Fundamenta Informaticae 28 (1996) 141-152 141
I0OS Press

The Algebraic Specifications do not have the
Tennenbaum Property

Grazyna Mirkowska and Andrzej Salwicki
LITA, Université de Pau, France
e-mail: author@univ-pau.fr

Abstract. It is commonly believed that a programmable model satisfying the axioms
of a given algebraic specification guarantees good properties and is a correct imple-
mentation of thespecification. This convinction might be related to the Tennenbaum’s
property|[Ten] of the arithmetic: every computable model of the Peano arithmetic of
natural numbers is isomorphic to the standard model.

Here, on the example of stacks, we show a model satisfying all axioms of the algebraic
specification of stacks which can not be accepted as a good model in spite of the fact
that it is defined by a program. For it enables to "pop” a stack infinitely many times.

1. Introduction and Motivation

In this paper we discuss the problem of the quality of specifications of abstract data types.
It is commonly accepted that specifications are needed during the process of creating of
software. There are a few papers in the literature devoted to the question of quality. The
majority of people dealing with specifications, may have an impression that any specification
is good in a sense, for it specifies something. We argue that a specification may be good,
better or bad. It is not enough to give a specification. It should specify ezactly and completely
what was meant to specify!

Why spec1ﬁcat10ns are important? We shall use an example in which the goal of software
creatmg is factorized onto two subgoals. The subgoals can be reached independently result-
ing in two modules of software. A specification is the only link between the modules. A
good specification assures that the modules assembled together give a correct solution. Qur
example concerns the notion of inversion.!

Example 1.1. Let us suppose that we are to program the algorithm realising the inversion
operation. What is needed? the algorithm of the inversion which uses the notions (or types,
as you will) of point, line, circle and the operations as: intersection of two lines, which returns
a point, intersection of two circles, etc and predicates of equality, of being parallel etc. We
need a library, or better a class, which implements the notions like point, line, circle, and
the basic operations such as the point of intersection of two lines, ”drawing” a line through
two points, etc. Having that, one can write the algorithm in a compact and clean way.
Hence we need two pieces of software: an implementing module M and another module,
say, a procedure, which realizes the inversion operation in geometrical terms defined by M.

! Inversion with respect to an arbitrarily fixed circle C that has the center Q and the radius r is an
operation which for a given point P returns a point P’ such that: 1) the points Q, P, P’ are colinear and 2)
QP - QP =r2,

142 G. Mirkowska and A. Salwicki/ The Algebraic Specifications

We immediately realize that the module M can be used several times with different
algorithms and that one algorithm can be associated with different implementing modules.
In our example, the inversion algorithm may be associated with modules of planar or stereo
geometry. A specification of the notions of point, circle, line and the corresponding operations
is needed. It will be used by the person writing the algorithm of inversion. It will be used
also by the person writing the class modules: point, circle, line and the methods as intersectn
of two circles, of two lines etc. It is possible that two modules realizing the planar and the
stereo geometry will satisfy the specification. o

There is a belief that a software which obeys all the properties mentioned in a specification
is to be accepted since 1t is computable and since all the axioms listed in the specification
are satisfied.

We are going to demonstrate that, pathological, computable models of algebraic specifica-
tions exist. These models should not be accepted in spite of the fact that they obey all the
properties mentioned in the specification .

Now, let us recall the motivations and expectations for a specification of an abstract data

type:

¢ a specification is to enable a mathematical identification of the class of acceptable
abstract data types, : '

e a specification should be complete i.e. it should bring “the truth, the whole truth and
nothing but the truth®“ on specified data structure,

e a specification is going to be used as an acceptance criterion for a piece of software that
realizes it (The software may have a form of a library, a class?, a package, etc. We shall
refer to it as to an implementing module).

e a specification is going to be used as the base for analysis of algorithms operating in
the environment of an implementing module (provability of properties of programs). It
means that in a proof of a program’s property we should use only the specification,
we should avoid the references to the details of software’s implementation of the data
structure.

~ Later, we compare two methods of specifying data structures: the algebraic one and the
algorithmic one with respect to this list.

In general, an algebraic speciﬁcation [AlgSpec]is a collection of equations or Horn clauses
(or a first-order formulas) in a first-order language. This type of specification is commonly
used and presented in several books and articles.

The popularity of this form of specifying the data structures’ properties is quite natural
since the properties written as the equations are easy to understand. There is however a
trap in the method. If one would like to verify whether a software is correct with respect to
the algebraic specification then it is necessary to prove:

e that the data structure defined by the software satisfies the axioms of the algebraic
specification and, ‘

e that this structure determines an initial algebra (or terminal algebra) in the class of all
computable structures of the same signature.

The first condition is natural and not very difficult to verify while the second one is not easy. -
The class of all algebras satisfying the given set of formulas may be quite rich and there are
not any hints how an initial algebra looks like and how the programmer can verify whether
the software created is isomorphic to the initial algebra in the corresponding class.

We submit a non-standard model M of the algebraic specification AxS of stacks. The
mode]l M is realised in the object oriented programming language Loglan’82 but it can be
rewritten in any programming language! We present a proof that all axioms of the algebraic

2Yes, let us do it with a class!

G. Mirkowska and A. Salwicki | The Algebraic Specifications 143

specification are satisfied by M. We observe that M contains some pathological stacks which
admit an infinite "popping”. Hence the model can be rejected. However, one can construct
other pathological models. Now, the problem is: how a programmer may distinguish between
”good” models and "bad” ones? Can we offer a clear and simple criterion which enables
to discard this one, and other unwanted models, especially, when they come in the form of
software. In other words, the belief that non-standard models exist only in metamathematics,
and not in real programming, needs to be revised. The programers will expect that a method
will be given which enables to differentiate between the correct implementations and the
incorrect ones.

We wish to point out the other problem with the algebraic specifications. A specification
consists of two parts 1° the clearly visible axioms and 2° the requirement to choose the initial
(or terminal) algebra in the class of all ground term algebras satisfying the given axioms.
The second condition makes that there are important additional facts which are valid in
the initial model and are not provable from the axioms. The problem might be stated as
follow: how to extract this additional information and to join it to the visible part of the
specification? How to translate it into the programmer’s language?

Let £ be a formal language. Let Z be a set of formulas. By Mod(Z) we denote the class of
all models of the set Z. We call specification of a data structure 2 (or of a class C of similar
structures) any set of formulas Z in the language £ which satisfy the following properties:

e the signature of the set Z is the same as of 2 (the one of the class C)

e 2 € Mod(Z) (C C Mod(Z)).

Obviously the class Mod(Z) contains infinite number of different models, since,

e if there is a model M of Z then any data structure isomorphic to M is also a model of Z,

Moreover the class of all models of Z can contain several unexpected models. Hence this
type of characterization is not satisfactory in several cases.

We say that a set Z of formulas is a complete specification of class C of similar data
structures iff

e the signature of the set Z is the same as in C and

e C = Mod(Z) .

It means that each model of the set of axioms Z belongs to the class C and each structure
from the class C is a model of the set of axioms Z.

In the language of the first-order logic one can specify any finite structure. Also some
structures of importance are specified by a first-order specification e.g. the notion of Boolean
algebra, of group etc. The representation theorems confirm the adequacy of the latter
specifications. For example, let C; be the class which contain any algebra which is an
isomorphic image of the algebra of subsets of a set St. The representation theorem for Boolean
algebras says that the class C; is completely specified by the axioms of Boolean algebra.
Unfortunately the language of the first-order logic is not sufficient to completely specify
many data structures of importance for computer science and for mathematics. Notions of
stack, of queue, of integer number do not have the adequate specifications in the language
of first-order logic. Each stack, each queue and each integer is, a finite object. However,
the structure of stacks (queues, integers) is infinite one. For the case of integer numbers
the specification composed of two parts: the known axioms of Peano arithmetics and the
requirement that the model should be computable does the job, this is the Tennenbaum’s
theorem|[Ten].

Theorem 1.1. If M is a recursive model of Peano’s arithmetic then M is isomorphic to the
standard model of natural numbers.

For the other structures the property of Tennenbaum does not hold. On our side we propose
to consider algorithmic specifications of these and other structures. [AL, cf.].
As concerns the algebraic specifications we have the following

Definition 1.1. A set of equations (or Horn clauses) Z is an algebraic specification of a data,
structure 2 iff % is isomorphic to the initial algebra in the class Mod(Z) of all models of Z.

144 G. Mirkowska and A. Salwicki | The Algebraic Specifications

2. An Algebraic Specification of Stacks

As an example of an algebraic specification let us consider the structure simple but of great
importance - the structure of stacks.

Definition 2.1. The abstract data structure of stacks is a relational system having the
signature given below and obeying the laws AxS

< EU S, push, pop, top, empty, = >

where S is the set of stacks, E is the set of elements of stacks and push is a total operation
and pop, top are partial operations of the following signature

push: Ex S — S

pop:S— S

top: S — E

empty : S — B,

=:ExEUSxS—B,

Moreover the following properties (axioms) AxS are satisfied:

Ax1 —empty(push(e, s)

Ax2 top(push(e,s) = e

Ax3 pop(push(e, s)) =

Ax4 —empty(s) = push(top(s), pop(s)) = s

The relation = is characterized by the usual properties of reflexivity, symmetry, transi-
tivity and extensionality.

An initial model of these axioms will be a structure composed of the set E of elements and
of all finite sequences of elements of E together with the obvious meaning of the operations:
push, pop, top, empty on the sequences[ATS, Sal80]. We are going to study the question:
s any programmable model of azioms AxzS the initial model of AzS? Or equivalently, is it
isomorphic to a standard model of stacks?

3. An Example of the Implementation

Our implementation is given as a class written in the Loglan’82[Loglan] programming lan-
guage. It is a generic module which admits different instances of the elem type of elements
of stacks. The inheritance mechanism enables to develop different extensions of the notion
of element of stacks. The extensions should bring the definition of the eq a virtual function
that compares two elements in such a way that the axioms of equality are satisfied.

unit Stacks: class;

hidden link, €0;

signal Stack_s_Empty, Violation;

var €0 : elem;

unit elem : class;

unit virtual eq : function(e: elem): boolean;

(* it is assumed here that any application of the class Stacks will redefine the type of
elem e.g. by inheritance, and will provide a method of comparing two elem objects in such a
way that the axioms of equality will be satisfied *)

end eq;

end elem;

unit link : class (el:elem);
var prev : link;

end link;

unit stack : class;
var top : link;

begin

G. Mirkowska and A. Salwicki | The Algebraic Specifications

if not this stack is extra and not this stack is normal

then
raise Violation

fi;
end stack;
unit extra: stack class;
end extra;
unit normal : stack class;
end normal;
unit empty : function(s:stack) : boolean;
begin _

result := (s is normal) and (s.top=none)
end empty;
unit top function(s:stack): elem;
begin

if empty(s) then
raise Stack_is_empty
else
if (s is normal) then
result := s.top.el
else
if not s.top=none then result := s.top.el else result := €0 fi;
fi;
fi;
end top;
unit pop : function(s : stack) : stack;
begin
if empty(s) then
raise Stack_is_Empty
else
if (s is normal) then
result := new normal,;
result.top :=s.top.prev
else
result ;= new extra; >
if not s.top=none
then
result.top := s.top.prev
fi
fi
fi;
end pop;
unit push : function(e: elem, s: stack): stack;
begin
if (s is normal) then
result := new normal else result := new extra
fi;
if not (e=e0 and s is extra and s.top=none)
then
result.top := new link(e);
result.top.prev := s.top
fi;

145

146 G. Mirkowska and A. Salwicki/ The Algebraic Specifications

end push;
unit equal : function(sp,sd :stack) : boolean;
var sl, s2 : stack;
begin :
if ((sp is normal and sd is normal) or (sp is extra and sd is extra))
then (* the types of stacks sp and sd are conforming *)
sl := sp;
s2 := sd;
result := true;
while(not sl.top=none and not s2.top=none and result)
do
(* till now both stacks are not empty and on the top one found equal elements *)
result := top(sl).eq(top(s2));
if result then

sl := pop(sl);
s2 := pop(s2);
fi;
od;

result := (result and sl.top = none and s2.top=none)
else (* the types of the stacks sp and sd are different *)
result := false;
fi;
end equal;
begin
e0 := new elem
end Stacks;

4. The Proof of Correctness

We present a proof of the correctness of the module Stacks with respect to the algebraic
specification AxS. We shall prove that the operations (functions) of the class Stacks satisfy
the specification (i.e. the formulas Ax1-Ax4).

In the sequel we shall use the followmg property for arbitrary type T [zz := new T)(zz in
T A -zz = none) , this is one of the axioms of the Loglan programming language.

The class Stacks shall be considered as a description of the algebraic system M

M = (E U S,top, pop, push, empty, equal, eq)

where the carriers are: the set E of all objects of the type elem F = {e : e in elem}and the
set S of all objects of the type stacks S = {s: s in stack}

Moreover, there are only two methods to create an element of the set S: either by creating
a normal stack (s := new normal) or by creating an extra stack (s := new eztra). One can
say that new normal and new_extra are two constants which belong to S.

From the definition of the class stack it follows that Stacks k= s in stack = (s in normalU
s in extra) hence

S = {s:stn normal} U{s: s in exira}

The operations of M are: top, pop, push, empty, equal as defined by the functions of the
class Stacks and eq a Boolean function which compares two elem objects.

Lemma 4.1. The algorithm in the body of the function equal always terminates i.e. the
result of the function equal is always defined. .

G. Mirkowska and A. Salwicki / The Algebraic Specifications 147

Proof:
The full proof is quite lengthy, it uses the similar arguments as the proof in [Sa 1978]. Let

us sketch the arguments. First, observe that the class link is hidden, inaccessible from the
outside of the class Stacks. Next, observe that the only reason for the eventual looping in the
while instruction of the function equal would come from a manipulation on prev attribute
of link objects. Only the push and pop functions update this attribute. One can analyze
the assignments done there and prove that they keep an invariant:

the link objects referenced by a top attribute in a stack object always form a finite list
without cycles.

This guarantees that equal operation will always terminate. : O

Proposition 4.1. Let us remark that the programs defining the operations: push, top, pop,
empty do not loop i.e. they always terminate.

Proposition 4.2. The operations top and pop terminate correctly i.e. without raising an
exception iff the argument is not empty. in other words the domain of these operations is
expressed by the formula —empty(s).

Proposition 4.3. For every stacks sp and sd,
equal(sp, sd) = top(sp).eq(top(sd))
equal(sp, sd) = equal(pop(sp), pop(sd))
top(sp).eq(top(sd) A equal(pop(sp), pop(sd)) = equal(sp, sd)

Proof:
The first and the second implication are the evident consequences of the definition of the
function equal. For the proof of the third implication let us remark that the following
implication is a tautology

v = (r :=true;while YyArdor:=f8; Kod a & r:=p3; K; whileyAr

do r:=f; K od a)
It remains to observe that in our case the loop while is the body of the equal function,
the formula § is the condition top(sp).eq(top(sd), finally, the program K does pop(sp) and
pop(sd) and the loop while now tests the equality of pop(sp) and pop(sd) stacks. 0

In the sequel we shall use reflexivity, symmetry, transitivity and extensionality properties
of eq and equal functions. As concerns the eq function we must assume that any application
of Stacks will guarantee these properties.

The properties of equal are easily deducible from the definition of the equal function.

Proposition 4.4. The following formulas are valid in the structure of Stacks

equal(s, s)
equal(s,s’) = equal(s', s)
equal(s,s') A equal(s',s") = equal(s,s")
e.eq(e’) A equal(s,s’) = equal(push(e,s), push(e, s"))
equal(s, ') = equal(pop(s), pop(s')
equal(s, s') = top(s).eq(top(s"))
Let us consider the following formula (*)
(%) (Ve in elem)(Vs in stack)
(empty(s) & (E resultg) A (push(e,s) = Ph resultpy) A
(mempty(s) = top(s) = T resultr)
A (mempty(s) = pop(s) = P resultp) A (equal(sl, s2) & Eq resultg,)

where E, Ph, T, P, Eq denote the bodies of the functions empty, push, top, pop and equal, -
respectively, and resultg, resultp,, resultr, resultp, resultg, are the variables of the
corresponding types.

148 G. Mirkowska and A. Salwicki | The Algebraic Specifications

From the lemma 1 and the remarks 1-2 it follows that the module Stacks is a model for
the formula (*). Hence it suffices to prove that the properties Ax1-Ax4 are the consequences
of the formula (*). |

In the sequel we shall use the following notation in order to increase the readability e =g ¢’
instead of e.eq(e’) and s =g s’ instead of equal(s, s')

Proposition 4.5. = (Ve in elem,Vs in stack) ~empty(push(e,s))

Proof:

Let us consider separately the case of a normal stack and of an extra stack. Using the
standard properties of the assignment and of the conditional instructions, we have from
(*) the following properties of the push operation: (s is normal A s' = push(e,s)) =
(s’ is normal A s'.top =none As'.top.el =g e s'.top.prev = s.top) and (s is extra As' =
push(e,s)) = [(e = e0 A s.top = none) A s’ is extra As' = s]V [~ (e = €0 As.top=
none) A s'.top.el =g e A s'.top.prev = s.top A s’ is extra]. Hence (s’ = push(e,s) =
((s' is normal A —s'.top = none) V s is extra). From the definition of the function empty we
have empty(s) & (s.top = none A s is normal). Hence (s" = push(e,s) = —empty(s’) O

Proposition 4.6. Stacks = (Ve in elem) top(push(e,s)) =g e

Proof:

Let s’ = push(e,s). From the definition of the function top we have (s’ in normal A e’ =
top(s') A mempty(s')) = (s’ in normal A ' =g s'.top.el) and (s’ in extra A €’ = top(s')) =
[s'.top = none A €' =g €0] V [~s'.top = none A e =g s'.top.el]. From the proposition 3 and
by properties of push operation we have (s’ = push(e,s) A s in normal A e’ =g top(s')) =
(s'.top.el =g e A€ = s'.top.el) or (s’ = push(e,s) A s in extra A e’ = top(s')) = (s'.top =
noneAe' =g e0)V (—s'.top = noneAe' =g s'.top.el As'.top.el = e].This implies immediately
(8" = push(e,s) AN e’ =g top(s')) = €' =g e. Hence the axiom top(push(e, s)) =g e is valid in
the structure Stacks. o

Proposition 4.7. Stacksl= (Vs tn stack)(—~empty(s) = push(top(s), pop(s) =s s

Proof:
By the definition of pop we have (mempty(s) A s = pop(s)) = ([s' is extra A s.top =
none A s'.top = none] V [s' is extra A —s.top = none A s'.top = s.top.prev]). From the
properties of push and of top and from the above we can deduce three formulas: first
(mempty(s) A e’ = top(s) A s' = pop(s) A s in normal A s"” = push(e’,s')) = [¢' = top(s) A
s'.top = s.prev A s” in normal A s".top.el =g €' A s".top.prev = s'.top| second (e; = top(s) A
s’ = pop(s) A s in extra A —s.top = none A s; = push(e,s')) = [e; = top(s) A sy.top =
s.prev A s3 in extra A sy.top.el =g ey Asy.top.prev = s'.top] third (e; = top(s) A s’ = pop(s) A
s in extraAs.top = noneAsy = push(ey,s1)) = (s1 ts extraAs.top = noneAs'.top = none).
All the tree formulas together imply (—~empty(s) A ey = top(s) A s1 = pop(s) A sy =
push(ey, s1)) = [s2.top.el =g top(s) A sy.top.prev = s.prev] which means that the following
formula is valid (~empty(s) A e; = top(s) A s’ = pop(s) A s is normal A 33 = push(es, 31)) =
sy =g s. Hence axiom Ax 4 (-~empty(s) = push(top(s), pop(s)) =s s is valid in the structure -
determined by the class Stacks. : i

Proposition 4.8. Stacks |= (Ve in elem,Vs in stack) pop(push(e, s)) =s s

Proof: ‘

From the definition of the function pop we have: (—empty(s)As’ = pop(s)) = ([’ 1s normalA
s'.top = s.top.prev]V[s' is extra As.top = noneAs'.top = s.top.prev]V|[s' is extraAs.top =
none A s'.top = none]) By the proposition 4 s’ = push(e,s) A —empty(s') Thus using the

G. Mirkowska and A. Salwicki | The Algebraic Specifications 149

properties of the if_then_else construction we have for normal stacks (s’ = push(e,s) A
s is normal A 8" = pop(s')) = [s' is normal A s".top = §'.top.prev] and for extra stacks
(s' = push(e,s) A s is extra A " = pop(s')) = [¢' is extra A —s'.top = none A s".top =
s'.top.prev] V [s" is extra A s'.top = none A s”.top = none]). By the properties of push opera-
tion we have s’ = push(e,s) = [~s'.top = none A s'.top.prev = s.prev A s'.top.el =g €] Hence
(s' = push(e,s) A s is normal A s" = pop(s')) = [s' is normal A s".top = s.top] and (s’ =
push(e,s)As is extraAs’ = pop(s')) = [s" is extraA—s'.top = noneAs".top = s.top]. Which
implies (s’ = push(e, s) As = pop(s’))s’ =s s that is, the axiom 3 pop(push(e,s)) = s is valid
in the Stacks structure. 0

Let us resume the observed properties.
Theorem 4.1. The algebraic specification of stacks AzS is valid in the class Stacks.

Proposition 4.9. The algebra implemented by the class Stacks is a computation structure
[AlgSpec] satisfying the (algebraic) axioms of stacks.

Stacks € Gen(X, Azl ~ Az4)

¥ is the signature of the structure of stacks.

5. The Pathology of the Model

The presented model is correct with respect to the given specification. Now we are going to
observe that it has a big disadvantage of being pathological.

Proposition 5.1. There are objects of class stack for which one can pop without end, in
other words there exists s in stacks such that the program

while - empty(s) do s := pop(s) od
never terminates.

Proposition 5.2. Stacks = ~empty(newstack)

In certain papers one adds this formula to the axioms of stacks. Newstack is supposed to be
a constant. In absence of constants of composed type in our language we can use a variable
and we forbid to change its value after its initialization. Let us define a variable newstack
and let its value will be done by command newstack := new norstos. It is evident that
—~empty(newstack) holds in the model defined by the class Stacks. We can add this formula
as the fifth axiom Ax5 to the algebraic specification of stacks.

The following formula may be added too, s # pop(s) as an additional sixth axiom to our
specification. It will cause that our model will be rejected. But, it is quite straightforward
to modify the model in such a way that it will satisfy all six axioms and still it will be
non-standard. o

We can give another, “mathematical“ definition of the non-standard model described
above.

Definition 5.1. Consider the following structure (E U St, fy, f5, f3, p1, p2)

Let E be any set. As usual, E*denotes the set of all finite sequences of elements of E. We

define the set S (of stacks) as the union of two disjoint copies of E*, S = StN U StEz. Let

d denote a finite sequence of elements of E. The set StV is the set of all pairs {d,0), the set.

StEz contains all the pairs (d, 1). We define three operations and two predicates as follows:
for every e € E for every s € S, s = (d,s) 1is O or 1,

150 G. Mirkowskaand A. Salwicki/ The Algebraic Specifications

(e xd,1) where s = (d,¢) and e * d is the concatenation of sequences e and d

f1(6,3)={8 ife=60ands=(0, l)a

o

A

fa(s) = { Eg” 12>> oltfh(irfvige, d' results from chopping off the first element of d,
_ [the first element of the sequence d if d#0

f5() =1 e0 if the argument is s = (0, 1)

pi(s) & s=(0, 0),

p2(sl, s2) = the identity predicate in S.

If one interprets push as fi, pop as fa, top as fs, empty as p;, equal as p; and eq as the
identity in E then again we have a model of the axioms AxS and we observe that:

Proposition 5.8. The model described above and the model defined in section 2 are iso-
morphic .

6. Conclusions

We have constructed the module Stacks that satisfies all the properties mentioned in the
specification and which can not be used in any application. In the view of our example we
can not share the opinion that “it is appropriate for program verification and development
to regard the class Gen(X, E) of all X-structures satisfying the axioms E as the semantics of
the specification (X, F) “ [AlgSpec]. For the class is too large and admits the models which
are to be avoided in practice in spite of being computable i.e. programmable .

If the meaning of the specification (X, F) is the initial algebra in the class Gen(X, E) then
other problems arise: ,

¢ Our model being not the initial algebra in the class Gen(X, E') should be rejected. What
would be a criterion enabling to reject our model? Let us remark that the programmers
may need a criterion adequate to the programming language they use. How to explain a
programmer that the models like ours should be rejected? on which formal base? The
preference should be given to syntactic criterions above semantic ones.

e One would expect that the additional part of the specification which states “ of all
models of axioms choose the initial one® will find its syntactical counterpart and that -

e it will enable to add more properties to the set E of axioms.

We propose to study these questions. Some results will appear in ‘\[PAS]

6.1. Reminder

We would like to remind that it is possible to create algorithmic specifications by adding
algorithmic properties to the algebraic ones . Many problems find simpler solutions then.

The algorithmic specification of stacks consists of the axioms of algebraic specification
and moreover of the following formula

(Vs) while ~empty(s) do s := pop(s) od true®
We were able [AL, ATS] to prove the following facts:
1. (IDENTIFICATION) any model of the axioms is isomorphic to a standard model,

hence the identification problem is solved in this case correctly,

3The meaning of this algorithmic [AL]Jformula read as follow: for every s € S the program
while —empty(s) do s := pop(s) od always terminates. It is the negation of proposition 5.1. ‘

G. Mirkowska and A. Salwicki/ The Algebraic Specifications 151

2. (COMPLETENESS) the set Val of all formulas valid in all models of algorithmic specifi-
cation of stacks and the set Th of all formulas provable from the algorithmic specification
of stacks are equal, Val = Th

this is an immediate consequence of the completeness property of algorithmic logic.

From 1 and 2 follow:

3. (CRITERION) by 1 we know that any implementing module which satisfies the axioms

is correct.
3a (Proofs of correctness of implementations) At various occasions we gave proofs of im-

plementing module showing that algorithmic definitions occurring in the implementing
module imply the axioms of a specification [AL, ATS]. It means that the algorithmic
specifications are good criterions for acceptance or rejection of a module. Moreover,
there is a close relationship between implementing modules and the algorithmic speci-
fications which makes the task of proving easier and more natural.

4. (PROVABILITY of applications i.e. of program’s properties) Suppose we have an ap-
plication (an algorithm) P and a property « of the algorithm, for example: termination
of P or correctness of P w.r.t. certain pre-condition and post-condition

the property a is valid in any correct implementation of the algorithmic
speci fication of stacks
if and only if a s provable from the azioms of the speci fication.

For algebraic specification the point 4 is unreachable for two reasons:
- the language used in algebraic specifications does not admit the programs nor the
properties of programs, hence we are not able to express the semantic properties of programs,
- an eventual proof of, say, termination property, uses the information not only outside
the syntax but also outside the semantics of axioms of algebraic specification. It will be
necessary to use the knowledge on initial (resp. terminal algebras ...) But where it comes
from?

Remark 6.1. As a side effect of the present considerations, the reader may remark the close
relationship between specifications and classes in object oriented style of programming|[AL,
Loglan)].

References

[AL] Mirkowska G., Salwicki A., Algorithmic Logic, PWN and Reidel Pub. Co., War-
szawa, Dordrecht 1987, pp.1-368

[AlgSpec] Wirsing M., Algebraic Specification, in Handbook of Theoretical Computer Sci-
ence, vol. B, ed. J. van Leeuwen, Elsevier Sci. Pub. 1990, pp.675-788

[ATS] Salwicki A;, On algorithmic theory of stacks, in Procedings of MFCS’78, Zakopane
(J;Winkowski ed.), Lecture Notes in Computer Science vol. 64, pp 452-461, full
paper in Fundamenta Informaticae 3 (1980), pp.311-332

[DTS] Thatcher J.W., E.G. Wagner and J.B. Wright, Data type specification: para-
metrization and the power of specification techniques, ACM TOPLAS 4 (1982),
pp-711-773 :

[Hoare] Hoare C.A.R., Proof of correctness of data representation, Acta informatica, 1972,
pp-271-281

[Loglan] Bartol, W.M. et al.Report on Loglan programming language, PWN, Warszawa,
1983, pp.1-143 see also http://www.univ-pau.fr/ “salwicki/loghome.html

[PAS] Mirkowska, Salwicki, Srebrny, Tarlecki, Programmable Algebraic Specfications...to

appear
[Ten] Tennenbaum, S., Non-Archimedean..., Notices of AMS, 1959

152 G. Mirkowska and A. Salwicki |/ The Algebraic Specifications

7. Appendix

Two examples of stacks follow

top

el]

prev

ST @

"/

oo] V2%
njone

An example of an normal-stack

top

2@

prev

..............................

|
] ik

none

An example of an extra-stack

