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Abstract. In order to be able to explicitly reason about beliefs, we’ve introduced a
non-monotonic formalism, called the Autoepistemic Logic of Beliefs, AE B, obtained
by augmenting classical propositional logic with a belief operator, B. For this lan-
guage we’ve defined the static autoepistemic expansions semantics. The resulting non-
monotonic knowledge representation framework turned out to be rather simple and yet
quite powerful. Moreover, it has some very natural properties which sharply contrast
with those of Moore’s AE L.

While static expanswns seem to provide a natural and intuitive semantics for many
belief theories, and, in particular, for all aﬁirmatlve belief theories (which include the
class of all normal and disjunctive logic pro rams), they often can lead to inconsistent
expansions for theories in which subJectlveg) beliefs clash with the known (objective)
information or with some other behefs In particular, this applies to belief theories
(and to logic programs) with strong or explicit negation.

In this paper we generalize AEB to avoid the acceptance of 1ncon31stency provoking
beliefs. We show how such AEB theories can be revised to prevent belief originated
inconsistencies, and also to introduce declarative language level control over the revision
level of beliefs, and apply it to the domains of diagnosis and declarative debugging. The
generality of our AE B framework can capture and justify the methods that have been
deployed to solve similar revision problems within the logic programming paradigm.

Keywords: Belief Revision, Logics of Knowledge and Beliefs, Non-Monotonic Rea:
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1. Introduction

Logic programs, deductive databases, and, more generally, non-monotonic theories, use var-
ious forms of default negation, not A, whose major distinctive feature is the fact’that not A
is assumed in the absence of “sufficient evidence” supporting the formula A. The meaning
of “sufficient evidence” depends on the specific semantics used. For example, in Reiter’s
original Closed World Assumption, CW A [18], not A is assumed if A is not provable, or,
equivalently, if there is a minimal model in which A is false. On the other hand, in Minker’s
Generalized Closed World Assumption, GCW A [10, 7], or in McCarthy’s Circumscription,
CIRC [9], notA is assumed only if A is false in all minimal models. In Clark’s origi-
nal Predicate Completion Semantics [5] for logic programs, this form of negation is called
negation-by-failure because not A is derivable whenever attempts to prove A finitely fail.

For example, the clause:
Runs(z)«—not Broken(z)

is intended to say that in the absence of “sufficient evidence” that the car is broken, we can
use the default belief that it is not broken and thus conclude that it runs. Consequently, if
we don’t have any additional information (or “evidence”) we infer that the car works fine.

While default negation is an inherent part of any commonsense reasoning system and, in
particular, it constitutes an important feature of all logic programs and deductive databases,
it also often leads to contradictory information. This occurs when (subjective) default beliefs
clash with the known (objective) information or with some other default beliefs.

Suppose that given the above clause:

Runs(z)—not Broken(z)

we find out that the car in fact does not run:
~Runs(MyCar).

The resulting knowledge base seems to be contradictory. On the one hand, given our default
assumption that the car is not broken, we should conclude that it runs and yet, on the other
hand, we know that it does not run. What should we conclude?

A common-sense approach suggests that in order to avoid such inconsistencies we should
refrain from adopting default beliefs that contradict the existing factual information. In
this particular case, we could conclude that our initial belief (assumption, hypothesis) that
the car is not broken must have been incorrect and thus has to be revised or rejected.
This form of common-sense reasoning is akin to the logical principle of reasoning known as
“reductio ad absurdum”.

Consider now the following program clause:

—Broken(z)«—not FlatTire(z), not Bad Battery(z)

which is intended to say that in the absence of any indication that something is wrong with
the tires or with the battery we can conclude that the car is not broken. Assuming that this
is all that we know about the car, we are likely to conclude that it is not broken because
we have no indication that would make us believe that there is any problem with either its
battery or-tires. In other words, both FlatTire and BadBattery are believed to be false by
default.

Suppose, however, that upon inspection we learn that our car is in fact broken, i.e:,
suppose that we add Broken(MyCar) to our knowledge base. Again, the resulting theory
turns out to be inconsistent because we still have no indication of any problem with either
battery or tires and thus not FlatTire and not BadBattery continue to hold true. ,

As in the previous case, the common-sense approach suggests that in order to avoid such
inconsistencies we should refrain from adopting beliefs that contradict the existing factual
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information or are mutually contradictory. In this particular case, we could conclude that at
least one of our initial default beliefs (assumptions, hypotheses) that the car does not have
a flat tire and does not have a bad battery must have been 1ncorrect and thus it has to be
revised or rejected. ot

However, standard non-monotonic formalisms, such as c1rcurnscr1pt10n, autdepistemic
logic and major semantics proposed for logic programs and deductive databases; do not
provide any mechanisms for revising or rejecting contradictory beliefs and thus, when faced
with similar inconsistencies, they end up in a contradiction. In order to remedy this situation,
in this paper we investigate the issue of belief revision, i.e., the problem of reconciling beliefs
with conflicting facts by an appropriate revision of beliefs, and we propose a rather general
belief revision framework for non-monotonic reasoning. As a byproduct, we obtain a precise
description of the nature of the mismatch between facts and beliefs which is shown to have
an important application to diagnosis.

While rejection of contradictory beliefs may prevent us from deducing contradictory con-
clusions, simply refraining from believing in certain facts may not be enough as it does not
take into account all the consequences of withholding of such beliefs. In order to produce
such consequences we must revise the theory itself by adding to it statements that result in
the elimination of contradictory beliefs. In other words, we must compile into the theory
additional knowledge that prevents the occurrence of the detected belief inconsistency. Ac-
cordingly, in this paper we also propose a rather general mechanism for belief revision by
means of theory change.

Instead of confining our discussion to some narrow class of non-monotonic theories, such
as the class of logic programs with some specific semantics, we conduct our study so that
it is applicable to a broad class of non-monotonic formalisms. They include the well-known
formalisms of circumscription, autoepistemic logic and all the major semantics recently pro-
posed for logic programs, including stable, well-founded, stationary and other semantics.

Specifically, we conduct our study of belief revision within the broad knowledge represen-
tation framework of the AutoEpistemic logic of Beliefs, AEB, introduced by Przymusinski in
[15, 17]. AEB constitutes a powerful and yet simple unifying framework for non-monotonic
reasoning formalisms which was shown to isomorphically contain all of the above mentioned
formalisms as special cases!.

Autoepistemic Logic of Beliefs, AEB, has some very natural properties which sharply
contrast with those of Moore’s Autoepistemic Logic, AEL. In particular, every belief theory
T in AEB has the least (in the sense of inclusion) static expansion T° which has an iterative
definition as the least fized point of a monotonic belief closure operator. Moreover, least
static expansions are always consistent in the broad class of affirmative belief theories defined
later in the paper.

In order to deal with contradictory beliefs, we first introduce the notion of a careful au-
toepistemic expansion, a simple and yet powerful extension of the notion of a static expansion-
of belief theories, which enables us to incorporate belief revision into the framework of AEB.
When applied to the above example involving a bad battery and flat tires, the proposed ap-
proach results in two consistent careful autoepistemic expansions. In one of them we believe
that the battery is fine but possibly the tires are not, and, in the other we believe that the
tires are fine but possibly the battery is dead. When taken together, the two expansions
imply that most likely either the tires or the battery, but not both, are to blame for the
car’s trouble. They represent therefore an intuitively appealing approach of rejecting those
beliefs that contradict factual information, while keeping all the remaining ones intact.

We prove that every consistent belief theory has a consistent careful expansion. This
result demonstrates that we can always assign a reasonable set of revised beliefs to any

!For simplicity, the class of belief theories considered in this paper does not use the epistemic operator
L and thus it does not include Moore’s autoepistemic logic, AEL, as a special case. However, a simple
extension of the discussed framework, described in {15, 17], isomorphically contains AEL.
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belief theory and underscores the important role played by belief revision in commonsense
reasoning. We also show that every consistent static expansion of a belief theory T is also
a careful autoepistemic expansion of T' and therefore the class of careful expansions extends
the class of consistent static expansions. Moreover, for a broad class of affirm@tive belief
theories, defined below, careful expansions coincide with static expansions.

Belief revision based on the notion of a careful autoepistemic expansion can be applied to
various reasoning domains. In this paper we illustrate its natural application to the domains
of diagnosis and declarative debugging of logic programs. Here the fact that all consistent
theories have consistent careful autoepistemic expansions plays a crucial role because it is
imperative that we should be able to derive a reasonable set of conclusions (diagnoses, bugs)
from any given knowledge base T even though the observable facts may appear to contradict
beliefs resulting from default assumptions contained in 7T'.

Careful autoepistemic expansions represent a form of belief revision in which the rational
epistemic agent abstains from believing formulae which, when believed, would lead to a
contradiction. However, as we mentioned before, simply refraining from believing in certain
formulae does not eliminate the contradictory information present in the knowledge base
and it also does not take into account all the consequences of withholding of such beliefs.
For example, faced with the fact that the car does not run we may decide to revise our belief
that the car is not broken (cf. Example 4.1.). However, that should also compel us to refrain
from believing in the related fact that the car does not need to be fixed.

We propose a natural solution to this problem using the previously introduced notion of a
careful autoepistemic expansion. The proposed approach is based on the appropriate revision
of the original theory itself instead of just the revision of our beliefs about it. Specifically,
we change the theory by adding to it new information that results in the elimination of
contradictory beliefs. In other words, we compile into the theory the knowledge that prevents
the same belief inconsistencies from occurring again.

In some application domains, beliefs may logically depend on other beliefs, which may
be viewed as more basic and sometimes considered to be non-revisable. For example, this
is true when diagnosing faults in a device: causally deeper component faults are sometimes
preferred over surface faults, that are simply consequences of the former. In such cases,
one may want to control the level at which diagnosis is performed, by eliminating diagnoses
which do not focus on the causally deeper faults. In declarative debugging, one may know in
advance that some predicates are specified correctly (e.g., those that are part of a previously
debugged program) so that any observable bugs involving these predicates must necessarily
be caused by the incorrect specification of the remaining predicates. More generally, any
revision of beliefs should comply with any given specification of mutual dependency of beliefs.
We illustrate how one can express such dependencies in AF B by means of the so called Belief
Completion Clauses. These clauses essentially state that a revision of some beliefs requires
a revision of beliefs on which they logically depend.

Because of its generality, this method of specifying the logical level of revision in belief
theories can be employed to explain and justify, via embedding of logic programs into AEB,
the meta-linguistic devices used for controlling abduction, view updates, declarative debug-
ging and contradiction removal in logic programs. Moreover, the fact that it is expressible
in the object-language, rather than in some meta-language, leads to a computationally sim-
pler solution. In particular, in [3] we prove that the contradiction removal semantics for
non-disjunctive extended logic programs, introduced by the first two authors in [13, 12], can

be isomorphically embedded into the more general framework of the Autoepistemic Logic of
Beliefs.
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2. Autoepistemic Logic of Beliefs

We first briefly recall the definition and basic properties of the Autoepistemic Logic of Be-
liefs, AEB. The language of AEB, is a propositional modal language, Ks, witlgst‘andard
connectives (V, A, D, =), the propositional letter 1 (denoting false) and a modal operator
B, called the belief operator. The atomic formulae of the form BF, where F is an arbitrary
formula of Kg, are called belief atoms. The formulae of K in which B does not occur are
called objective and the set of all such formulae is denoted by K. Any theory T in the
language Kp is called an autoepistemic theory of beliefs, or, briefly, a belief theory.

Definition 2.1. [Belief Theory] By an autoepistemic theory of beliefs, or just a belief the-
ory, we mean an arbitrary theory in the language K, i.e., a (possibly infinite) set of arbitrary
clauses of the form:

ByA..ABiABGiA...ANBGIAN-BFyA...A=BF, D A1 V...V An

where k,l,m,n > 0, A;s and B;s are objective atoms and Fis and Gis are arbitrary formulae
of K. Such a clause says that if the B;s are true, the G;s are believed, and the Fis are not
believed then one of the A;s is true.

By an affirmative belief theory we mean any belief theory all of whose clauses satisfy the
condition that m > 0. In other words, affirmative belief theories are precisely those belief
theories that satisfy the condition that all of their clauses contain at least one objective atom

in their heads?

Observe that arbitrarily deep level of nested beliefs is allowed in belief theories. We assume
the following two simple axiom schemata and one inference rule describing the arguably
obvious properties of belief atoms:

(D) Consistency Axiom:

-BLl (1)
(K) Normality Axiom: For any formulae F and G:
B(F > G) D (BF D BG) (2)

(N) Necessitation Rule: For any formula F"

F |
BF (3)

The first axiom states that tautologically false formulae are not believed. The second axiom
states that if we believe that a formula F' implies a formula G and if we believe that F is-
true then we believe that G is true as well. The necessitation inference rule states that if a
formula F has been proven to be true then F is believed to be true.

Definition 2.2. [Formulae Derivable from a Belief Theory] -
For any belief theory T, we denote by Cn.(T) the smallest set of formulae of the language
KCg which contains the theory T, all the (substitution instances of) the axioms (K) and (D)
and is closed under-standard propositional consequence and under the necessitation rule (N).

We say that a formula F is derivable from theory T in the logic AEB if F belongs to
Cn.(T). We denote this fact by T k. F. We call a belief theory T consistent if the theory
Cn.(T) is consistent. Consequently, Cn.(T) ={F:T k. F }. Moreover, T is consistent if
and only if T I/, L.

2More precisely, we require that all clauses contain at least one positive objective atom in their heads. -
Later, we introduce negative objective atoms, namely, the so called “strong negation” and “explicit negation”
atoms.
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Remark 2.1. It is easy to see that, in the presence of the axiom (K), the axiom (D) is

equivalent [17] to the axiom:
BF > -B-F, (4)

stating that if we believe in a formula F' then we do not believe in —F. ”4

For readers familiar with modal logics it should be clear by now that we are, in effect,
con51dermg here a normal modal logic with one modality B which satisfies the cons1stency
axiom (D) [8]. The axiom (K) is called “normal” because all normal modal logics satisfy it

8].

2.1. Intended Meaning of Belief Atoms

In general, belief atoms BF can be given different intended meanings. In this paper, the
intended meaning of belief atoms BF is based on Minker’s GCWA (see [10, 7]) or McCarthy’s
Predicate Circumscription [9], and is described by the principle of predicate minimization:

BF = F is minimally entailed = F' is true in all minimal models.

Accordingly, beliefs considered in this paper can be called minimal beliefs.

We now give a precise definition of minimal models and minimal entailment. Throughout
the paper we represent models as (consistent) sets of literals. An atom A is true in a model
M if and only if A belongs to M. An atom A is false in a model M if and only if A belongs
to M. A model M is total if for every atom A either A or = A belongs to M. Otherwise, the
model is called partial. Unless stated otherwise all models are assumed to be total. A (total)
model M is smaller than a (total) model NV if it contains fewer positive literals (atoms). For
convenience, when describing models we usually list only those of their members that are
relevant to our considerations, typically those whose predicate symbols appear in the theory
that we are currently discussing. :

Definition 2.3. [Minimal Models]{15, 17] By a minimal model of a belief theory T we mean
a model M of T with the property that there is no smaller model N of T which coincides
with M on belief atoms BF . If a formula F is true in all minimal models of T' then we
write: T Emin F and say that F is minimally entailed by T.

For readers familiar with circu4mscriptz'on this means that we are considering predicate
circumscription CIRC(T; K) of the theory T in which atoms from the objective language K
are minimized while the belief atoms BF' are fixed:

T wn F = CIRC(T;K)  F.

In other words, minimal models are obtained by first assigning arbitrary truth values to the
belief atoms and then minimizing objective atoms.

2.2. Static Autoepistemic Expansions

Like in Moore’s Autoepistemic Logic, also in the Autoepistemic Logic of Beliefs we introduce
sets of beliefs that an ideally rational and introspective agent may hold, given a set of premises
T'. We do so by defining static autoepistemic ezpansions T° of T, which constitute plausible
sets of such rational beliefs.

Definition 2.4. [Static Autoepistemic Expansion] [15, 17] A belief theory T is called a
static autoepistemic expansion of a belief theory T if it satisfies the following fixed-point
equation:

= Cn.(T U{BF :T° Emn F}),

where F' ranges over all formulae of K.
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The definition of static autoepistemic expansions is based on the idea of building an expan-
sion T° of a belief theory T' by closing it with respect to: (i) the derivability in the logic
AEB, and, (ii) the addition of belief atoms BF' satisfying the condition that the formula
Fis mlmmally entailed by 7°. Consequently, the definition of static expansions” enforces
the intended meaning of belief atoms described above. Note that negations —BF of the
remaining belief atoms are not ezplicitly added to the expansion although some of them will
be forced in by the Normality and Consistency Axioms (2) and (1).

Definition 2.5. [Static Semantics] By the (skeptical) static semantics of a belief theory T
we mean the set of all formulae that belong to all static autoepistemic expansions 7T of T'.

Every belief theory T in AEB has the least (in the sense of set-theoretic inclusion) static
expansion T° which has an iterative definition as the least fized point of the monotonic belief
closure operator ¥y defined below.

Definition 2.6. [Belief Closure Operator] [13, 17] For any belief theory T define the belief
closure operator Wy by the formula:

Ur(S)=Cn(TU{BF:S Emn F}),
where S is an arbitrary belief theory and the F’s range over all formulae of Kp.

Thus Ur(S) augments the theory T with all those belief atoms BF with the property that
F is minimally entailed by S. It is easy to see that a theory 7' is a static autoepistemic
expansion of the belief theory T' in AEB if and only if T° is a fixed point of the operator
\IJT, ie if T° = \IJT(T°).

Theorem 2.1. [Least Static Expansion](15, 17| Every belief theory T in AEB has the least
static expansion, namely, the least fired point T° of the monotonic belief closure operator
Ur.

Moreover, the least static expansion T° of a belief theory T can be constructed as follows.
Let T° = Cn.(T) and suppose that T® has already been defined for any ordinal number
a < B. If B=a+1 is a successor ordinal then define:

T4 = Ug(T) = Cn( TU{BF : T° i F}),

where F ranges over all formulae in Kg. Else, if B is a limit ordinal then define TP =
Ua<ﬁ Te. ‘

The sequence {T*} is monotonically increasing and has a unique fized point T® = T =
Ur(T?), for some ordinal \. For finite theories T the fized point T® is reached after finitely
many steps.

Observe that the least static autoepistemic expansion T° of T' contains therefore those and
only those formulae which are true in all static autoepistemic expansions of T' and therefore
it always coincides with the static semantics of T'. It is easy to verify that a belief theory
T either has a consistent least static expansion T or it does not have any consistent static

expansions at all. Moreover, least static expansions of affirmative belief theories are always
consistent [15, 17].

Example 2.1. Consider the following belief theory T

Car
Car A B-~Broken D Runs

For simplicity, when describing static expansions of this and other examples we list only.
those elements of the expansion that are “relevant” to our discussion. In particular, we
usually omit nested beliefs. In order to iteratively compute the least static expansion T of
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T we first let T° = C'n,(T). Let us observe that T° |= Car and T° i = Broken. Indeed,
in order to find minimal models of T° we need to assign an arbitrary truth value to the only
belief atom B-Broken, and then minimize the objective atoms Broken, Car and Runs.
We easily see that T° has the following two minimal models (truth values of tﬁ’e remaining
belief atoms are irrelevant and are therefore omitted):

M, = {B-~Broken,Car, Runs, ~Broken};
M, = {~B-Broken, Car, -~ Runs, ~Broken}.

Since in both of them Car is true, and Broken is false, we deduce that T° =, Car and
TO }=pin ~Broken. Consequently, since T! = W7 (T°) = Cn.(T U {BF: T° Emin F'}), we

obtain:

T' = Cn.(T U {BCar,B~Broken}).
Since T! |= Runs and T? = U7(T") = Cn.(T U {BF : T' =i F}), we obtain:
T? = Cn.(T U {BCar,B-~Broken, BRuns}).

It is easy to check that T? = Up(T?) is a fixed point of W7 and therefore T° = T? =
Cn (TU{BCar,B-Broken, BRuns}) is the least static expansion of T". The static semantics
of T asserts our belief that the car is not broken and thus runs fine. One easily verifies that
T does not have any other (consistent) static expansions.

2.3. Logic Programs as Belief Theories

One can easily show that Circumscription is properly embeddable into the Autoepistemic
Logic of Beliefs, AEB. In [15, 17} it was also shown that major semantics defined for
normal and disjunctive logic programs are also embeddable into AFB. In particular, this
is true for the well-founded, stable and stationary (or partial stable) semantics of normal
logic programs. In the next section we recall an analogous result for the stable semantics of
extended logic programs with so called “classical negation” [6].

Suppose that P is a normal logic program consisting of rules:

A— B/ AN...AB,AnotCyA... \notC,

The translation of P into the affirmative belief theory Ts-(P) is given by the set of the
corresponding clauses:

obtained by replacing the non-monotonic negation not F' by the belief atom B—F, and by
replacing the rule symbol — by the standard material implication D.

The translation, Tp~(P), gives therefore the following meaning to the non-monotonic
negation:

not F 2 B-F = F is believed to be false = —F is minimally entailed. (6)

Theorem 2.2. [Embeddability of Stationary and Stable Semantics][15, 17] There is a one-
to-one correspondence between stationary (or, equivalently, partial stable) models M of the
program P and consistent static autoepistemic expansions T° of its translation TB_.(P) into
a belief theory. Namely, for any objective atom A we have:

AeM iff BAeT®
“AeM ff B-AeTe

In particular, the well-founded model My of the program P corresponds to the least static
ezpansion of Ts-(P). Moreover, (total) stable models (or answer sets) M of P correspond
to those consistent static autoepistemic expansions T° of Tp-(P) that satisfy the condition
that for all objective atoms A, either BA € T° or B~A € T°.
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Example 2.2. It is easy to see that the belief theory T' considered in Example 2.1. can be
viewed as a translation Tp-(P) of the logic program P given by:

Car ‘ e
Runs «— Car A not Broken 4

The unique consistent static expansion,
T° = Cn.(T U {BCar,B-Broken, BRuns})
of T corresponds therefore to the unique stationary (or stable) model,
M = {Car,~Broken, Runs}

of P, which is also its unique well-founded model [14].

2.4. Strong Negation

Classical negation, = A, which is part of the propositional language K3 of the Autoepistemic
Logic of Beliefs, AEB, satisfies the so called law of the excluded middle, AV —A, which
requires that any given property A be known to be either true or false. However, in many
commonsense reasoning domains, such a requirement appears undesirable. In particular, this
is the case in logic programming [6, 16, 1]. Consequently, we need a new notion of negation,
which does not necessarily satisfy the law of the excluded middle.

In [15, 17], we showed that one form of such non-standard negation, called strong negation,
can be easily added to the autoepistemic logic of beliefs, AEB, by:

e augmenting the original objective language K with new objective propositional symbols
~A, called strong negation atoms, resulting in a new objective language K’ and the new
language of beliefs K.

e ensuring that the intended meaning of ~A is
the following strong negation axiom:

[4

‘~A is the opposite of A” by assuming

(S) AN ~A D L orequivalentlyy, ~A D -A,

which says that A and its opposite ~A cannot be both true. Formally, the addition of
the axiom schema (S) means that the set Cn.(T) of formulae derivable from a given
belief theory T, used in the definition of the static expansion, is now replaced by the
smallest set, Cnj(T"), which contains the theory T and all the (substitution instances
of) the axioms (K), (D) and (S) and is closed under the necessitation rule (N).

For example, a proposition A may describe the property of being “good” while the proposition -
~A describes the property of being “bad”. The strong negation axiom states that things
cannot be both good and bad. We do not assume, however, that things must always be either
good or bad.

Example 2.3. Consider the belief theory T with strong hegation:

~ Football B-Baseball D Football
B-Football D Baseball

It is easy to verify that T has precisely one consistent static expansion:
T° = Cn. (T U {B~Football, BBaseball.})

Indeed, axiom (S) implies that T° = —Football and thus T! |= B-Football and, conse- |
quently, T! = Baseball and T° = T? |= BBaseball.
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As the following result shows, we can use strong negation to translate extended logic pro-
grams with “classical negation”, originally introduced in [6], into belief theories.

Theorem 2.3. [Embeddability of Extended Stationary and Stable Semantics] 15, 17] There
is a one-to-one correspondence between stationary (or partial stable) models M of an ex-
tended logic program P with “classical negation”, as defined in [16], and conszstent static
autoepistemic expansions T° of its translation Tg-(P) into belief theory, in which “classical
negation” of an atom A is translated into ~A.

In particular, (total) stable models (or answer sets) M of P, as defined in [6], correspond
to those consistent static autoepistemic expansions T° of Ts-(P) that satisfy the condition
that for all objective atoms A, either BA€ T° or B-A € T°.

Since the axiom (S) has no effect on those belief theories T' that do not include strong
negation atoms ~A, in the sequel we will assume the axiom (S) without any further mention
whenever strong negation is used. For a more detailed study of strong negation the reader
is referred to [3].

2.5. Explicit Negation

In some commonsense reasoning domains, even the strong negation axiom (S) appears to be
too strong [2, 3|, and is thus replaced by the following explicit negation inference rule:

~A

(ER) - 5oA

and the following ezplicit negation aziom:
(EA) BA AN B~A D L

for every atom A in K. Both of these assumptions can be shown [3] to be weaker than the
strong negation axiom (S). _

Formally, the addition of the inference rule (ER) and the axiom (EA) (instead of the
axiom (S)) means that the set Cn.(T") of formulae derivable from a given belief theory T,
used in the definition of the static expansion, is now replaced by the smallest set, Cn¢(T),
which contains the theory T and all the (substitution instances of) the axioms (K), (EA)
and (D), and is closed under both the necessitation rule (N) and the explicit negation rule
(ER). Both strong and explicit negations can be easily generalized to arbitrary, non atomic,
formulae [3].

In order to avoid confusion between strong and explicit negation, from now on we will
denote the explicit negation of an atom A by A instead of ~A. While the intended meaning
of the strong negation ~A of A is “the opposite of A”, the intended meaning of explicit
negation A is “there is evidence against A”. In particular, since the strong negation axiom
(S) does not hold for explicit negation, it is possible to have both A (i.e., “evidence for A”)
and A (i.e., “evidence against A”) in the same model of a belief theory. Having evidence
both for and against a given proposition occurs frequently in common-sense reasoning.

Since the explicit negation inference rule (ER) and the axiom (EA) have no effect on
those belief theories T' that do not include explicitly negated atoms A, in the sequel we
will assume them both without any further mention whenever explicit negation is used. As
the following result shows, we can use belief theories with explicit negation to obtain the
well-founded semantics with explicit negation originally defined in [11]:

Theorem 2.4. [Embeddability of WFSX Semantics] [11] There is a one-to-one correspon-
dence between the partial stable models M of an extended logic program P with “explicit
negation”, as defined in [11], and the consistent static autoepistemic expansions T° of its
translation Tp-(P) into belief theory, where “explicit negation” of an atom A is translated
into A.

For a more detailed study of explicit negation the reader is referred to [3].
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3. Belief Revision

While static expansions seem to provide a natural and intuitive semantics for many (con-
sistent) belief theories (in partlcular for all affirmative belief theories) they ofteh lead to
inconsistent expansions for theories in which (subjective) beliefs clash with the observable
(objective) facts or with some other beliefs. In particular, this applies to belief theories and
logic programs with strong (or explicit) negation.

Example 3.1. Consider again the simple belief theory introduced in Example 2.1. As we
have seen, its static semantics implies that we believe that the car is not broken and thus runs
fine. Suppose, however, that upon inspection we found out that the car actually does not

run:
- Runs.

It is clear that the resulting new belief theory does not have any consistent static expansions.
Indeed, since there is no evidence that the car is broken, Broken is false in all minimal models
and thus B—Broken is derivable. This implies Runs and thus results in a contradiction. In
other words, our belief that the car is not broken and thus runs, based on the fact that there
is no evidence to the contrary, apparently contradicts the objective fact that the car does
not run.

In view of the contradictory factual information that the car does not run, we could very
well conclude that our initial belief (assumption) that the car is not broken must have been
incorrect and thus has to be revised and rejected.

Example 3.2. Consider now the belief theory discussed in the introduction:

B-FlatTire A B~BadBattery D ~Broken
Broken,

which says that, in the absence of any indication that something is wrong with the tires or
with the battery, we can safely conclude that the car is not broken, and yet the fact is that
it is broken. This theory, again, does not have any consistent static expansions because both
~FlatTire and ~BadBattery are minimally entailed and thus the premise B~ FlatTire A
B-BadBattery is derivable. This implies - Broken and results in a contradiction.

Again, a natural way to remedy this problem is to conclude that, in view of the con-
tradictory objective information that the car is broken, at least one of our initial beliefs
(assumptions) that the car does not have a flat tire and does not have a bad battery must
have been incorrect and thus has to be revised and rejected.

3.1. Careful Autoepistemic Expansions

The approach illustrated in the previous two examples is based on the idea of rejecting or
revising beliefs that contradict the existing factual information or are rnutually contradlctory
It leads to a simple modification of the definition of static expansions which results in a
natural and potent framework for belief revision in AEL.

Definition 3.1. [Careful Autoepistemic Expansion] A belief theory T is called a careful
autoepistemic expansion of a belief theory T if it satisfies the following fixed-point equation:

= Cnu(T U{BF :T° |zin F and T°U {BF} is consistent}),
where F' ranges over all formulae of K.

The only difference between the definition of static expansions and careful expaﬁsions is
the requirement that only those belief atoms BF should be added to the expansion whose -
addition does not lead to a contradiction. Recall that, by definition, T°U {BF} is consistent
if and only if Cn.(T° U {BF}) is consistent.
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Example 3.3. It is easy to see that the theory considered in Example 3.1. has precisely one
careful expansion, namely 7° = Cn.(T U {BCar, B~Runs}), which does not include any
beliefs about the car being broken and corresponds therefore to the intuitive approach of
rejecting beliefs that contradict existing factual information. #

EA
1N

Example 3.4. On the other hand, the theory considered in Example 3.2. has precisely two
careful expansions namely:

T? = Cn.(T U {BBroken, B-FlatTire}),
T3 = Cn.(T U {BBroken, B-~BadBattery}),

which reflect the fact that one of the assumptions about not having a bad battery or not
having a flat tire has to be rejected while the other can be kept without causing any in-
consistency. The resulting semantics implies therefore B~ FlatTire V B~BadBattery and
thus suggests that most likely the car does not have both a bad battery and a flat tire. It
represents the intuitively appealing approach of rejecting only those beliefs that contradict
factual information, while keeping all the remaining ones intact.

Example 3.5. Suppose that our belief theory T simply says: BGod. Clearly, T does not
have any consistent static expansions. Indeed, since it does not offer any evidence for the
existence of God, it yields B-~God resulting, by virtue of the Consistency Axiom (D), in a
contradiction with BGod. However, T has precisely one consistent careful static expansion
which coincides with the closure Cn.(T') of T in AEB. The belief B-God is not added

because it leads to inconsistency.

As the previous examples demonstrate, careful autoepistemic expansions no longer lead to
inconsistencies when we add to our knowledge facts that seem to contradict our (default)
beliefs.

Proposition 3.1. All careful expansions of a consistent belief theory are consistent.

Proof:
Let T be a belief theory and let T° be a careful expansion of T'. By definition,

T°=Cnu(T U{BF :T° l=min F and T°U {BF} is consistent}).

Consequently, if T were inconsistent then we would have T° = Cn.(T) and thus T would
also have to be inconsistent.

It turns out that every consistent belief theory has a consistent careful autoepistemic
expansion.

Theorem 3.1. [Fundamental Theorem of Belief Revision] Every consistent bélief theory has
a consistent careful autoepistemic expansion.

Proof:

Let < be some well-ordering of the set of all formulae of the propositional modal language,
Ks, and, let T be a consistent belief theory. By definition, the theory T, = Cn.(T) is.
consistent and closed under the axioms (D) and (K) as well as the necessitation rule (N).
Suppose that 3 is an ordinal such that for all « < /3 consistent and non-decreasing theories T,
have been constructed which are closed under the axioms (D) and (K) and the necessitation
rule (N).

If B is a limit ordinal then we define Ty = |, <p Ta- Due to the compactness theorem, the
theory T} is also consistent and closed under the axioms (D) and (K) and the necessitation
rule (N). If 8 = a + 1 is a successor ordinal then we choose the <-least formula F with the
property that:
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® Ta }:min F,
o T, U{BF} is consistent,
L4 BF ¢Ta’ i

assuming such a formula F exists, and we define Tpy1 = Cnu(T, U {BF}). Otherwise, we
define Typqy = T, ' ,

The so constructed transfinite sequence of theories is non-decreasing and therefore there
must exist a v such that T,4; = T}, is a fixed point. Define T'° = T,. We have to show that:

T°=CnuT U{BF :T° |Emin F and T°U {BF} is consistent}).

Clearly, T° 2 Cn.(T U{BF :T° |=min F and T°U {BF'} is consistent}). It suffices there-
fore to show that T° C Cn (T U {BF : T° Emin F and T°U {BF} is consistent}). For that
purpose it is enough to prove that, for any ordinal ¢, if Ty Fmin F then T° i F.

Suppose that T, Fmin F' and let M be a minimal model of T°. If M were not a minimal
model of T, then there would exist a smaller model N of T, which coincides with M on all
belief atoms. However, since T differs from T, only by the addition of some belief atoms,
this means that N would also be a smaller model of T, which is impossible. This shows
that M is a minimal model of T, and thus F' must be true in M. Consequently, T° FEmin F'
which completes the proof.

This result demonstrates that we can always assign a reasonable set of revised beliefs
to any belief theory and thus underscores the important role played by belief revision in
commonsense reasoning. It is also of crucial importance in applications of belief revision,
such as the application to diagnosis illustrated below, where it is imperative that we should
be able to derive a reasonable set of conclusions (diagnoses) from any given knowledge base
T even though the observable facts may appear to contradict beliefs resulting from default
assumptions contained in 7'.

The class of careful expansions extends the class of consistent static expansions. Moreover,
for affirmative belief theories, the notions of a consistent static expansion and a careful
expansion coincide.

Theorem 3.2. Every consistent static expansion of a belief theory T is also a careful ex-
pansion of T.

Proof:
Let T be a belief theory and let 7° be a consistent static expansion of T'. By definition,

T° = Cn(T U{BF :T° Emin F}).

Since T is consistent, T°U {BF'} is consistent, for every F' such that T° =, F. Conse-
quently, T° = Cn. (T U{BF :T° emin F and T°U {BF'} is consistent}), which shows that

T? is a careful expansion of T'.

Theorem 3.3. For affirmative belief theories, the notions of a consistent static erpansion
and a careful ezpansion coincide.

Proof:
From Theorem 3.2. it follows that all consistent static expansions are also careful expansions.
We need to show that every careful expansion of an affirmative theory T is a consistent static
expansion of T'.

Let T be an affirmative belief theory and let T° be a careful expansion of T. Since
affirmative belief theories are consistent [15, 17], it follows from Proposition 3.1. that T is

consistent. By definition, T° = Cn,(T U{BF : T® |=pim F and T°U {BF} is consistent}).

It suffices to show that T°U {BF} is consistent for every F such that T° |z, F. For
that purpose it suffices to prove that T* = Cn.(T U {BF : T°® =i F}) is consistent. We
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first show that Tg =T U {BF : T° |Emin F'} U (K) is consistent as a standard propositional
theory, where (K) represents all instances of the normality axiom. Let M be an interpretation
in which all objective atoms A are true and those and only those belief atoms BF are true
for which T® F=min F'. Since T is affirmative all the clauses of T' are satisfied in M Moreover,
all instances of the normality axiom (K) are satisfied as well because if B(F' O G) and B(F )
are true in M then T° Epin (F D G) A F and thus T° f=piy G and consequently B(G) is also
true in M. This shows that T is consistent as a standard propositional theory.
Suppose that a consistent theory T, has been already defined and let

Tr,, =T U{BF:T: £ F}.

An analogous argument shows that T* 11 1s consistent as a standard propositional theory
Clearly, T* is the fixed point T,y = Ty, of this sequence of theories and therefore it is also

consistent, which completes the proof.

3.2. Application to Diagnosis

Belief revision based on the notion of a careful autoepistemic expansion can be applied to
various reasoning domains. Below we illustrate its application to the domain of diagnosis.

For any careful expansion T° of a belief theory T the set R(T°) = {F : T° Emnin
F and yet BFF ¢ T°}, namely, the set of those formulae F' which should be believed in
(because F' is minimally entailed) in the expansion T°, and yet are not believed in T (be-
cause of the resulting inconsistency), plays an important diagnostic role by constituting the
set of possibly false assumptions.

Definition 3.2. [Revision Set of a Careful Expansion] The revision set R(1®) of the careful
autoepistemic expansion T° of a belief theory T is defined by:

R(T)={F:T° FEmn F and BF ¢ T°}.
Clearly, a careful expansion is a static expansion if and only if its revision set is empty.

Example 3.6. Consider the careful expansions of the theory discussed in Example 3.2.:

= Cn.(T U{BBroken, B-FlatTire})
= Cn(T U {BBroken, B-BadBattery})

Their revision sets are:

R(T?) = {~BadBattery}
R(Ty) = {~FlatTire}

i.e. in 1Y we refrain from believing ~BadBattery, while in 75 we refrain from believing
—FlatTire. As a result, the first revision set suggests that our assumption that the car does
not have a bad battery may have been wrong and the second revision set suggests that our
assumption that the car does not have a flat tire may have been incorrect. Both of them
together provide us with a useful diagnosis of possible reasons why the car does not work.

4. Belief Revision by Theory Change

In this section we study the issue of belief revision by theory revision, as opposed to belief
revision by rejection of contradictory beliefs which was discussed in the previous section.

As remarked earlier, careful autoepistemic expansions represent a form of belief revision
where the rational epistemic agent abstains from believing formulae which, if believed, would
lead to contradiction. However, simply refraining from believing in certain formulae is often
not enough, as it does not fully take into account all the consequences of withholding such
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beliefs. In order to produce such consequences we must revise the theory by adding to it some
statements that justify not holding the contradictory beliefs. In other words, we must compile
into the theory additional knowledge that will prevent the detected belief inconsistency from
occurring. This knowledge is gathered by analyzing the causes of inconsistencies.»*

Example 4.1. Suppose that to the theory of Example 3.1. we add:
Car A Broken D Fuzlt

It is easy to check that the resulting theory T' has a single careful expansion:
T° = Cn. (T U {BCar, B~Runs, B~Fizlt})

Even though —Broken is true in all minimal models of the expansion, B-Broken is not
added since it leads to inconsistency. Since Broken is no longer believed to be false, one
would intuitively expect =FizIt not to be believed either. However, this is not the case
in the careful autoepistemic expansion above. Indeed, the expansion reflects only the fact
that the agent must refrain from believing formulae that lead to contradiction. It does not
invalidate the reasons that have led to such beliefs. In our example, we believed in the car
not being broken because of the lack of evidence showing otherwise. This lack of evidence
must therefore be invalidated by admitting the possibility that the car might in fact be
broken.

This is the stance taken by most belief revision systems, where the outcome of revision is
a modified theory, in which contradiction is avoided by eliminating the reasons for contradic-
tory beliefs. It is clear that the only way of inhibiting - Broken from being believed in static
expansions is by introducing some evidence for Broken to be true. This evidence could, for
example, be stated in the form that Broken is in fact true. However, this appears too strong:
absence of belief in ~Broken does not warrant jumping to such a conclusion. We need only
the weaker statement that Broken is possible, i.e. there is at least one minimal model with
Broken, so that, given our notion of evidence, there is no longer absence of evidence for the
car not being broken. In such case, we would no longer believe ~Broken. Moreover, ~Fiz It
would no longer be minimally entailed, and thus would no longer be believed.

Careful expansions already identify and inhibit the addition of beliefs that lead to contradic-
tion. It is thus an easy matter to determine which sets of formulae do lead to contradiction:
they are the revision sets R(1®) of careful expansions 7.

4.1. Revised Autoepistemic Expansions

Given a careful expansion T° of a belief theory T' one can revise T' by adding to it the
“possibility of F' being false” for every F' in the revision set R(7°). How can this be done?
Most belief revision systems take the position that if the belief in a given formula F' leads
to contradiction then its complement = F should be assumed to be true. In our opinion
this is, in general, unwarranted. First of all, it is not necessary to do so in order to inhibit
the belief. Moreover, it is unwarranted to jump to a conclusion that some formula is true
simply because belief in its falsity would lead to contradiction. That would be tantamount to
imposing the law of the excluded middle on our beliefs, i.e. assuming the axiom BF V B-F'.
In Example 4.1., we simply would like to prevent = Broken from being believed. Given
the meaning of beliefs, this can be arranged by changing the theory just enough so that
“Broken is no longer false in all minimal models” or, equivalently, by “guaranteeing the
existence of a minimal model in which Broken is true”. Technically, this is achievable by
adding to the theory the clause BrokenV Maybe_Not(Broken), where Maybe_Not(Broken)
is an atom not occurring elsewhere in the theory, and thus not constrained in value. This
clause can be read as “Broken is possible”. Intuitively, this constitutes the “minimal” change
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of the theory ensuring that contradiction is removed. Indeed, believing —Broken leads to
contradiction and therefore Broken should be possible, which effectively and declaratively
prevents believing in - Broken.

For the sake of modularity, instead of adding the clauses of the form F'V M aybe_Not(F),
we prefer the addition of Possible(F), where Possible(F') is defined by:

Possible(F) = FV Maybe_Not(F) (7)

Definition 4.1. [Revision of a Belief Theory| A belief theory T is a revision of a consistent
belief theory T if and only if

T, = TU{Possible(~F) : F € R(T°)}
for some careful autoepistemic expansion 7° of T

Theorem 4.1. [Revised Autoepistemic Expansion] Let T, be a revision of a consistent belief
theory T'. Then T, is consistent and has a consistent least static autoepistemic expansion.
The least static autoepistemic ezpansion of T, is a revised autoepistemic expansion of T'.

Proof:
Let T° be a careful autoepistemic expansion of the consistent theory T, and let T, = T'U
{Posstble(—~F) : F € R(T°)}.

Since T is consistent, and T, only differs from T on clauses of the form F'V Maybe_Not(F),
where Maybe_Not(F') is an atom not occurring elsewhere in T, it is easy to see that T, is
also consistent.

To prove that the least static expansion of T, is also consistent, we begin by proving the
following lemma:

Lemma 4.1. Let 7’ be a theory obtained by augmenting 7, with a set of belief formulae
BG € T°. For every formula F' € R(T°), there is a minimal model M of T’ such that

-FeM.

Proof:
Let T’ = T U {Possible(—F): F € R(T°)} UB, where B is a set of belief formulae contained
in 7°.

We start by proving that 7' U {-F,~Maybe_Not(-~F)} is consistent, i.e. there exists a
model of T with ~F and ~Maybe_Not(—~F). First note that 7°U {—F} is consistent: oth-
erwise all models of 7'° would contain F' and, since T is closed under (N), BF would belong
to T'°, which is impossible because F' € R(T°). Thus TU BU{—F} is consistent. Because in
the remainder of T, =F' only occurs in =F V Maybe_Not(—~F), and Maybe_Not(—F) does
not occur elsewhere in T', T' U {~F, ~Maybe_Not(—F)} is also consistent.

Let N be a model of T containing {—~F,~Maybe_Not(~F)}. If N is minimal then, since

—F € N, the lemma is verified. Since Maybe_Not(—~F) is an atom not occurring elsewhere
in 7", if N is not minimal, there must exist a minimal model M of T" coinciding with N on
belief atoms and containing ~Maybe Not(—F'). Since M must satisfy =FV Maybe_Not(~F)
it must also contain —F.
By Theorem 2.1., it is guaranteed that the sequence of the {T*}, constructed by successive
applications of the belief closure operator ¥, is monotonically increasing and has a unique
fixed point. Thus, it is enough to prove that the obtained fixed point is consistent. Moreover,
since T is consistent, it suffices to show that, for every T in the sequence, and any formula
F not containing any occurrence of atoms of the form Maybe Not(G):

BFeT?=BFeT®
Suppose that 8 is an ordinal such that for all @ < B, if BF € T® then BF € T°.
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If 3 is a limit ordinal, since by definition of the sequence ¢ =, PPV i then, by the
compactness theorem for all BF € T?, also BF € T°.

If B = a+1 is a successor ordinal, then BF' € Tf iff T Emin For BF e T UBF € T?
then, by hypothesis, BF € T°. Otherwise, the proof proceeds by‘contradictioné%‘"afssuming
that BF ¢ T°. In that case, since T° is a careful expansion, either there is a minimal model
of T° with ~F, or all of its minimal models have F' but T° U {BF} is inconsistent. If the
latter holds F € R(T°), and so, by lemma 4.1., there is a minimal model of T}* with —F.

Thus T* Wmin F' - contradiction.
If there is a minimal model of T with —=F then, since T differs from 7> only by the

addition of some belief atoms and clauses Possible(G), it is clear that there must also exist

a minimal model of T* with =F - contradiction.
From the above proof, the relation of revised expansions to careful autoepistemic expan-

sions follows easily:

Corollary 4.1. [Relation to Careful Expansions] Let T, be a revised autoepistemic expan-
sion of a consistent belief theory T. There exists a careful expansion T° of T such that,
for any formula F not containing any occurrence of atoms of the form Maybe Not(G),

BF eT® = BF € T°.

Intuitively, this means that revised expansions are more skeptical than careful expansions,
in that the latter add more belief formulae than the former.

Example 4.2. The only revision of the theory T from Example 4.1. is given by T, = T U
{Possible(Broken)}. Accordingly, the only revised autoepistemic expansion of T is:

T? = Cn. (T U {Possible(Broken)} U {BCar,B-Runs})

It is easy to see that there are minimal models of the theory in which Broken is true, and
therefore, since C'ar is true in all models, those models include FizIt too. Thus, neither
B-Broken nor B-Fizlt are added to the expansion.

Example 4.3. The revisions of theory T from Example 3.2. are
T,, = T U {Possible(BadBattery)} and T,, = T U {Possible(FlatTire)}

Thus, the revised autoepistemic expansions are:

T? = Cn, (T U {Possible(BadBattery), BBroken, BﬂFlatTire})
17, = Cn.(T U {Possible(FlatTire), BBroken, B—~BadBattery})

Each of them constitutes a diagnosis of a possible problem with the car.

4.2. Controlling the Level of Diagnosis

The belief in a formula may be conditional upon the belief in another formula. This is
particularly true when diagnosing faults in a device: causally deeper component faults are
sometimes preferred over less deep faults, that are simply consequences of the former. In such
cases, one would like to control the level over which diagnosis is performed, by preventing
diagnoses which do not focus on the causally deeper faults. We now show that revised
autoepistemic expansion have sufficient expressive power to control the level of diagnosis.

Example 4.4. The theory T

—Runs FlatTire D Broken
B-Broken O Runs BadBattery D Broken
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has a single revision: T'U{Possible(Broken)}. The revised autoepistemic expansion contains
both B-FlatTire and B-~BadBattery. This revision can be seen as a diagnosis of the car
that just states the car might be broken.

However, in this case, one would like the diagnosis to delve deeper into theit car problems,
and obtain one diagnosis suggesting a possible problem with a flat tire and another suggesting
a possible problem with a bad battery. This is justified by the fact that our belief in the car
being broken seems to depend entirely on our belief that it either has a flat tire or a bad
battery.

To obtain this more desirable result one has to somehow ensure that instead of just with-
holding our belief in the car not being broken we in fact also withhold our belief that the
car neither has a flat tire nor a bad battery. In other words, a revision of this theory should
not be initiated by revising Broken but instead it should be initiated by revising F'latTire
or BadBattery by adding either Possible(FlatTire) or Possible(BadBattery).

Note that, by the rule (N) and the axiom (K), the closure of T already contains:

BFlatTireV BBadBattery O BBroken.

Thus, belief in the truth of Broken is already determined by the belief in FlatTire or in
BadBattery. But we intend to express the stronger fact that belief in the falsity of Broken
must also be determined by the beliefs held about the latter literals. This is ensured by
stating that if both FlatTire and BadBattery are believed false then Broken must be also

believed false:
B-FlatTire A B=BadBattery D B~ Broken (8)

Example 4.5. The theory T from Example 4.4., augmented with clause (8) now has two
revised expansions:

o =Cn.(T U{Possible(BadBattery), B-Runs, B~FlatTire})
Ty, = Cn.(T U {Possible(FlatTire), B-Runs,B-~BadBattery})

each corresponding to one of the desired deeper diagnoses.

On the other hand, T U {Posszble(Broken)} is no longer a revision because it stlll derives
B-Broken, via clause (8), and thus is inconsistent.

Note the similarities between clause (8) and Clark’s completion [4] of Broken. Clark’s
completion states that if both FlatTire and BadBattery are false then Broken is false,
whilst (8) refers instead to the corresponding beliefs. For this reason we call (8) the
belief completion clause for Broken. More generally:

Definition 4.2. [Belief Completion Clauses] Let T' be an AEB theory, and let:
B1,1 A A Bl,m A B_\Blym+1 AN.JA BﬁBlyn D) A

Bk71 A A Bk,m A B—'Bk,m+1 A A B“IBk,n DA

be all the clauses® for A in T, where A is an atom, each Bi,j is a literal, and & > 0. The
belief completion clauses for A in T', BelComp(A), are:

(B_'Bl,l V...V B—'Bl,m \Y BBl,m-H V...V BBl,n)
A A (BﬂBk,] V...V B—'Bkﬂn \ BBk,m+1 V...V BBk,n) D) B_'A

If there are no clauses for A in T then its belief completion is B—A.

By adding the completion rules for an atom A, we can therefore prevent revision to be
initiated in B—A, i.e., in order to revise the belief in = A, beliefs in other literals on which A
depends must also be revised. In diagnosis, the hierarchical component structure of artifacts
naturally induces dependency levels into theories modeling them. In other words, we can
impose, via belief completion clauses, the desired levels of diagnosis in artifacts.

3By a clause for an atom A we mean one in which A4 occurs positively.
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4.3. Application to the debugging of logic programs

Here we illustrate the application of belief revision with completion clauses to declarative
error diagnosis (or declarative debugging) of terminating normal logic programg, by first
translating the programs to AEB theories. The restriction to terminating programs aims
to simplify the exposition: all the major logic programming semantics coincide for such

programs and there are no errors due to loops
Debugging of a logic program is required whenever the consequences of the program clash

with the intended model of the user, and its goal is to detect the errors in the program.
A debugger is declarative whenever the user needs only to know the intended model of an
incorrect program to detect bugs. In particular, with a declarative debugger, the user does
not need to know or be aware of the underlying operational behaviour of the program.

In terminating logic programs, errors manifest themselves only through two kinds of

symptoms, or bug manifestations [19]:

e wrong solution, when some ground atom is an undesirable consequence of the program,
i.e. a consequence which is not part of the intended user model.
e missing solution, when some ground atom belongs to the intended user model, but is

not a consequence of the program.

Of course, whenever there is a missing or a wrong solution manifestation then the program is
not correct with respect to its intended model, and so there must necessarily exist in it some
bug requiring correction. In [19], two kinds of errors are identified: uncovered atoms and
incorrect clause instances. An atom A is uncovered if it belongs to the intended model but
there are no rules in the program with head A and true body. A clause instance is incorrect
if the head of the clause instance does not belong to the intended model but its body is true
in the intended model.

Example 4.6. Consider the logic program P:

a«— notb
b— notc

whose consequences are {not a,b,not c}, and the indented user model {not a,notb,c} that
clashes with it.

In this case, the symptoms are that b is a wrong solution and c is a missing solution. The
reader can easﬂy check that the errors in this program that explam the clash are that c is
uncovered, and that the first clause is incorrect.

In order to use belief revision in AEB to perform declarative debugging of normal logic
programs, the first step to take is to translate the programs into belief theories via the
translation T-(P) which defines their semantics in AEB. Moreover, in order to allow for
the existence of incorrect clause instances, clause instances must be conditional upon the
assumption of their correctness. To further allow for the p0331b111ty of uncovered atoms, for
each atom a clause stating that it is true whenever the atom is uncovered, is required. Thls
yields the following translation:

Definition 4.3. [Debugging Translation] Let P be a normal logic program consisting of rule

instances:
A—=BiA...AB,AnotC;A...AnotC,

The translation Tyepuy(P) is given by the set of the corresponding clause instances:
B-uncorrect(rn,) D (ByA...AByn AB-CiA...AB-C, D A)
or, equivalently:

B-incorrect(rp,) AByA...AB, AB-CiA...AB-C, D A
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where 7, is a unique name assigned to each clause instance n, plus a clause

uncovered(A) D A

;;w;’
for each atom A in the language of P. All atoms of the form incorrect(-) or uncovered(.)
are new, not occurring elsewhere in the theory.

The following (easy to check) proposition shows that the differences between T-(P) and
Tiebug(P) do not affect the semantics of the resulting theory. In fact their static expansions
coincide modulo the new predicates introduced, i.e. coincide on all formulae common to the

languages of both theories.

Proposition 4.1. Let P be a normal logic program, T = Tp-(P) and Ty = Tyepyy(P). For
each static expansion Ty of Ty there exists one static expansion T of T such that, for
every formula F with no occurrences of incorrect(-) or uncovered(.), T |= F if and only if
T° | F, and reciprocally.

In fact, since there are no positive occurrences of atoms incorrect(r,) in Tyepug(P),
—incorrect(ry,) is true in all minimal models, and so B—incorrect(r,) must necessarily be-
long to all static expansions. Thus the addition of B—incorrect(r,) to clauses does not affect
the expansion. Similarly for the addition of the clauses with the body uncovered(A).

‘ Example 4.7. The translation Tyepuy(P) of the program in Example 4.6. is:

B-incorrect(ry) D (B-b D a) uncovered(a) D a
B-incorrect(ry) D (B-¢ D b) uncovered(b) D b
uncovered(c) D ¢

Missing and wrong solution declarations can easily be expressed in AEB:

e Stating that A is a missing solution of a program P simply means that, although A is
not a consequence of the program, the user believes in A. So, just add BA to Tyepuy(P).

e Stating that A is a wrong solution of a program P, means that, although A is a conse-
quence of the program, the user believes A is false. So, just add B—A to Tyepuy(P)-

Example 4.8. To state that c is a missing solution of the program in Example 4.6. simply
add Bc to Tyepug(P). Note that the resulting theory has no static expansions. Indeed, since
it does not offer any evidence for ¢, it yields B¢, resulting in a contradiction with Be.

In order to obtain the errors of the program, belief revision over the resulting theory is
required. The revisions of the theory identify the errors of the program. However, not
all beliefs should be considered for revision: only those for incorrect(.) or uncovered(.).
This effect can be achieved by adding, for all the other atoms, their corresponding belief
completion clauses.

Example 4.9. The theory:

B-uncovered(a) A Bincorrect(ry) D B-a
B-uncovered(b) A Bincorrect(ry) D B—b
B-uncovered(c) D B¢

B-uncovered(a) A Bb D B-a
B-uncovered(b) A Be D B-b

resulting from Tyepuy(P) plus Be and the belief completion clauses, has a single revision,
namely the one resulting from adding Possible(uncovered(c)) to the theory, stating that
possibly atom c is uncovered. In fact this corresponds to the only error in the program.
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Note that for debugging a logic program by using revision of AEB theories in this manner
there is no need for a complete description of the intended model. A description of the
detected symptoms is enough. This was the case in the example above, where nothing was
stated about either a or b. If extra symptoms are detected, they can be incrementslly added
to the theory in order to find additional errors of the program: ’

Example 4.10. If wrong solutions for both & and b become manifest, then we add to the
theory {B-a,B-b}. The revision of the resulting theory is obtained by the addition of
{Possible(uncovered(a)), Possible(incorrect(ry))}.

Note that T'U {Possible(incorrect(ry))} is no longer a revision. Indeed, since there is
no evidence for uncovered(b), all static expansion must have B-uncovered(b). Since Be
belongs to the theory, belief completion on b implies B-b (cf. the clauses shown in Example
4.9.). From B-b and the fact that there is no evidence for incorrect(r;) (i.e. the theory
yields B-incorrect(r,)) a follows, resulting, by virtue of the Consistency Axiom (D) and
necessitation (N), in a contradiction with B-a.

In the debugging of logic programs it might be useful to dismiss certain errors from the start.
This is an easy matter in AEB: it simply requires the addition of facts with the negation of
the corresponding error atoms:

Example 4.11. Consider the buggy program containing the single rule:

a — notb

where a is a wrong solution. Moreover, the user wants to dismiss from the start the possibility
of b being uncovered.

Finding the errors of the program can be done by revising the theory resulting from
Taebug(P) plus the belief completion clauses for a and b, and the facts B—a and —uncovered(b),
stating respectively that a is a wrong solution and that & is not uncovered:

B-incorrect(ri) AB-bDa B-a
uncovered(a) D a -wncovered(b)
uncovered(b) D b

B-uncovered(a) A Bincorrect(ry) D B-a B-uncovered(b) D B-b
B-uncovered(a) A BbD B-a

The only revision of T' is T'U { Possible(incorrect(ry))}.

Note that if —~uncovered(b) were not added, the theory would have two revisions, T U
{Possible(uncovered(b))} and T U {Possible(incorrect(r;))}, meaning that either some
clause for b is missing or that rule ry is incorrect.

5. Concluding Remarks

We have argued that common-sense reasoning requires that general non-monotonic reason-
ing formalisms pay due attention to the issue of revising sets of assumptions that lead to
contradiction.

We then went on to show how controlled revision of assumed beliefs can be naturally
formalized within the broad and flexible framework of the auto epistemic logic of beliefs
AEB. This logic encompasses other major general formalisms for non monotonic reasoning,
for which such belief revision mechanisms have not yet been defined.

Subsequently, we exemplified the usefulness of our belief revision approach by applying it
to the practical domains of model based diagnosis and debugging of normal logic programs,
showing how one can resolve, in a natural and declarative way and without using meta
linguistic devices, the issue of selective revision of beliefs. -

For future work, we leave the application of AEB to the debugging of more general logic
programs, and the debugging of AEB theories themselves.
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