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Abstract. Stable states in complex systems correspond to local minima on the associated potential energy surface. Transitions
between these local minima govern the dynamics of such systems. Precisely determining the transition pathways in complex
and high-dimensional systems is challenging because these transitions are rare events, and isolating the relevant species in
experiments is difficult. Most of the time, the system remains near a local minimum, with rare, large fluctuations leading to
transitions between minima. The probability of such transitions decreases exponentially with the height of the energy barrier,
making the system’s dynamics highly sensitive to the calculated energy barriers. This work aims to formulate the problem of
finding the minimum energy barrier between two stable states in the system’s state space as a cost-minimization problem. It
is proposed to solve this problem using reinforcement learning algorithms. The exploratory nature of reinforcement learning
agents enables efficient sampling and determination of the minimum energy barrier for transitions.

Keywords: Deep reinforcement learning, minimum energy pathways, reaction energy barrier, actor-critic algorithm

1. Introduction

There are multiple sequential decision-making processes that one comes across in the world, such as
control of robots, autonomous driving, and so on. Instead of constructing an algorithm from the bottom
up for an agent to solve these tasks, it would be much easier if one could specify the environment
and the state in which the task is considered solved and let the agent learn a policy that solves the
task [23,29]. Reinforcement learning attempts to address this problem. It is a hands-off approach that
provides a feature vector representing the environment and a reward for the actions the agent takes [39].
The objective of the agent is to learn the sequence of steps that maximizes the sum of returns. [38]

One widespread example of a sequential decision-making process in which reinforcement learning is
utilized is solving mazes [31,35]. The agent, a maze runner, selects a sequence of actions that might
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Fig. 1. Maze solving using reinforcement learning: (a) the agent is at a state at a particular time step, and takes an action to
reaches the next state (b). The agent records the reward obtained by taking the action in that state and (c) continues exploring
the environment. After a large number of interactions with the environment, the agent learns a policy (d) that maximizes the
rewards collected by the agent. The policy (d) gives the sequence of actions that the agent has to take from the initial state to
the final state so that it collects the maximum rewards in an episode.

have long-term consequences [45]. Since the consequences of immediate actions might be delayed, the
agent must evaluate the actions it chooses and learn to select actions that solve the maze. Particularly, in
the case of mazes, it might be relevant to sacrifice immediate rewards for possibly larger rewards in the
long term. This is the exploitation-exploration trade-off, where the agent has to learn to choose between
leveraging its current knowledge to maximize its current gains or further increasing its knowledge for
a potential larger reward in the long term, possibly at the expense of short-term rewards [7,36]. The
process of learning by an agent while solving a maze is illustrated in Fig. 1.

GridWorld is an environment for reinforcement learning that mimics a maze [39]. The agent is placed
at the start position in a maze with blocked cells, and the agent tries to reach a stop position with
the minimum number of steps possible. One might note an analogy of a maze runner with an agent
negotiating the potential energy landscape of a transition event for a system along the saddle point
with the minimum height. The start state and the stop state are energy minima on the potential energy
surface, separated by an energy barrier for the transition. The agent would have to perform a series
of perturbations to the system to take it from one minimum (the start state) to another (the end state)
through the located saddle point. In the case of a maze, the (often discrete) action changes the position
of the agent (by a fixed measure), but while locating minimum energy pathways, the physical problem
demands a continuous action space. However, as in the case of a maze, an action changes the variables
describing the system (be it physical coordinates or state variables) by a small measure.
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As in the maze-solving problem, the agent tries to identify the pathway with the minimum energy
barrier. If the number of steps is considered to be the cost incurred in a normal maze, then it is the
energy along the pathway that is the cost of the transition event. Reward maps can vary depending on
the maze considered, but in the original GridWorld problem, the agent was given a negative reward if the
action led to a wall cell, and a zero reward for all non-terminal states (a discount factor < 1 enforces the
minimum count of steps). In the case of locating trajectories with a low energy barrier, the agent should
be penalized if the action leads to a state with progressively higher energies (but not to an extent that it
hinders exploration). The exact reward map used is detailed later in Section 2.

A comparison is attempted in Fig. 2. A smooth potential energy surface is coarse-grained to construct
a maze, where all positions with a negative potential energy are shaded blue (possible move cells), while
those with a positive potential energy are shaded red (representing walls). The initial state in the maze
is marked yellow, while the final state is marked green. However, instead of classifying a grid cell of the
constructed maze either as a wall or as a cell, one can discretize the state space and assign an energy
value to a cell. An agent can then be trained to reach the final state starting from the initial state and
collect the maximum sum of rewards along its path (minimizing the energy along the pathways requires
assigning the negative of the energy as the reward for an action leading the agent to the cell). Since this
is an episodic problem, one already runs into the problem where the agent moves back and forth between
two adjacent cells, collecting rewards from each move in an attempt to maximize the sum of rewards
collected, rather than reaching the final state and terminating the episode. For this simple setting, the
problem is solved by rewarding the agent only the first time it visits a cell and terminating the episode
after a fixed number of steps (in this case, 15). The energy profile of the pathway followed by the agent
(inferred from the rewards collected in an episode) in this maze is plotted as the dashed green line in
Fig. 2b. As can be seen, coarse-graining the potential energy surface into an 8×8 maze and then solving
it using standard reinforcement learning algorithms provides a reasonable starting point to address the
problem.

The problem of locating the minimum energy barrier for a transition has applications in physical
phase transitions, synthesis plans for materials, activation energies for chemical reactions, and the con-
formational changes in biomolecules that lead to reactions inside cells. In most of these scenarios, the
dynamics are governed by the kinetics of the system (rather than the thermodynamics) because the ther-
mal energy of the system is much smaller than the energy barrier of the transition. This leads to the
system spending most of its time around the minima, and some random large fluctuations in the system
lead to a transition. This is precisely why transition events are rare and difficult to isolate and charac-
terize with experimental methods. Moreover, these ultra-fast techniques can be applied to only a limited
number of systems. Because transition events are rare, sampling them using Monte Carlo methods re-
quires long simulation times, making them inefficient [6]. To sample the regions of the potential energy
surface around the saddle point adequately, a large number of samples have to be drawn. Previous work
has been done to identify the saddle point and determine the height of the transition barrier—transition
path sampling [22], nudged elastic band [18], growing string method [21], to name a few—which use
ideas from gradient descent. However, even for comparatively simple reactions, these methods are not
always guaranteed to find the path with the energy barrier that is a global minimum because the initial
guess for the pathway might be wrong and lead to a local minimum.

With the advent of deep learning and the use of neural nets as function approximators for complex
mappings, there has been increased interest in the use of machine learning [37] to either guess the con-
figuration of the saddle point along the pathway (whose energy can then be determined by standard ab
initio methods) or directly determine the height of the energy barrier given the two endpoints of the
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Fig. 2. Estimating reaction barriers by modeling the potential energy surface as a maze: (a) the pathway with the lowest energy
barrier as determined by a growing string method on the potential energy surface with 9 intermediate images. (b) the reaction
profile, plotted as a solid blue line (interpolated to give a smooth curve) from the pathway determined by the growing string
method. The reaction barrier is marked as �E‡. Instead of the extreme binary classification of a grid cell as a wall or move as
in the maze (c), each cell can be assigned an energy value as in (d).

transition. Graph neural networks [43], generative adversarial networks [30], gated recurrent neural net-
works [8], transformers [28], machine-learned potentials [17,20], and so on, have been used to optimize
the pathway for such transitions.

Noting the superficial similarities between solving a maze and determining the transition pathway
with the lowest energy barrier, it is proposed to use standard and tested deep reinforcement learning
algorithms used to solve mazes in an attempt to solve the problem of finding minimum energy pathways.
The problem is formulated as a min-cost optimization problem in the state space of the system. An actor
function approximator suggests the action to be taken by the agent when it is in a particular state. A
critic function approximator provides an estimate of the sum of rewards until the end of the episode from
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the new state after taking the action suggested by the actor. Actor-critic based reinforcement learning
techniques have been shown to solve problems effectively, even in higher dimensions [48]. Neural nets
are used as the actor and critic function approximators, and a randomly perturbed policy is used to
facilitate exploration of the potential energy surface by the agent. Delayed policy updates and target
policy averaging are used to stabilize learning, especially during the first few epochs, which are crucial
to the optimal performance of the agent. This formulation is used to determine the barrier height of the
optimal pathway in the Müller-Brown potential.

Section 2 describes the methods used to formulate the problem as a Markov decision process and
the algorithm used to solve it. Section 3 elaborates on the experiments in which the formulated method
is used to determine the barrier height of a transition on the Müller-Brown potential. Section 4 con-
tains a short discussion of the work in the context of other similar studies, while Section 5 outlines the
conclusions drawn from this work.

2. Methods

To solve the problem of finding a pathway with the lowest energy barrier for a transition using rein-
forcement learning, one has to model it as a Markov decision process. Any Markov decision process
consists of (state, action, next state) tuples. In this case, the agent starts at the initial state (a local
minimum) and perturbs the system (action) to reach a new state. Since the initial state was an energy
minimum, the current state will have a higher energy. However, as in many sequential control problems,
the reward is delayed. A series of perturbations that lead to states with higher energies might enable
the agent to climb out of the local minimum into another one that contains the final state. By defining
a suitable reward function and allowing the agent to explore the potential energy surface, it is expected
that the agent will learn a path from the initial state to the final state that maximizes the rewards. If the
reward function is defined properly, it should correspond to the pathway with the lowest energy barrier
for the transition.

Once the problem is formulated as a Markov decision process, it can be solved by some reinforcement
learning algorithm. In most reinforcement learning algorithms, this (state, action, reward, next state,
next action) tuple is stored while the agent is learning. Twin Delayed Deep Deterministic Policy Gradient
(TD3) [11] is a good start because it prevents overestimation of the state value function, which often leads
the agent to exploit the errors in the value function and learn a suboptimal policy. Soft Actor Critic (SAC)
[15] tries to blend the deterministic policy gradient with a stochastic policy optimization, promoting
exploration by the agent. In practice, using a stochastic policy to tune exploration often accelerates the
agent’s learning.

2.1. Markov decision process

The Markov decision process is defined on:

• a state space S, consisting of states s ∈ R
d , where d is the dimensionality of the system, chosen to

be the number of degrees of freedom in the system.
• a continuous action space A, where each action �s ∈ R

d : |(�s)i | � 1 is normalized, and the
action is scaled using an appropriate scaling factor λ.

In a state s(k), the agent takes an action �s(k). Since the action is considered a perturbation of the current
state of the system, the next state s(k+1) is determined from the current state s(k) as s(k+1) = s(k)+λ·�s(k).
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To determine the minimum energy barrier for a transition, the reward for an action taking the agent
to state s(k+1) from state s(k) is chosen to be the negative of the energy of the next state, −E(s(k+1)).
The negation makes maximizing the sum of rewards collected by the reinforcement learning agent in an
episode equivalent to minimizing the sum of energies along the pathway for the transition. The reward
acts as immediate feedback to the agent for taking an action in a particular state. However, what is
important is the long-term reward, captured by the sum of the rewards over the entire episode, leading
the agent to identify a transition pathway with a low sum of energies at all intermediate steps.

Since both the state space and action space are continuous, an actor-critic based method, specifically
the soft actor-critic (SAC), is used. Additionally, since the state space is continuous, the episode is
deemed to have terminated when the difference between the current state and the target state is smaller
than some tolerance, x ∈ R

d : |x − xt | < δ for some small δ. Otherwise, it would be extremely unlikely
that the agent would land exactly at the coordinates of the final state after taking some action. An obvious
problem with this definition of the Markov process is that the agent may prefer to remain in a state near
the target state (but far enough so that the episode does not terminate), collecting rewards for the rest of
the episode. This behavior was observed in Section 3.

2.2. Algorithm

SAC, an off-policy learning algorithm with entropy regularization, is used to solve the formulated
Markov Decision process because the inherent stochasticity in its policy facilitates exploration by the
agent. Entropy regularization tries to balance maximizing the returns till the end of the episode with
randomness in the policy driving the agent. The algorithm learns a behavior policy πθ and two critic
Q-functions, which are neural networks with parameters φ1 and φ2 (line 1 of Algorithm 1).

The agent chooses an action a(k) ≡ �s(k) to take when at state s(k) following the policy πθ (line 8). Re-
turns from state s(k) when acting according to policy π is the discounted sum of rewards collected from
that step onward to the end of the episode: Rt = −∑T

i=t γ
i−t E(s(i)). The objective of the reinforcement

learning agent is to determine the policy π∗ that maximizes the returns Rt , for states s ∈ S. This is done
by defining a state-action value function, Q(s(i), a(i)), which gives an estimate of the expected returns
if the agent takes action a(i) when in state s(i): Q(s(i), a(i)) = E[Rt : st = s(i), at = a(i)]. Since the
objective is to maximize the sum of the returns, the action-value function can be recursively defined as

Q
(
s(i), a(i)

) = −E
(
s(i+1)

) + γ max
a(i+1)∈A

Q
(
s(i+1), a(i+1)

)

which is implemented in line 14 of Algorithm 1.
A replay buffer with a sufficiently large capacity is employed to increase the probability that indepen-

dent and identically distributed samples are used to update the actor and two critic networks. The replay
buffer (in line 3) is modeled as a deque where the first samples to be enqueued (which are the oldest) are
also dequeued first, once the replay buffer has reached its capacity and new samples have to be added.
Since an off-policy algorithm is used, the critic net parameters are updated by sampling a mini-batch
from the replay buffer at each update step (line 13). Stochastic gradient descent is used to train the actor
and the two critic nets.

The entropy coefficient α is adjusted over the course of training to encourage the agent to explore
more when required and to exploit its knowledge at other times (line 18) [16]. However, some elements
from the TD3 algorithm [11] are borrowed to improve the learning of the agent, namely delayed policy
updates and target policy smoothing. Due to the delayed policy updates, the critic Q-nets are updated
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Algorithm 1 Computing minimum energy barrier using SAC in environment env

more frequently than the actor and the target Q-nets to allow the critic to learn faster and provide more
precise estimates of the returns from the current state. To address the problem of instability in learning,
especially in the first few episodes while training the agent, target critic nets are used. Initially, the
critic nets are duplicated (line 2), and subsequently soft updates of these target nets are carried out after
an interval of a certain number of steps (line 19). This provides more precise estimates for the state-
action value function while computing the returns for a particular state in line 14. Adding noise to input
during the training of a machine learning model often leads to improved performance because it acts as
an L2-regularizer [5] and prevents the model from memorizing patterns in the training data sample in
supervised learning scenarios. Similarly, TD3 adds noise to the action predicted by the actor network to
smooth out the Q-function, so that the agent does not memorize the imprecise estimates of the Q-function
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Table 1

Parameters used while training the RL agen

Parameter Value
Qφ(s, a) network architecture 4-256-256-1

activation for hidden layer relu
activation for output layer none
learning rate 10−4

πθ (s) network architecture 2-256-256-2
activation for hidden layer relu
activation for output layer none
learning rate 10−4

Agent τ or Polyak averaging parameter 0.005
γ or discount factor 1 − 10−2

λ or scaling factor for actions 0.01
optimizer Adam
replay buffer R capacity 104

minibatch size for update 128
maximum steps per episode 500
number of training epochs 10000

SAC specific initial α or entropy coefficient 0.5
α value variable
learning rate for α 10−4

TD3 specific target update delay interval 8 steps
actor noise standard deviation 0.4
actor noise clip 1.0

early on during the training process. This prevents the policy from exploiting the imprecise estimates
of the Q-function approximator for certain actions, reducing the chances of learning a brittle policy that
does not generalize well. The logic is that, for well-behaved, smooth reward maps, the reward should not
abruptly change with small differences in the action. The addition of clipped noise to the action chosen
by the actor net (in line 9) also encourages the agent to explore the potential energy surface. The changes
to the SAC algorithm, borrowed from TD3, are highlighted in blue in the pseudocode of Algorithm 1.
The parameters used in the particular implementation of the algorithm are listed in Table 1.

3. Experiments

The proposed algorithm is applied to determine the pathway with the minimum energy barrier on
the Müller–Brown potential energy surface [33]. The Müller–Brown potential has been used to bench-
mark the performance of several algorithms that determine the minimum energy pathways, such as the
molecular growing string method [12], Gaussian process regression for nudged elastic bands [25], and
accelerated molecular dynamics [42]. Therefore, it is also used in this work to demonstrate the applica-
bility of the proposed method. A custom Gym environment [40] was created following the gymnasium
interface (inheriting from the class Gym) to model the problem as a Markov Decision Process to be
solved by a reinforcement learning pipeline. The values for the parameters used in Algorithm 1 are listed
in Table 1.
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Fig. 3. The environment in which the agent learns to find the path with the minimum energy barrier.

Fig. 4. Scatter plot of the regions visited by the reinforcement learning agent during the course of learning while using different
algorithms.

3.1. Results

The Müller–Brown potential is characterized by the following potential:

V (x, y) =
3∑

i=0

Wi · exp
[
ai(x − xi)

2 + bi(x − xi)(y − yi) + ci(y − yi)
2
]

(1)

where W = (−200, −100, −170, 15), a = (−1, −1, −6.5, 0.7), b = (0, 0, 11, 0.6), c =
(−10, −10, −6.5, 0.7), x = (1, 0, −0.5, −1), and y = (0, 0.5, 1.5, 1). The potential energy surface
for the system is plotted in Fig. 3a, and the coordinates of the local minima and saddle points for the
potential energy surface and their corresponding energies are tabulated in Table 3b. The RL agent was
trained to locate a path on this surface from S (0.623, 0.028) with an initial random step (with zero mean
and a standard deviation of 0.1) taken as the starting state to T (−0.558, 1.442) as the terminal state, with
the minimum energy barrier. The first random step was chosen to avoid the same starting point in each
training iteration of the agent, so it learns a more generalized policy. Some of the parameters for the
Markov Decision Process to model this potential are given in Table 3c.
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Fig. 5. (a) The learning curve for the agent in the reinforcement learning environment. (b) The plot of the variation of the least
reward collect by the agent in a step with the validation episode count. (c) Trajectories generated by the trained agent following
the learnt policy along with the corresponding energy profiles (d).

3.1.1. Comparison of different algorithms
Figure 4 shows scatter plots of the trajectories generated by various reinforcement learning algorithms:

TD3 in Fig. 4a, SAC in Fig. 4b, and the proposed modified SAC algorithm in Fig. 4c. While the agent
trained by the TD3 algorithm does reach the intended target state, it starts to exploit a flaw in the formu-
lation of the MDP by trying to reach the vicinity of the final state quickly and staying near enough to it so
that it collects rewards, but does not terminate the episode. This results in a high density in the plot along
the straight line connecting the initial and final states and around the final state. It gives a much higher
estimate than the correct minimum energy barrier for the transition. The agent trained using SAC shows
improved performance, possibly due to the entropy regularizer forcing it to learn a more diverse policy
(rather than one that would result in a straight line connecting the initial and final states). However, while
generating trajectories in the testing environment, most of the trajectories did not leave the local minima
in the vicinity of the start state. Moreover, the learned policy has high variance. The proposed Algo-
rithm 1 learns a much more stable policy and confines itself to exploring the region with lower energies
leading to the terminal state (specifically the vicinity of the saddle point) rather than the entire environ-
ment. It explores sufficiently and then exploits the state-action values learned appropriately, providing
better estimates of the energy barrier for the transition.

The learning curve for the agent under Algorithm 1 is shown in Fig. 5a. The data for this curve were
generated by allowing the agent to solve the MDP in evaluation mode once every 10 training episodes,
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where the neural networks were not updated to monitor the agent’s learning. The ascending learning
curve indicates that the agent gradually learns to find a path to the terminal state that maximizes the
rewards. The blue line represents the median reward, while the green line shows the mean reward over
11 training iterations, each consisting of 10 × 1000 training episodes. The light blue shaded region de-
notes the spread of the rewards (maximum and minimum). A low spread in rewards indicates consistent
performance by the reinforcement learning agent in the validation episodes.

3.1.2. Performance of the trained agent
In Fig. 5c, an ensemble of paths generated by the trained RL agent is plotted on the surface of the

potential energy, with the starting points slightly perturbed from (0.623, 0.028) by noise added from
N (0, 0.1) on the surface of the potential energy. The model used to generate these trajectories was
the model at the 500th validation step (and not after the entire training consisting of 1000 validation
steps) for reasons elaborated later. It can be seen from Fig. 5c that the agent spends more time near
the terminal state rather than reaching the terminal state to receive an immediate reward, as it allows
the agent to collect rewards for more steps. In the case of a coarse-grained maze representation of the
potential energy surface, this problem was solved by rewarding the agent only the first time it visited
a grid cell. Using a similar idea of not rewarding the agent when it is in the close neighborhood of
an already visited state artificially perturbs the reward map and did not work in this case. The best
performance was achieved by gradually varying the maximum number of steps the agent was allowed to
take in an episode. If the number of steps allowed in an episode is too short, the agent does not escape
the local minima to reach the terminal state. If the number of steps is too large, then the agent reaches
the terminal state and discovers that it receives larger rewards by remaining in its vicinity, but not so
close that the episode is terminated. In an attempt to reach the terminal state earlier, the agent tries to
approach the terminal state sooner, choosing a more direct pathway, which lifts the trajectory out of the
saddle point. It was observed that a maximum of 500 steps per episode led to the best performance by
the agent. The agent did not leave the local minima if fewer steps were allowed (200 steps), and the
agent passed through states with much higher energies than optimal to reach a minimum energy state if
longer episodes were allowed (1000 steps).

Early stopping during the training of a neural network has often been found to be helpful in scenarios
where continued training worsens the performance of the model [1,34]. Borrowing the idea of early stop-
ping, the agent’s training was stopped when the minimum reward collected by the agent (corresponding
to the maximum energy along the pathway) started increasing again. This behavior was observed in the
case of the agent, as plotted in Fig. 5b. The minimum reward collected by the agent during the episode
increases initially (indicating that the agent finds a pathway with a progressively better energy barrier)
until the 500th validation step before decreasing slightly. Plots for only 4 of the 11 trials are shown for
clarity. This might indicate that the agent does not improve its performance after that step. Furthermore,
the learning curve in Fig. 5a shows an increase in spread after 500 iterations. These reasons led to using
the model after 500 iterations to generate the final trajectory in test mode to estimate the energy barrier
for the reaction. The energy profiles along the generated trajectories are plotted in Fig. 5d aligned by
the maximum of the profiles (and not by the start of the trajectories) for better visualization. The en-
ergy barrier predicted for the transition of interest is −40.36 ± 0.21. One can see that the agent learns
to predict the path with the correct minimum energy barrier, albeit the energy barrier estimated by the
agent is a little higher than the optimal analytical solution (−40.665). However, the result demonstrates
that reinforcement learning algorithms can be used to locate the minimum energy barrier for transitions
between stable states in complex systems. The paths suggested by the trained agent cluster around the
minimum energy path and pass through the vicinity of the actual saddle point that represents the energy
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barrier. However, there still seems to be some way to go to improve the sampling densities around the
saddle point, which determines the barrier height, to avoid overestimating it.

3.1.3. On the choice of the scaling factor
The scaling factor, λ, scales the action for the agent. In most cases, it is used to adjust the step size for

the agent while keeping the action space within some standard interval ([0, 1] or [−1, 1]). This scaling
factor was varied along with the number of steps in an episode, and the combination of 0.01 for the λ and
500 steps in an episode led to the best performance of the agent. With these parameters, the agent reaches
near the terminal state with just the number of required small enough steps to end the episode. A larger
value of λ resulted in the agent taking longer steps over regions of the potential energy surface with a
higher energy to give an incorrect estimate of the barrier height. Smaller values of λ led to smaller steps,
and the agent did not leave the local minima to explore other regions of the potential energy surface, and
is unsuccessful a its assigned task.

As noted at the end of Section 2.1, the formulated Markov decision process suffers from the drawback
that agent might stay at a small distance ε(> δ) from that target state, and collect rewards until the
remainder of the episode. To discourage the agent from doing this, the episode is truncated after 500
steps. Increasing the number of steps in the episode would encourage the agent to stay a small distance
away from the target state, rather than reaching the target state and terminating the episode, once it
realizes that it can increase the total reward collected by this. On the other hand, if the number of steps
in an episode is too small, it would not reach near the target state. The choice of the scaling factor λ is
related to the number of steps in an episode. Together, they determine the maximum distance from the
start state the agent can reach. If both λ and the number of steps in an episode is decreased below a limit,
the agent would never be able to reach the target state .2 With an appropriate choice of λ and the length
of the episode, the agent does not make too many long jumps through higher energy states to reach a
state with lower energy faster. Decreasing λ would require increasing the maximum number of steps in
an episode, so that the agent explores regions away from the starting point, but not too much so that the
trajectory passes through regions with higher energy. A few experiments were done to determine the pair
of the values for λ and the number of steps in an episode which gives the best performance by the agent,
and the results are plotted in Appendix 5.

3.2. Ablation studies

Several modifications were made to the standard SAC algorithm to be used in this particular case
(highlighted in blue in Algorithm 1). Studies were performed to understand the contribution of each
individual component to the working of the algorithm in this particular environment by comparing the
performance of the algorithm with different hyperparameters for a component. The parameters for one
modification were varied, keeping the parameters for the other two modifications unchanged from the
fine-tuned algorithm. Each modification and its contribution to the overall learning of the agent are
described in the following sections. The mean and the standard deviation of the returns from the last
100 training steps for each modification of the existing algorithm are listed in Table 6a to compare the
performance of the agents. The modification that leads to the highest returns is highlighted.

2For example, if the maximum number of steps for the maze in Fig. 2 is limited to 5, then the agent can never reach the
terminal state. As an analogy, decreasing the cell size, resulting in increasing the number of cells in the maze, would be
equivalent to decreasing λ in the current case.
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Fig. 6. Effect of the various modifications to the SAC algorithm on the learning of the agent.

3.2.1. Target policy smoothing
Injecting random noise (with a standard deviation σ ) into the action used in the environment (in line

9 of Algorithm 1) encourages the agent to explore, while adding noise to the actions used to calculate
the targets (in line 14 of Algorithm 1) acts as a regularizer, forcing the agent to generalize over similar
actions. In the early stages of training, the critic Q-nets can assign inaccurate values to some state-action
pairs, and the addition of noise prevents the actor from rote learning these actions based on incorrect
feedback. On the other hand, to avoid the actor taking a too random action, the action is clipped by some
maximum value for the noise (as done in lines 9 and 14 of Algorithm 1). The effect of adding noise to
spread the state-action value over a range of actions is plotted in Fig. 6b. Adding noise leads to the agent
learning a policy with less variance in the early learning stages and a more consistent performance.

3.2.2. Delayed policy updates
Delaying the updates for the actor nets and the target Q-nets (in lines 17 and 19 of Algorithm 1)

allows the critic Q-nets to update more frequently and learn at a faster rate, so that they can provide a
reasonable estimate of the value for a state-action pair before it is used to guide the policy learned by
the actor net. The parameters of the critic Q-nets might often change abruptly early on while learning,
undoing whatever the agent had learned (catastrophic failure). Therefore, delayed updates of the actor
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net allow it to use more stable state-action values from the critic nets to guide the policy learned by it. The
effect of varying intervals of delay for the actor update on the learning of the agent is plotted in Fig. 6c.
Updating the actor net for every update of the critic nets led to a policy with a high variance (blue plot).
Delaying the update of the actor net to once every 2 updates of the critic resulted in the agent learning
a policy that provided higher returns but still had a high variance (green plot). Delaying the update of
the actor further (once every 4 and 8 updates of the critic net plotted as the red and magenta curves,
respectively) further improved the performance of the agent. One can notice the lower variance in the
policy of the agent during the early stages (first 200 episodes of the magenta curve) for the agent which
updates the actor net and target critic nets once every 8 updates of the critic nets. However, delaying
the updates for too long intervals would cripple the learning of the actor. The performance of the agent
suffers when the update of the actor is delayed to once every 16 updates of the critic nets (yellow curve)
and the agent fails to learn when the update of the actor net is further delayed to once every 32 updates
of the critic nets (cyan curve).

3.2.3. Tuning the entropy coefficient
The entropy coefficient α can be tuned as the agent learns (as done in line 18 of Algorithm 1), which

overcomes the problem of finding the optimal value for the hyperparameter α [16]. Moreover, simply
fixing α to a single value might lead to a poor solution because the agent learns a policy over time: it
should still explore regions where it has not learned the optimal action, but the policy should not change
much in regions already explored by the agent that have higher returns. In Fig. 6d, the effect of the
variation of the hyperparameter α on the learning of the agent is compared. As can be seen, a tunable α

allows the agent to learn steadily, encouraging it to explore more in the earlier episodes and exploiting
the returns from these explored regions in the latter episodes, resulting in a more stable learning curve
(blue curve). A too low value of α, such as 10−3 or 10−2, makes the algorithm more deterministic (TD3-
like), which leads to suboptimal performance and the agent being stuck in a local minimum (plotted as
green and red curves, respectively). An α value of 0.1 has a performance comparable to the tunable α,
but the learning curve is less stable and there are abrupt changes in the policy function (magenta curve).
The original implementation of SAC suggested 0.2 as a fixed value for α, which leads to a learning curve
that results in a policy with high variance (yellow curve). A too high value of α, such as 0.5, makes the
algorithm more stochastic (REINFORCE-like), which also leads to suboptimal learning (cyan curve).

3.3. Some more surfaces

Here we demonstrate the results by an agent trained by Algorithm 1 on some more two-dimensional
potential energy surfaces with two potential wells.

V (x, y) = (x − 1)4 + (y − 1)4 + (x + 1)4 + (y + 1)4 − 20(x − y)2 + 60x (2)

V (x, y) = [
y − 0.4

(
x2 − 4x

)]2 − x2 + 0.1
(
x4 + y4

) + 0.5x (3)

V (x, y) =
[(

1 − x2 − y2
)2 + y2

x2 + y2

](
1 + 1

1 + e−y

)
(4)

While the potential energy surfaces represented by Equation (4) was taken from [10], those represented
by Equation (2) and Equation (3) were crafted by hand. The results of using the proposed Algorithm 1 on
these potential energy surfaces are depicted in Fig. 7. The left column shows the trajectories generated
by the agent after training between the two minima on the potential energy surface. The central column
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Fig. 7. Results on using the proposed algorithm on the potential energy surfaces depicted by (a) equation (2) and (b) equation
(3).

plots the learning curves of the agent, with the mean cumulative sum of returns plotted as a green line.
The spread of the sum of the returns is shaded in blue, while the rolling mean is represented as a solid
blue line. The right column shows the energy profiles of the generated trajectories. The estimated energy
barrier for the transition on the potential energy surface given by Equation (2) was −5.575 while that
for the potential energy surface given by Equation (3) was 0.94.

4. Discussions

Previous work in determining transition pathways using deep learning or reinforcement learning tech-
niques includes formulating the problem as a shooting game solved using deep reinforcement learning
[47]. The authors in [47] sample higher energy configurations and shoot trajectories with randomized
initial momenta in opposite directions, expecting them to converge at the two desired local minima. In
contrast, the method proposed here starts from a minimum on the potential energy surface and attempts to
generate a trajectory to another minimum. Additionally, in [19], the problem is formulated as a stochas-
tic optimal control problem, where neural network policies learn a controlled and optimized stochastic
process to sample the transition pathway using machine learning techniques. Stochastic diffusion mod-
els have also been used to model elementary reactions and generate the structure of the transition state,
preserving the required physical symmetries in the process [9]. Furthermore, the problem of finding
transition pathways was recast into a finite-time horizon control optimization problem using the varia-
tional principle and solved using reinforcement learning in [14]. Moreover, a hybrid-DDPG algorithm
was implemented in [32] to identify the global minimum on the Müller–Brown potential, but did not
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identify pathways between minima as in this work. Recent work [2] used an actor-critic reinforcement
learning framework to optimize molecular structures and calculate minimum energy pathways for two
reactions.

There has also been previous work [49] to optimize chemical reactions by perturbing the experimental
conditions to achieve better selectivity, purity, or cost for the reaction using deep reinforcement learning.
While this approach has macroscopic applications in laboratory settings, the method proposed here fo-
cuses on a much narrower problem: given a potential energy surface, how well can the minimum energy
barrier be estimated for a transition between two minima? Deep reinforcement learning has also been
used to find a minimum energy pathway consisting of multiple elementary transitions in catalytic reac-
tion networks [26]. While the free energy barrier for a transition (which is mapped to a reward) between
two states is calculated using density functional theory (DFT) with VASP software in [26,27], the ob-
jective of the proposed method in this work is to estimate that free energy barrier using an agent trained
via deep reinforcement learning, which does not require quantum mechanical calculations. In addition,
reinforcement learning techniques are implemented in [46] to minimize the cost of synthesis pathways
(consisting of multiple elementary transitions) considering the price of the starting molecules and the
atom economy of individual transitions. Furthermore, a reinforcement learning approach is used in [24]
to search for process routes that optimize economic profit for a Markov decision process that models the
thermodynamic state space as a graph.

5. Conclusion

Advancements in reinforcement learning algorithms based on the state-action value function have
led to their application in diverse sequential control tasks such as Atari games, autonomous driving,
robot movement control, and more physical domains [3,4,13,44]. This project formulated the problem
of finding the minimum energy barrier for a transition between two local minima as a cost minimization
problem, solved using a reinforcement learning setup with neural networks as function approximators for
the actor and critics. A stochastic policy was employed to facilitate the exploration by the agent, further
perturbed by random noise. Target networks, delayed updates of the actor, and a replay buffer were used
to stabilize the learning process for the reinforcement learning agent. While the proposed framework
samples the region around the saddle point sufficiently, providing a good estimate of the energy barrier
for the transition, there is definitely scope for improvement. The method has been applied only to a two-
dimensional system, but as a future work, it could be extended to more realistic and higher-dimensional
systems. One promising alternative would be to use max-reward reinforcement learning [41], as it aligns
well with the objective of maximizing the minimum reward obtained in an episode. However, a drawback
of this method is that the reinforcement learning agent must be trained from scratch if one needs to find
minimum energy pathways on a different potential energy surface. In other words, an agent trained on
one potential energy surface cannot be used to determine the minimum energy barrier on a different
surface, similar to how an agent trained in one Gymnasium environment cannot solve tasks in another.
Another limitation is that the agent can only locate pathways to minima lower than the starting minimum;
otherwise, remaining at the starting position minimum would yield higher rewards for the agent.

This work differs from previous work that uses reinforcement learning [2,14,19,47] by providing
a much simpler formulation of the problem, using the energy of the state directly as the reward while
searching for transition pathways with the minimum energy barrier. One of the main advantages of using
a reinforcement learning based method is that, unlike traditional methods such as the nudged elastic band
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Fig. 8. (a) Three possible pathways on a potential energy surface given by equation (4) passing though different saddle points
and (b) the energy profile for the three possible transition pathways.

or the growing string method, it does not require an initial guess for the trajectory. Traditional methods
use energy gradient information along the trajectory to iteratively improve to a trajectory with better
energetics. However, the success of these methods depends on the initial guess for the trajectory, and
gradient-based methods might get stuck in a local minimum. As shown on the potential energy surface
represented by Equation (4) in Fig. 8, there may be multiple saddle points between two minima. The
trajectory to which a nudged elastic band or a growing string method converges depends on the initial
guess of the starting trajectory. Typically, the initial guess trajectory is a simple linear interpolation
between the starting and ending points, which leads to the dotted trajectory (path 2 with a barrier of
1.50 units). Traditional gradient-based methods report this trajectory as the optimal one because the
local gradients along the trajectory are minimal and cannot be improved by perturbation. However,
the reinforcement learning-based method proposed in this work identifies the trajectory represented
by a solid line (Path 3 with a barrier of 1.27 units) as the minimum energy pathway. The suboptimal
solution overestimates the energy barrier for the transition by (150 − 127)/127 or 18%, and therefore
underestimates the frequency with which it occurs by 1 − e−1.50−(−1.27) = 20%. Underestimates of the
probability for a transition to occur would lead to imperfect modeling of the dynamics of the system. The
use of a stochastic policy in a reinforcement learning setup avoids this problem, increasing the chances
of finding a better estimate of the transition barrier as the agent explores the state space. However, as a
trade-off for the simple model and generic approach, the agent learns slowly, requires a large number of
environment interactions, and would have to be retrained to work in a new potential energy surface.
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Fig. 9. Comparative scatter plots of the regions visited by the agent with different values for λ and n.

Appendix. Additional heatmap plots

A few experiments by varying the scaling factor for the action, λ, and the number of steps in an
episode, n, were performed. The regions of the potential energy surface explored by the agent under
those conditions are plotted in Fig. 9. With a small value for λ, the agent does not climb out of the local
minima containing the initial state (Fig. 9(a)), while with a large value for λ, the agent jumps over high
energy regions of the potential energy surface in the bid to reach a low energy state faster (Fig. 9(f)),
giving an incorrect estimate of the energy barrier for the transition.
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