. The algebra of interpretation is the Lindenbaum algebra A(I"). Notice
that the universe is isomorphic with the omega-Herbrand universe U¥; the isomorphism is
obtained by replacing every variable z; by the free element k;. Now, take any Q-filter V
in A(T") and divide I by V. The resulting interpretation is a (two-valued) omega-Herbrand
model for I'. Additional properties of this model will depend of the choice of the Q-filter V.
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6. Two Straightforward Results of the Algebraic
Semantics

Theorem 6.1. [Completeness with respect to omega-Herbrand semantics]
Let T'U {B} be a set of formulas in a countable first-order language £ without equality.

1. IfT' I/ B then there exists an omega-Herbrand interpretation I for L such that I =T
and I £ B. ’
2.T+ B iff TE*B.

Proof:

1. Assume that I' I/ B. Consider the canonical algebraic interpretation I for I', whose
universe is the set of all terms of £, with logical values in the Lindenbaum algebra
A(T) of formulas of £ modulo I'. I is a model for I': for every ¥ € T and every
valuation v, 7/[v] = T. As T i/ B, for the identity valuation ¢ = {z;/z; | i < w} we
have B[] # T, and =B'[:] # L. As L is countable, by Rasiowa-Sikorski lemma, there
exists a Q-filter V. C A(T') such that B[] ¢ V. Consider quotient I' = I/V. I’ is
an algebraic interpretation in the set of all terms of £ and in the two-element Boolean
algebra, such that I' = I' and I' £ B[¢]. By identifying each variable z; with the free
constant k;, the set of all terms of £ can be identified with U¢. This ends the proof
of 1.

2. For the implication to the right: I' - B implies I' = B which implies I'=" B.
For the implication to the left: assume I' I/ B; by 1 there exists omega-Herbrand
interpretation I for £ such that I |=TI' and I [£ B; therefore I' =“B. 0

Let us remark that in the theorem above the assumption that the language does not contain
the symbol of equality is essential. If = is allowed to be present in the language of TU{B}, the
relations I = B and I'="B do not coincide. Indeed, for I' = {p(z) « V,z # f(y), p(f(z)) «
p(z)} we have I'E“V,p(z) but T = V.p(z).

Before we formulate the next lemma, recall that kg, ky, k3, . . . are new individual constants
used to form omega-Herbrand universe Uf¢. The lemma justifies the name “free elements”,
that is used for ko, kq, ko, ... .

Lemma 6.1. Let P be a definite program and let A be an atomic formula in a first-
order language £ without equality. Then: M} = A(Z)[t(k1,...,k.)/Z] implies P F
A(t(.’L‘l, e ,:L‘n)).

Proof: \
Assume Mg = A(Z)[t(k1,...,k.)/Z]. Recall that M¥ is the intersection of all omega-
Herbrand models for P. Thus in any omega-Herbrand model I for P, we have I =
A(i)[t(kl’ v :kn)/i] -

Consider the canonical algebraic model Iy for P, whose universe is the set of all terms of
L and whose truth values are in the Lindenbaum algebra A(P) of formulas of £ modulo P.
Consider any Q-filter V C A(P). As Ip/V can be identified with an omega-Herbrand model
I for P, and as I |= A(f)[k1/zy,. .., kn/z,] we see that || A(¥(zy,...,2,)) ||€ V.

Thus for every Q-filter V C A(P) we have || A(¥(z1,...,,)) ||€ V. By the Rasiowa-
Sikorski lemma 3.1. (2) the only element which belongs to every Q-filter is T. Thus ||

A(t(z1,...,2n)) || is the top element in A(P). Therefore P + A(#(z1,...,2,)). ]
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7. Corollaries for Logic Programming

Remark 7.1. The following property is used in the proof of Theorem 5.1.

Let P be a set of definite clauses in £, then:

P is unsatisfiable iff P has no Herbrand model. The straightforward example with
P being {p(c),3z(—p(z))} shows that one cannot drop the assumption that formulas in P
are clauses. However if we consider omega-Herbrand models, by Theorem 6.1. we obtain the
desirable strengthening. This is specified in the next proposition.

Proposition 7.1. Let I" be an arbitrary set of formulas in a countable first-order language
without equality. Then, I' is unsatisfiable iff I' has no omega-Herbrand model.

Proof:
Implication to the right is obvious. For the implication to the left: If I' has no omega-
Herbrand model then I'="1, and by Theorem 6.1. T' = L, so I has no model. 0

Remark 7.2. Consider a first-order language £ without equality. Let P be a definite pro-
gram, and let A be a ground atomic formula. The Herbrand rule is defined as:

If P*U {A} has no Herbrand model, infer - A.
Recall that the Reiter Closed World Assumption (CWA) is the following rule:
If P A, infer -A.

The Herbrand rule is strictly weaker than CWA. Indeed consider definite program P con-
taining clauses: p(c) « ¢, p(f(z)) « p(z), ¢ « p(z). Notice that —¢q follows from
P under CWA, but —¢ cannot be derived from P using the Herbrand rule. As the next
proposition shows the situation changes if we use omega-Herbrand interpretations instead of
conventional ones.

Proposition 7.2. Let the omega-Herbrand rule be an inference rule defined as follows:
If P*U {A} has no countable omega-Herbrand model, infer = A

Then, for definite programs P and ground atomic formulas A the results of the omega-

Herbrand rule coincide with those of CWA.

Proof:

As P* always has a countable omega-Herbrand model the fact that P* U {A} does not have
any such model is equivalent to saying that P* /=“A. By Theorem 6.1.this is equivalent to
P* i/ A. 1t is known (cf. [8] pp. 80-82) that for definite programs P and ground atomic
formulas A, P* I/ A is equivalent to P I/ A. | 0

Remark 7.3. Let P be a definite program and let A be a ground atomic formula in a
first-order language without equality, then: P - A iff Mp |= A. The straightforward counter-
example with P being {p(a) «— T} and A being p(z) shows that one can not drop the
assumption that A is ground. The next theorem shows that the situation changes dramati-
cally if we allow omega-Herbrand models.

Theorem 7.1. Let P be a definite program and let A be an atomic formula in aﬁrst-order ,
language without equality. Then: P+ A iff Mg E A.

Proof:
PFHA iff
PrVvA iff

P U {—VA} does not have a model iff (by 6.1.)
P U {-VA} does not have an omega-Herbrand model iff
-V A is false in all omega-Herbrand models for P iff
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YA is true in all omega-Herbrand models for P iff
VA is true in the intersection of all omega-Herbrand models for P iff

VA is true in Mp iff

MgEA . ]
Another property of M%, which does not have a counterpart with conventional Herbrand
models is given in the next theorem.

Theorem 7.2. [Existence property] Let P be a definite program and let A be an atomic
formula in a first-order language L without equality. Then the following conditions are
equivalent.

1. Mg = A:A(z).

2. P+ 3;A(%).

3. There exists a sequence t of terms of L such that P+ A(%).

-

Proof:

Notice that 3 = 2 = 1. It remains to prove that 1 = 3. Assume Mp [ J;A(Z).
Then there exists a sequence  of terms and free elements kq,...,k, such that Mg |
A(Z)[t(k1,...,k,)/%]). By Lemma 6.1. we have P - A(2). O

Problems resulting from the use of conventional Herbrand interpretations mentioned in
the remarks in this section cause some complications in the standard proof of completeness of
SLD-resolution. Below we give a proof which uses omega-Herbrand interpretations instead.

Theorem 7.3. (Clark’s completeness theorem for SLD-resolution)
Let P,— A be a definite program and goal. Then, if P+ A0 then there exists a substitution
0', more general than 8, which can be computed by the SLD-resolution as an answer to

P~ A.

Proof:
Assume that P I Af. Let « = {ki/z;} be a substitution in an extended language. We have

Pt Af.. As Af.is ground, by Theorem 5.1., SLD-resolution given P, « Af: returns answer
YES. By the lifting lemma (cf. [8], [11]) we deduce that SLD given P, + A can return an
answer 6’ which is more general than .. As @' is a substitution in the original language of
P, — A, it must be more general than 6. a

8. Conclusion

We have shown an approach to foundations of logic programming in which the connection
with algebraic semantics becomes apparent. In this setting various results concerning logic
programming become straightforward corollaries to the Rasiowa-Sikorski lemma.

The approach is based on omega-Herbrand models instead of conventional Herbrand mod-
els. We compared certain aspects of the two approaches. We demonstrated how by using al-
gebraic semantics certain annoying technicalities can be eliminated from the proof of Clark’s
completeness theorem of SLD-resolution. We formulated an proved the existence property
for definite programs. '

Let us mention that omega-Herbrand interpretations, which are crucial for the presented
approach, possess also the following desirable properties: the theory of equality determined
by U% is decidable and the operators on lattices of omega-Herbrand interpretations associ-
ated with positive programs with (V,=, etc.) reach their least-fix points after w iterations,
cf. [9, 10]. ‘

As algebraic semantics is a well established domain of mathematical logic, applying its -
methods to the much younger domain of logic programming can bring new interesting results
— we hope that this direction is pursued by researchers specializing in algebraic semantics.
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