
Data Science 6 (2023) 17–44 17
DOI 10.3233/DS-220058
IOS Press

DWAEF: a deep weighted average ensemble
framework harnessing novel indicators for
sarcasm detection1

Richa Sharma a,∗, Simrat Deol b, Udit Kaushish c, Prakher Pandey d and Vishal Maurya e

a Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: richasharma@keshav.du.ac.in; ORCID: https://orcid.org/0000-0002-4472-1681
b Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: simrat205711@keshav.du.ac.in; ORCID: https://orcid.org/0000-0002-6785-9691
c Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: udit205805@keshav.du.ac.in; ORCID: https://orcid.org/0000-0003-0636-4000
d Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: prakher205723@keshav.du.ac.in; ORCID: https://orcid.org/0000-0002-3340-8112
e Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: vishal205750@keshav.du.ac.in; ORCID: https://orcid.org/0000-0002-5169-209X

Editors: Jodi Schneider (https://orcid.org/0000-0002-5098-5667); Tobias Kuhn (https://orcid.org/0000-0002-1267-0234)
Solicited reviews: Rasim Çekik (https://orcid.org/0000-0002-7820-413X); Alessandra Teresa
(https://orcid.org/0000-0002-4409-6679); Kyle Gorman (https://orcid.org/0000-0002-4233-6595); one anonymous reviewer

Received 31 December 2022
Accepted 17 May 2023

Abstract. Sarcasm is a linguistic phenomenon often indicating a disparity between literal and inferred meanings. Due to its
complexity, it is typically difficult to discern it within an online text message. Consequently, in recent years sarcasm detection
has received considerable attention from both academia and industry. Nevertheless, the majority of current approaches simply
model low-level indicators of sarcasm in various machine learning algorithms. This paper aims to present sarcasm in a new light
by utilizing novel indicators in a deep weighted average ensemble-based framework (DWAEF). The novel indicators pertain
to exploiting the presence of simile and metaphor in text and detecting the subtle shift in tone at a sentence’s structural level.
A graph neural network (GNN) structure is implemented to detect the presence of simile, bidirectional encoder representations
from transformers (BERT) embeddings are exploited to detect metaphorical instances and fuzzy logic is employed to account
for the shift of tone. To account for the existence of sarcasm, the DWAEF integrates the inputs from the novel indicators. The
performance of the framework is evaluated on a self-curated dataset of online text messages. A comparative report between the
results acquired using primitive features and those obtained using a combination of primitive features and proposed indicators
is provided. The highest accuracy of 92% was achieved after applying DWAEF, the proposed framework which combines the

1As RDF/nanopublications: https://w3id.org/kpxl/ios/ds/np/RA-dyreKi5fk6sXgmxTZn9rBzRmU9azGEiLTRhvXfqw5M.
*Corresponding author. E-mail: richasharma@keshav.du.ac.in.

2451-8484 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:richasharma@keshav.du.ac.in
https://orcid.org/0000-0002-4472-1681
mailto:simrat205711@keshav.du.ac.in
https://orcid.org/0000-0002-6785-9691
mailto:udit205805@keshav.du.ac.in
https://orcid.org/0000-0003-0636-4000
mailto:prakher205723@keshav.du.ac.in
https://orcid.org/0000-0002-3340-8112
mailto:vishal205750@keshav.du.ac.in
https://orcid.org/0000-0002-5169-209X
https://orcid.org/0000-0002-5098-5667
https://orcid.org/0000-0002-1267-0234
https://orcid.org/0000-0002-7820-413X
https://orcid.org/0000-0002-4409-6679
https://orcid.org/0000-0002-4233-6595
https://w3id.org/kpxl/ios/ds/np/RA-dyreKi5fk6sXgmxTZn9rBzRmU9azGEiLTRhvXfqw5M
mailto:richasharma@keshav.du.ac.in
https://creativecommons.org/licenses/by/4.0/


18 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

primitive features and novel indicators together as compared to 78.58% obtained using Support Vector Machine (SVM) which
was the lowest among all classifiers.

Keywords: Sarcasm detection, deep ensemble learning, weighted average ensemble model, graph neural networks, BERT, fuzzy
logic

1. Introduction

Natural languages have evolved gracefully over time all around the globe. Various nuances of a lan-
guage allow humans to put forth their views on myriad topics with ease and creativity. The use of
figurative language by native speakers is one such medium of expressing opinions [36]. Sarcasm, inter-
laced with irony and wit, affords both sharpness and subtlety to convey contempt. Automatic detection
of sarcasm in text is one of the critical challenges faced by researchers in the field of sentiment analysis.
Sensing the negative connotation in a sentence containing positive words is required to detect sarcasm
in an effective manner. Moreover, sarcasm is closely tied to linguistic and cultural norms and practices,
and its use can vary significantly between different languages and cultures. While sarcasm has clear
definitions in the literature, its interpretation may be greatly affected by the cultural background and
contextual knowledge of the reader [7,14]. Sarcasm can be considered rude or disrespectful in some
cultures while being accepted as a form of humour in others. Primitive computational models developed
for sarcasm detection made use of primitive features such as n-grams, punctuation and intensifiers and
exploited machine learning algorithms for classification purposes.

To identify sarcasm in text in an automated manner, the present study proposes a deep weighted av-
erage ensemble-based framework (DWAEF). The proposed framework makes use of three indicators to
produce competent results. These indications concern utilising the presence of simile and metaphor in
text and identifying small shifts in tone between the constituent clauses of a sentence. The framework
leverages deep learning components, namely graph neural network (GNN) [16] and bidirectional en-
coder representations from transformers (BERT) [11] based embeddings to detect simile and metaphor
respectively and fuzzy logic [48] to apprehend polarity shifts between the constituent clauses of a sen-
tence. Finally, the outputs of the three components are provided to DWAEF, an ensemble structure
comprising attentive interpretable tabular learning (TabNet) [2], one-dimensional convolutional neu-
ral networks (1-D CNN) and multilayer perceptron (MLP) based learners. The results obtained using
the ensemble method are thoroughly compared with results obtained using only the base learners. With
the accuracy of 92.01% achieved by DWAEF, the proposed ensemble-based approach surpasses the re-
sults obtained based on the usage of primitive features only. The main contributions of this study are
summarized below:

(1) Leveraging key linguistic features, namely- simile, metaphor and constituent clauses of a sentence
for sarcasm detection that, to the best of the authors’ knowledge, have not yet been used together
for this purpose

(2) Implementing GNN in the framework to detect the presence of simile in a text on the basis of a
sentence’s dependency tree

(3) Exploiting BERT embeddings to detect the presence of metaphor in a text
(4) Capturing the shift in polarity of a sentence’s constituent clauses using fuzzy-logic
(5) Harnessing ensemble structure of various deep learning algorithms for facilitating sarcasm classi-

fication tasks.



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 19

The rest of the paper is organized as follows. Section 2 discussed the earlier research done in the field of
sarcasm detection. Section 3 puts forth the motivation behind the proposed study. Section 4 presents and
describes the proposed methodology. Section 5 describes the experiments and gives a detailed analysis
of the results obtained. Section 6 concludes the paper.

2. Related work

Detection of sarcasm is a challenge for humans and for machines, even more so. As a result, it has
gained popularity in many natural language processing (NLP) applications such as social media anal-
ysis, sentiment analysis and customer service [42]. The study in [3] contended that sarcasm is distinct
from other forms of figurative language and contributed to the understanding of the linguistic and cogni-
tive processes underlying sarcasm. An extensive survey of the literature brought to light that researchers
have mainly employed machine learning techniques to a variety of features, including lexical, syntactic,
and semantic features for detecting sarcasm. The common form of sarcasm consists of a positive senti-
ment situation followed by a negative sentiment situation. The study in [43] discussed an algorithm that
automatically learns positive and negative sentiment phrases from sarcastic tweets. While the approach
was innovative and showed promising results, there were several potential drawbacks to this method
related to limited applicability, lack of context sensitivity and limited evaluations. In [44] authors sur-
veyed several machine learning algorithms to classify the sarcastic tweets and found that a combination
of Support Vector Machine (SVM) and convolutional neural network (CNN) resulted in higher predic-
tion accuracy. The review also covered various aspects of sarcasm detection, including datasets used,
machine learning algorithms employed, feature selection and evaluation metrics. The authors found that
while there was a growing interest in using machine learning algorithms for sarcasm detection in Twitter,
the field still faced several challenges, such as the lack of annotated data and the difficulty of detecting
sarcasm in short, informal messages. Researchers in [9] applied K-Nearest Neighbours (KNN), Random
Forest (RF), SVM and max entropy techniques on the following features- sentiment related, syntactic
and semantic, punctuation-related and pattern-related. Their approach relied heavily on pre-defined pat-
terns, which failed to cover all instances of sarcasm on Twitter. New patterns might need to be added or
existing patterns might need to be modified as language and culture evolve over time.

In [17], the researchers harvested sarcastic tweets with the help of hashtags such as #not, #sarcasm
and divided them into tweets containing user mentions and tweets that do not. A trained machine learn-
ing classifier, Winnow2 [24] was then employed to segregate tweets aimed at specific users from those
that were not. This study focused on a specific type of social media messaging, which might not have
been representative of all types of social media discourse. The linguistic markers identified in this study
might not have been applicable to other types of messages or platforms. Additionally, the research relied
on a limited dataset of social media messages, potentially introducing bias in the analysis and limiting
the generalizability of the results. In [4], the researchers included extra-linguistic information and em-
ployed binary logistic regression with l2 regularization and achieved a gain in accuracy as compared
to purely linguistic features in sarcasm detection. The paper relied heavily on contextual information.
While the approach had some strengths, such as the use of advanced machine learning techniques, it also
had potential drawbacks, including limited evaluation, over-reliance on context, complexity and limited
generalizability. In [27], authors used unigrams, bigrams and trigrams to create more general sarcasm
indicators. However, since their bootstrapping approach relied on the performance of existing classifiers,
it might not prove to be optimal for sarcasm and nastiness detection. If the initial classifier is not accu-
rate, the bootstrapping approach might not improve its performance significantly. The authors of [32]



20 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

presented a case study on the identification of nonliteral language, specifically sarcasm, in social me-
dia. The authors analyzed different approaches to detecting sarcasm in Twitter data, including sentiment
analysis, rule-based techniques and machine learning. They found that a combination of these methods
was the most effective in identifying sarcasm and that the accuracy of the detection was influenced by the
context and topic of the conversation. This study’s limitations include its Twitter-specific focus, limited
scope regarding context and lack of comprehensive analysis regarding different factors that may affect
sarcasm detection, such as user demographics.

In recent years there has also been a shift towards using neural networks due to their superior perfor-
mance in a variety of machine learning tasks. Other machine learning techniques, such as Decision Trees
or SVM, have limitations in their ability to handle complex and high-dimensional data, such as language
data and may require extensive feature engineering. Neural networks excel at recognizing and identify-
ing patterns in large and complex datasets, including language data. By training on a sizeable dataset of
sarcastic and non-sarcastic language, neural networks can detect the distinct features of sarcasm, such
as negation, exaggeration and tone of voice. Therefore, they are an ideal tool for sarcasm detection, as
they can learn from vast amounts of data and identify subtle patterns that other machine learning algo-
rithms may struggle to recognize. Researchers in recent studies have employed various neural network
techniques such as CNN and long short-term memory (LSTM) along with different word embeddings
namely, Word2Vec, FastText and GloVe on the Reddit Corpus. They accounted for the impact of varying
epochs, training size and dropout on the performance [6,30,41]. These studies only used word embed-
dings and hyperparameter tuning as features to identify sarcasm, which might not be sufficient to capture
all the nuances of sarcasm in language. In [1], the study implemented BERT, robustly optimized BERT
pretraining approach (ROBERTa), LSTM, bi-directional long short-term memory (Bi-LSTM) and bi-
directional gated recurrent unit (Bi-GRU) models for detecting sarcasm in text. They concluded that the
transformer-based ensemble performed better than the baseline models. In [22], the researchers used four
component methods namely LSTM, CNN-LSTM, SVM and MLP on the Reddit and Twitter datasets.
On similar lines, authors in [15] used an ensemble of LSTM, gated recurrent unit (GRU) and Baseline
CNNs to detect sarcasm in online text and concluded using a weighted average ensemble resulted in
better results. However, the approach used by the researchers failed to detect sarcastic tweets written in
a very polite way.

Recent studies have made extensive use of word embeddings in deep neural networks for various
NLP tasks. However, there is a growing demand for modelling text data as graphs. In comparison to
revolutionary neural networks such as recurrent neural networks (RNN), LSTM, CNN and BERT, the
graphical representation of text allows for more efficient extraction of semantic and structural informa-
tion. Therefore, numerous researchers have investigated graph-based methods and their application to
NLP problems. The first graph attention-based model to identify sarcasm on social media was proposed
in [38]. The graph model captured complex relationships between a sarcastic tweet and its conversational
context by modelling a user’s social and historical context together. GNN, a modern class of networks
applied on graph-structured data [47], has found application in the field of sarcasm detection. In [19],
a graph convolutional network (GCN) was used to capture global information features in a satirical
context and a Bi-LSTM was implemented to capture the sequence features of the comments. The two
sets of results were combined and evaluated using a conventional classifier. Later, The authors in [26]
proposed an affective dependency graph convolutional network framework to detect messages with im-
plied contradictions and incongruity. Apart from the state-of-the-art technology, many researchers have
investigated the use of different features in text data and different methodologies for detecting sarcasm.



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 21

The article [10] provides a detailed literature survey on sarcasm detection. Additionally, it provided a
detailed analysis of the set of features used for sarcasm detection.

Section 2.1 discusses the types of feature sets used in sarcasm detection and how researchers have
employed them in past studies.

2.1. Types of primitive feature sets used in sarcasm detection

Previous works on sarcasm detection made use of low-level features such as n-grams, punctuation,
intensifiers and so forth. Some of the primitive features such as punctuation count, count of mixed-case
words, count of repeated words and letters, presence of intensifiers and presence of interjections are later
used in this research as part of feature set preparation. The primitive features used in sarcasm detection
can be broadly classified into:

(1) Lexical features: This feature set includes text properties such as unigrams, bigrams, n-grams, skip-
gram, hashtags, etc. The study in [27] used unigrams, bigrams and trigrams to create more general
sarcasm indicators thereby improving the precision and recall of their bootstrapping classifier. Re-
searchers in [4] created binary indicators of lower-cased word unigrams and bigrams along with
brown cluster unigrams and bigrams which grouped words used in similar contexts into the same
cluster. The authors of [43] extracted every unigram, bigram and trigram that occurred immediately
right after a positive sentiment phrase in a sarcastic tweet.

(2) Paralinguistics features: These are some of the main features used for sarcasm detection in text.
They include emoticons, smileys, number of hashtags, replies and so forth. The study in [9] in-
cluded the count of positive, negative and sarcastic emoticons. The authors of [29] considered the
effect of sentiment contained in hashtags by developing a set of rules around the number of hash-
tags and their polarity. Researchers in [32] took into account the sentiment of replies to the user.

(3) Hyperbole features: These features include intensifiers, interjections, quotes, punctuation and so
forth. Researchers in [4] created a binary indicator for the presence of 50 intensifiers retrieved
from Wikipedia. The authors of the study in [40] opined that writers often use sarcasm-based
writing styles to compensate for the lack of visual or verbal cues. The authors in [5] accounted for
uppercase and lowercase characters along with the repetition of punctuation marks.

(4) Contextual features: These features comprise extra components, outside the realm of formal lin-
guistics, used frequently in a sentence, especially in online messages. The researchers in [17] har-
vested a large number of sarcastic tweets with the help of hashtags such as #not#sarcasm and
divided them into tweets containing user mention and tweets that do not. In [4], the researchers em-
phasized extra-linguistic information from the context of a tweet in the form of ‘author features’,
‘audience features’, ‘environment features’ and ‘tweet features’ and achieved gains in accuracy
compared to purely linguistic features in sarcasm detection.

The previous research and development in the field of sarcasm detection prompted the authors of this
paper to take on this problem and address its concerns at a new level. The following section describes
the impetus behind the present study.

3. Motivation

This section explains the rationale for delving into the complexities of sarcasm detection using sim-
iles, metaphors and the clausal structure of a sentence. Section 3.1 discusses similes in literature and



22 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

forms the base for the proposed methodology for its computational detection. Section 3.2 introduces and
explores metaphors in literature thereby building the foundation for its computational detection. Sec-
tion 3.3 deliberates upon a sentence’s clausal structure as well as the polarity change from one clause to
another. Section 3.4 lays the motivation for using deep learning methods in an ensemble structure.

3.1. Simile

A simile is a figurative device used to draw comparisons between two unlike things. Its presence is
always explicitly indicated with the usage of “like” or “as”. A simile consists of the following four key
components- tenor, vehicle, property, event and comparator [34]. Table 1 provides examples of similes
along with their constituent components. This study proposes the presence of a simile as a potential
marker for sarcasm in the text as its presence in a sarcastic remark may accentuate the hidden emotion.
For instance, “Of course they were invited! They are always as welcome as a skunk at a lawn party”
implies that the subject’s presence is actually not appreciated. Here the comparison “as welcome as
a skunk at a lawn party” represents the undesirability and vileness of the subject. Another potential
example of a sarcastic remark embedding a simile is “Asking politicians to give up a source of money is
like asking Dracula to forsake blood” wherein the speaker mocks politicians’ flaws by drawing analogies
to Dracula. The computational detection of simile relies on the syntactic dependency tree of a sentence,
which is described in more detail in Section 4.

3.2. Metaphor

A metaphor is a figure of speech that compares two unrelated ideas. At the basic linguistic level, both
metaphor and simile involve the juxtaposition of two concepts. However, metaphors lack the usage of
“like” or “as” while drawing the comparison. For example, the two statements, “Mary is a rock” and
“Mary is like a rock” will be inferred by the reader in the same sense about Mary’s personality [35].
The only difference between the statements is that the former statement is a metaphor and the latter is a
simile. The difference lies in the presence of the comparator “like” in one and its absence in the other.

A metaphor also arises when seemingly unrelated properties of one concept are seen in terms of the
properties of some other concept. Metaphorical utterances in sarcastic remarks in certain situations are
common. For example, “You are the cream in my coffee” when used sarcastically implies that the hearer
is an unpleasant addition to the speaker’s life [39]. Another example of such an utterance is, “I am
not saying that I hate you, what I am saying is that you are literally the Monday of my life.” wherein
the speaker indirectly expresses his hate towards the listener by comparing the latter’s presence in the
former’s life as depressing and unwanted as Monday. Since comparison is drawn between two distinctive

Table 1

Examples and constituent components of a simile

Simile Tenor Vehicle Property Event
Her voice is as smooth as silk. Her voice silk Smoothness is
A sweet voice carolling like a

gold-caged nightingale
sweet voice gold-caged

nightingale
The property here is implicit,
left for the reader to infer

carolling

Her grandmother’s love story
was as old as the hills.

grandmother’s
love story

hills old was

A slow thought that crept like a
cold worm through his brain.

slow thought cold worm The property here is implicit,
left for the reader to infer

crept



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 23

Table 2

Types of metaphors addressed in this study and their examples

Metaphor type Relationship Example
Type I Subject IS A object phrase;

(X is Y)
1. Mary is a rock.
2. He is the sugar in my coffee.
3. That fella is the raspberry seed in my wisdom tooth.

Type II Verb acting on Noun phrase;
(X acts on Y)

1. My car drinks gasoline.
2. He planted good ideas in their minds.
3. Inflation has eaten up all my savings.

Table 3

Distinctive subtleties between main and subordinate clauses

Sentence Main clause Subordinating
conjunction

Subordinate clause

She had a long career but she is
remembered for one early work.

She had a long career but –
She is remembered for one
early work

I first saw her in Paris, where I lived
in the early nineties.

I first saw her in Paris where (where) I lived in
the early nineties

If it looks like rain, a simple shelter
can be made out of a plastic sheet.

A simple shelter can be made
out of the plastic sheet

if (if) it looks like rain

entities, computing cosine similarity between the subject and object of comparison forms the bases for its
computational detection. This study facilitates the detection of only two types of metaphorical sentences
out of the three mentioned by [21]. Table 2 provides a summary of the two types. The third type of
metaphor takes the form of an Adjective acting on a Noun, for example, “He has a fertile imagination”.
Due to the different linguistic structure of adjectival metaphors a separate analysis and methodology is
required for its detection, which is beyond the scope of this current paper.

3.3. Clauses

Clauses are a group of related words which unlike phrases have a subject and a verb. A clause can be
a part of a sentence or be a complete sentence in itself. All sentences have at least one main clause. The
main clause is a clause that can stand alone as an independent complete sentence. On the other hand,
a subordinate clause is a clause that cannot stand as an independent complete sentence by itself. It is
typically introduced with a subordinating conjunction and is dependent on the main clause. Consider the
examples taken from an article2 given in Table 3 elaborating the distinctive subtleties between a main
clause and a subordinate clause. Sarcasm, in its prevalent form, exists as the disparity of sentiments. This
disparity can further take up two forms [24]:

(1) A shift from positive polarity to negative polarity: In this type, sarcastic sentences contain positive
expressions followed by negative expressions. Consider the sarcastic sentence, “Thank you, officer,
now that you have my license I can’t drive” where the main clause “Thank you officer” has a
positive connotation and the subordinate clause “now that you have my driving license I can’t
drive” has a negative connotation.

2https://www.lexico.com/grammar/clauses

https://www.lexico.com/grammar/clauses


24 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

(2) A shift from negative polarity to positivity polarity: In this type, sarcastic sentences contain neg-
ative expressions followed by positive expressions. For instance, “I hate my sister because she
cooks so well” wherein the main clause “I hate my sister” holds a negative connotation and the
subordinate clause “because she cooks so well” holds a positive connotation.

To cater to such types of situations, this research proposes to measure the polarity shift from the main
clause of a sentence to the subordinate clause of a sentence at various degrees as a potential indicator of
sarcasm. The significance of fuzziness comes into play while dealing with ambiguities surrounding how
positive or negative a stand-alone clause can be. Its amalgamation with the computational detection of
polarity shift may result in efficient results.

3.4. Motivation behind using a deep ensemble structure

Current cutting-edge research studies utilise geometric deep learning, BERT and fuzzy logic. This
study combines these techniques into a single framework in order to produce competent results. Further-
more, most authors have employed conventional machine learning classifiers for evaluation purposes,
whereas ensembles of deep learning algorithms (TabNet, CNN and MLP) are employed in this research.
One of the most significant issues with conventional machine learning techniques is that they frequently
fail to capture the underlying characteristics and structure of the data. Consequently, poor performance
is observed when these algorithms are applied to datasets that are highly imbalanced, high-dimensional
and noisy [12]. Therefore, it is essential to construct an efficient model, particularly for complex tasks
such as sarcasm detection. Ensemble learning is one of the approaches. Ensemble learning strategies en-
hance the performance and accuracy of a predictive model by merging multiple models. This approach
involves training several models, each with unique algorithms or hyperparameters and then fusing their
predictions in a manner that maximizes the final outcome. Any ensemble framework comprises a col-
lection of base learners and meta-learners. Base learners, also known as weak learners, are machine
learning classifiers whose predictions are combined with those of other weak learners to compensate
for their weaknesses. The meta learner or strong learner is the combined learnt model. The promising
results obtained by past researchers with different ensemble structures for sarcasm detection motivated
the authors of this work to implement a deep ensemble framework DWAEF. The framework is compre-
hensively described in the forthcoming section.

4. Methodology

The methodology followed by this research is elaborated in Fig. 1. A detailed description of dataset
preparation is provided in Section 4.1. Once the data has been collected, it goes through several stages
of preprocessing as elaborated in Section 4.2. The pre-processed data is then annotated by four expert
linguists with 100% agreement that the dataset consisted of both sarcastic and non-sarcastic sentences.
Following this, the pre-processed and correctly labelled data goes through the feature extraction process
wherein along with the indicators proposed by this research, primitive features are also extracted. Fol-
lowed by feature set preparation, the results are obtained using the ensemble framework. Each module
portrayed in Fig. 1 is explicated in the forthcoming subsections. Section 4.3 discusses the primitive fea-
ture set preparation. Section 4.4 discusses the detection of novel features namely, simile, metaphor and
change in the polarity of a sentence’s constituent clauses.



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 25

Fig. 1. The methodology of the proposed study.

Table 4

Description of the dataset

Label SARC News Headlines Twitter
sarcastic 498 520 520
non-sarcastic – 676 677

4.1. Data set preparation

Description of the dataset: The authors of this work prepared a dataset of 2,891 sentences written in
English. The dataset utilized in this study was sourced from various platforms, including Twitter, News
Headlines and the SARC datasets. TextBlob [25] was used to check whether the text was written only
in English. Out of these, 1,538 were sarcastic and were compiled from various sources- i) 520 sentences
were extracted from Twitter with hashtags- #sarcasm, #not, #sarcastic, #irony, #satire between the time
period of June 2022-October 2022; ii) 520 were taken from the News Headlines dataset curated by
[31]; iii) remaining 498 were taken from the SARC dataset curated by [20]. The 1,353 non-sarcastic
sentences were compiled from Twitter and the News Headlines dataset. These sources do not belong to
the same domain or topic. Twitter data, for instance, encompasses a broad range of subjects, whereas
News Headlines may concentrate on specific areas, such as politics, sports, or entertainment. The domain
can significantly affect the outcomes of sarcasm detection because the use of sarcasm can vary depending
on the context and subject matter. For example, the prevalence of sarcasm in political discussions may
differ from its occurrence in conversations about sports or entertainment. The motivation for combining
data from various online sources such as Twitter, Reddit and News Headlines is to expose the model
to different writing styles as well as myriad domains prevalent online. Moreover, the proposed features
in this study operate independently of the domain. Hence, there are no visible effects on the results
obtained. This approach is therefore expected to help the model make accurate predictions for a wide
range of text messages.



26 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

Annotation: Double annotation was performed by four expert linguists who independently performed
annotation on the dataset. Once all four annotators had completed their annotations, the annotations were
compared with each other to identify any discrepancies or disagreements. A consensus-based approach
was followed to resolve these discrepancies or disagreements. This involved having the annotators dis-
cuss and come to a consensus on the correct annotation together. The agreed-upon annotations from all
four annotators were used to create a final, consensus annotation for the entire dataset. Further, a series of
preprocessing measures were taken. After preprocessing the dataset was reduced to 2,889 sentences. The
composition of the dataset and the distribution of sarcastic and non-sarcastic sentences are illustrated in
Table 4.

4.2. Data preprocessing

The use of slang, hashtags, emoticons, alterations in spelling, and loose punctuation are not inherently
redundant and serve various purposes, such as expressing emotions or emphasizing a point. However,
they can pose challenges for tasks related to NLP and text analysis, as they often deviate from standard
grammar and syntax. The study in [13] provides a more nuanced understanding of how these features
of informal text can be modelled and analyzed to improve the quality of NLP frameworks and crowd-
sourced annotation tasks. As a result, the authors have accordingly taken these features into account
before completely removing them. Certain data pre-processing measures were carried out as follows:

(1) Duplicate tweets and re-tweets were also dropped.
(2) Hashtags were completely removed.
(3) Tweets containing URLs were dropped.
(4) Emojis were counted and then removed from the text.
(5) The occurrences of the following punctuation marks (‘.’, ‘?’, ‘*’, ‘!’, ‘,’) were first counted and

then the data was freed of irrelevant punctuation marks.

4.3. Primitive features

The primitive features used by this study include various features explained earlier in Section 2. The
said feature set consists of punctuation count, count of mixed-case words, count of repeated words
and letters, presence of intensifiers and presence of interjections. Each one of the preceding features is
comprehensively explained below.

(1) Punctuation Count: The punctuation marks are sometimes overused to indicate sarcasm. For exam-
ple, to emphasise a point, users use an asterisk (‘*’). To represent a pause, an ellipsis (‘. . . ’) is used
and a bunch of exclamatory marks (‘!!!’) indicate exclamatory utterances [40]. Thus, each of the
previously described punctuation marks along with some more (‘.’, ‘?’, ‘*’, ‘!’, ‘,’) were counted
as one of the features.

(2) Count of mixed-case words: This feature set includes counting the occurrence of mixed-case words
in the text.

(3) Count of repeated words and letters: Users also tend to repeat letters in words to over-emphasize
parts of the text. A similar pattern can be observed in the case of words. As a result, the number of
repeated letters and repeated words were counted and used as a set of 2 individual features.

(4) Presence of intensifiers: Intensifiers or hyperbolic words are generally adverbs or adjectives which
strengthen the evaluative utterance of a sarcastic remark. Consider the utterances were taken from
[23], “‘fantastic weather’, ‘when it rains’” and “weather is good when it rains”. Both utterances



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 27

Fig. 2. The dependency trees depicting the syntactic dependency between various components of a simile.

may literally convey a positive outlook of the speaker. However, sensing the context, the utterance
with the word fantastic can easily be identified as sarcastic. For this study, a list of commonly used
intensifiers given in appendix A.1 was retrieved from Wikipedia3 and used to check the presence
of intensifiers in the tweets.

(5) Presence of interjections: Interjections are words or phrases primarily used in a sentence to convey
emotions. For instance, “aha”, “yay”, “oh”, “nah”, “yeah”, “wow” and so forth are some of the
commonly used interjections. A list of interjections given in appendix A.2 was retrieved from an
article4 and was used to check the presence of interjections in tweets.

(6) The number of times words having opposite polarities come together: This feature captures the
contrast between two words having opposite polarities.

(7) Length of the largest sequence of words with polarities unchanged
(8) Count of positive and negative words

4.4. Frameworks for the proposed features

4.4.1. GNN framework for simile detection
For the purpose of this research, simile is detected on the basis of its syntactic pattern using a GNN.

The process typically involves first parsing the sentence using a syntactic parser to identify the syntac-
tic relationships between the words. In this case, this was done using Stanford NLP Group’s CoreNLP
server [28]. Figure 2 presents dependency trees of two sentences containing similes created using Stan-
ford NLP Group’s CoreNLP server. The resulting parse tree is then converted into a graph representation.
To capture more complex syntactic relationships between the words in a sentence, the authors of this re-
search implemented Bi-Fuse GraphSAGE [18]. To create a representation of each node, GraphSAGE
aggregates information from its neighbouring nodes in the graph. This representation is then refined by
Bi-Fuse GraphSAGE, which encodes the graph structure in a bi-directional manner by passing messages
between nodes in both forward and backward directions, enabling more complex relationships between
nodes to be captured. Subgraphs corresponding to specific syntactic structures of a simile are identified
by analyzing these refined node representations. Additionally, a graph-level representation is created by
combining these refined node embeddings, summarizing the properties of the entire graph. The class

3https://en.wikipedia.org/wiki/Intensifier
4https://www.english-grammar-revolution.com/list-of-interjections.html

https://en.wikipedia.org/wiki/Intensifier
https://www.english-grammar-revolution.com/list-of-interjections.html


28 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

Fig. 3. The GNN framework for simile classification.

Fig. 4. Simile dataset preprocessing workflow.

label of a sentence is predicted using these graph-level representations. A GNN-based text classification
model is used to learn the dependency structure of similes. The entire set-up for the simile classification
model consists of a graph construction module, a graph embedding module and a prediction module.
Each of the modules is implemented using Graph4NLP library [46]. The modules are elaborated thor-
oughly below and the entire framework is summarized in Fig. 3.

(1) The graph construction module: The graph construction module focuses on building a syntactic
dependency tree-based static graph for each of the texts in the dataset. All of the dependency trees
are built using Stanford NLP Group’s CoreNLP server. Dependency relations from the dependency
parsing trees are converted into dependency graphs. 3000 sentences consisting of both similes and
non-similes were collected for pretraining the GNN framework. Pretraining is done to improve the
framework’s ability to recognize similes in the combined dataset. Figure 4 illustrates a series of
initialization preprocessing steps that the raw data goes through before being passed to the graph
embedding module. The dataset description, link to the dataset and the initialization preprocessing
steps can be found in Appendix B.1. Once the initialization is complete, the data items are collated
into the batch data which is then used for runtime iteration over the entire dataset.

(2) The graph embedding module: The authors of this research implemented Bi-Fuse GraphSAGE,
a GNN framework for inductive representation learning of graphs which is used to generate low-
dimensional vector representations for nodes. The embedding generation process takes the entire
graph G(V, E) and features for all nodes, xi ∈ V as input. In each iteration from k = 0 up to k =



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 29

K where k denotes the current step in the loop and h(k)
v denotes a node’s representation at that

step, K signifies the number of aggregator functions and Wk denotes set of the weight matrices in
each iteration. First, each node v ∈ V aggregates the representations of the nodes in its immediate
neighbourhood, as represented by equation (1), into a single vector h

(l+1)

N(i) . After the aggregation
of the neighbouring feature vectors, GraphSAGE concatenates the node’s current representation
hk

v, with the aggregated neighbourhood vector h
(k+1)

N(v) , given in equation (2) and this concatenated
vector is fed through a fully connected layer with a non-linear activation function represented by
σ , following which each current node’s representation is normalised as illustrated by equation (3).

h
(k+1))

N(v) = aggregate
(
hk

v, ∀v ∈ N(v)
)

(1)

h(k+1)
v = σ

(
Wk · concat

(
hk

v, h
(k+1)

N(v) + b
))

(2)

h(k)
v = norm

(
hk

v

)
(3)

(3) The prediction module: The prediction module consists of an average pooling layer with 300
hidden units and an MLP classifier which produces predicted labels. In case of a presence of a
simile is detected the framework predicts label ‘1’ and in case of a non-simile, the framework
predicts label ‘0’. The said trained framework is saved for predicting the presence of a simile on
the sarcasm dataset. The training and validation accuracy and loss curves are discussed in Section 5.

4.4.2. BERT-based structure for metaphor detection
Word2Vec and GloVe are two types of architectures used commonly for word embedding, but they

have limitations in certain tasks such as representing terms that are not in their vocabulary and distin-
guishing between opposites. For example, the words “good” and “bad” are often very close to each other
in the vector space created by these models, which can be problematic for NLP applications like senti-
ment analysis. On the other hand, BERT is a pretraining method that uses a self-supervised approach to
learn from masked text sections. Developed by a team at Google Research, BERT is based on the trans-
former architecture and is designed to learn deep bidirectional representations from unlabeled text by
conditioning on both left and right contexts. While Word2Vec and GloVe are unidirectional models that
can only understand context in one direction, BERT can move sentences both to the left and right to fully
comprehend the context of the target word or group of words. As a result, the detection of metaphors
is achieved by generating embeddings using a BERT-based network. The basic BERT model, without
any fine-tuning, can generate embeddings for the phrases that can be used to calculate cosine similarity.
Figure 5 illustrates the framework used for detecting the presence of a metaphor and Fig. 6 illustrates
the BERT-based network used for generating the embeddings with the hidden layer representations in
red. For the BERT base, each encoder layer outputs a set of dense vectors.

Each vector contains 768 values each of which is nothing but contextual word embeddings. Initially,
each sentence is split into two halves. For sentences of type I, phrase A consists of the subject and phrase
B consists of the object. On the other hand, for sentences of type II, phrase A consists of a verb which
acts on a noun phrase represented by phrase B. BERT-based embeddings are generated for both phrases
A and B and cosine similarity is calculated. The entire process can be summarized as follows:

Detecting type-1 metaphors:

(1) All the sentences in the dataset are first tokenized using spaCy.
(2) The sentences are then split into two phrases: one containing the subject of comparison and the

other containing the object of comparison.



30 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

Fig. 5. The framework for metaphor detection.

(3) Dense contextual embeddings are constructed for each of the phrases. The last_hidden_state tensor
from the BERT model is extracted to quantify textual similarity. A pooling operation is performed
that takes the mean of all token embeddings and compresses them into a single vector space rep-
resenting a single phrase. Furthermore, the cosine similarity between the two vector spaces of the
phrases is calculated. Following multiple trials, a threshold value of 0.7 was chosen to determine
the presence or absence of a metaphorical instance in a sentence. A cosine similarity larger than 0.7
accurately indicated the lack of a metaphorical statement, whereas one less than 0.7 suggested its
presence.

Detecting type-2 metaphors:

(1) All the sentences in the dataset are first tokenized using spaCy.
(2) All the sentences are split into two phrases: one containing the personified verb and the other

containing the object of comparison.
(3) For each of the phrases, dense contextual embeddings are generated and textual similarity is mea-

sured in terms of cosine similarity.

4.4.3. Fuzzy logic-based approach for capturing polarity change in clauses
Fuzzy logic is a form of multi-valued logic that deals with reasoning that is approximate rather than

precise. In fuzzy logic, a concept can possess a degree of truth (degree of membership) denoted by
‘µ’ anywhere between 0.0 and 1.0, unlike in standard logic where a concept can only be completely
true (1.0) or false (0.0). Fuzzy logic is useful for reasoning about inherently vague concepts, such as



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 31

Fig. 6. BERT-based network used for generating embeddings.

“tallness”. In traditional set theory, an element either belongs to a set or not, but in fuzzy logic, an
element can partially belong to a set, with a degree of membership ranging betwwen 0 and 1. In general,
the degree of membership is used to represent the uncertainty or fuzziness in a concept or variable and
is a key component in fuzzy logic’s ability to reason with imprecise or uncertain information. In fuzzy
logic systems, a membership function is used to map this degree of membership of an element to a set,
based on a specified set of fuzzy rules. Trapezoidal membership functions are one way to define fuzzy
sets. They are a type of membership function that allows for more flexibility in defining the shape of the
fuzzy set.

A trapezoidal membership function is a piecewise linear function that has four parameters: a, b, c and
d, where a � b � c � d. The function starts at 0 for x � a, increases linearly from 0 to 1 from a to b,
stays at 1 from b to c, decreases linearly from 1 to 0 from c to d, and stays at 0 for x � d. By using
trapezoidal membership functions, non-polygonal fuzzy sets can be defined that have smooth transitions
between membership degrees. The shape of the membership function can be controlled by adjusting
its parameters, allowing for the creation of fuzzy sets that match the intended intuition. For instance,
a trapezoidal membership function can be used to define the fuzzy set “tall person” with parameters
such as a = 170 cm, b = 175 cm, c = 185 cm and d = 190 cm. The resulting function would have
a membership degree of 0 for heights below 170 cm and above 190 cm, a membership degree of 1
for heights between 175 cm and 185 cm, and smoothly increasing and decreasing membership degrees
for heights between 170 cm and 175 cm and between 185 cm and 190 cm. Trapezoidal membership
functions allow for the generation of non-polygonal fuzzy sets, which enable more precise and flexible
modelling of linguistic variables in fuzzy logic.



32 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

The aim of this study is to assess the change in polarity from the main clause to the subordinate clause
of a sentence, at different levels, in order to identify possible instances of sarcasm. Fuzziness is relevant
in addressing the uncertainties related to the degree of positivity or negativity of an independent clause.
By combining this with the computational identification of polarity shift, more effective outcomes can
be achieved. The following steps were performed to detect sarcasm in the form of disparity of sentiments
in clauses:

(1) Tokenization: All the pre-processed textual data is first tokenised using spaCy’s NLP object.
(2) Separation of clauses: To find the polarity of a sentence’s constituent clauses, a sentence is first

separated into clauses. This is done in two ways. All the sentences are checked for the presence
of subordinating conjunctions given in appendix A.3. If a sentence does not contain any of the
subordinating conjunction mentioned then splitting of the sentence is done on the basis of two
markers. The first marker is the subject of the sentence with syntactic dependency “nominal subject
(nsubj)”. The second marker is the last occurrence of any preposition in a sentence. It is marked
with syntactic dependency “preposition (prep)”. These markers divide the sentence into three parts,
the first part spans from the beginning of the sentence to the first marker (“nsubj’), the second part
spans from the first marker(“nsubj”) to the second marker(“prep”) and the third part spans from the
second marker(“prep”) to the end of the sentence. For example, the sentence, “You’re everything I
want in someone, I don’t want anymore.” splits into “You’re everything I want” and “in someone I
don’t want anymore”. Another example would be, “Right before I die I am going to swallow a bag
of popcorn kernels to make the cremation a bit more interesting.” splits into “Right before I die”, “I
am going to swallow a bag of popcorn kernels” and “to make the cremation a bit more interesting”.

(3) Computing the polarity of clauses: For finding the polarity of a sentence’s constituent clauses,
pysentimiento [37] is used. pysentimiento is a python toolkit for sentiment analysis and text clas-
sification. It is a transformer-based open-source library. It uses BERTweet [33] as a base model
in English. The list of constituent clauses is taken for each sentence and the polarity score corre-
sponding to each clause in the form of positive, negative and neutral proportions is obtained.

(4) Applying fuzzy logic to eliminate overlapping sentiment classes: In each sentence, every clause has
three sentiment proportions, i.e., positive, negative and neutral. To determine the overall polarity of
a clause fuzzy-logic has been implemented using Simpful [45]. Although pysentimiento provides
sentiment proportions for the positivity, negativity and neutrality of a clause, it does not provide any
valuable information about the degree (weak, moderate, strong) of each sentiment. This study uses
fuzzy logic to determine the overall polarity of the clauses with the help of a set of rules based on
the projected degree of each sentiment. The degree of each sentiment namely, positive, negative and
neutral have been devised using the assumed ranges given in Table 5. The trapezoidal membership
function is used to define a non-polygonal fuzzy set for each sentiment namely, positive, negative
and neutral. Figure 7 (a,b,c) illustrates various inputs for each sentiment.
The set of fuzzy rules used in this study can be found in appendix B.2. The fuzzified output is
presented in (d) part of Fig. 7. Defuzzification is then applied to get the final polarity output.

(5) Checking for the disparity of sentiments: The total number of clauses with positive, neutral, or
negative sentiment labels are counted and utilised to account for polarity shifts from negative to
positive or positive to negative. If such a shift occurs, the function returns ‘1’; otherwise, it returns
‘0’.



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 33

Table 5

The degree of each sentiment along with the corresponding polarity percentage associated with it

Sentiment Degree Range
Positive Weakly positive 0-35 %

Moderately positive 25-75 %
Strongly positive 68-100 %

Negative Weakly negative 2-34%
Moderately negative 25-73 %
Strongly negative 68-100 %

Neutral Weakly neutral 1-35%
Moderately neutral 25-73 %
Strongly neutral 68-100 %

4.5. DWAEF: The deep weighted average ensemble framework

DWAEF, the proposed deep weighted average ensemble-based framework, is a three-tiered structure.
It comprises three base learners: a TabNet, a 1-D CNN and an MLP. The framework is implemented
with the help of DeepStack Library [8]. Initially, the curated dataset is used to pretrain the three mod-
els. During training, each of the base learners receives the outputs of the GNN-based simile detection
framework, the BERT-based metaphor detection framework, the fuzzy-based polarity shift detection
framework as well as the primitive features as its inputs. Next, the predictions produced by each module
of the ensemble are weighed based on their performance on a hold-out validation dataset. This is repre-
sented by a Dirichlet ensemble object. To achieve more accurate solution a weight optimization search is
used in conjunction with randomized search based on the Dirichlet distribution on the validation dataset.
Randomized search based on the Dirichlet distribution involves randomly sampling the weights from
a Dirichlet distribution, which generates a probability distribution over the weights that is continuous
and flexible. Weight optimization search iteratively adjusts the ensemble model weights to maximize
accuracy on the validation dataset. Through this process the base learners, a TabNet, a 1-D CNN and an
MLP, are assigned optimal weights. These weights determine the contribution of each model to the final
prediction. Subsequently, the predictions of each model are combined through a weighted average. No
meta-learner is used in this ensemble method. Lastly, the ensemble model is assessed on a separate test
set to determine how well it can perform on new data.

The findings that were achieved through the utilization of the suggested methodology are reported in
Section 5.

5. Evaluation, results and analysis

This section examines the results acquired by employing different techniques on the dataset. The
purpose of the proposed methodology is to efficiently detect sarcasm in online text using the presence of
figurative comparisons, i.e., similes and metaphors and shifts in polarity of the text’s constituent clauses.
This segment is organised as follows: Section 5.1 discusses the accuracy vs. epochs and loss vs. epoch
curves for the GNN framework. The accuracy scores obtained during experimentation with different
threshold values by the BERT-based Metaphor Detection Framework are discussed in Section 5.2. The
confusion metrics for the fuzzy-based approach are presented in Section 5.3. Section 5.4 analyses the
results obtained using DWAEF, the deep weighted average ensemble model.



34 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

Fig. 7. Fuzzy inputs and output for neutral, negative and positive sentiments.

5.1. Results obtained by the GNN-based simile detection framework

The GNN framework described in the Section 4.4.1 was pretrained on a dataset of roughly 3,000
sentences, out of which roughly 50% were similes and the rest 50% were non-similes. The entire dataset
was split into three groups: 60% of the data was used for training, 20% was used for testing and the
rest 20% was used for validation. This pretrained framework was then deployed on the main collated
sarcasm dataset to extract the presence of a simile as one of the features. With a batch size of 32, the
model was executed for 100 epochs. The rest of the hyperparameters are given in Table 6. The training
and validation curves of the proposed framework are illustrated in Fig. 8. It is evident from both curves
that the framework is free from both overfitting and underfitting.

The testing accuracy obtained using the proposed GNN framework for simile detection was 99.22%
using GloVe word embeddings. The state-of-the-art results ensured accurate detection of the simile in
the main sarcasm dataset.



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 35

Fig. 8. Training and validation curves of the GNN framework for simile detection.

Table 6

Hyperparameter settings for the GNN framework

Parameter Value
Seed 1234
Batch size 32
Epochs 100
Learning rate 0.01
Learning rate patience 2
Learning rate reduce factor 0.5
Hidden layers 300
Dropout 0.3
Graph pooling Average Pooling
Optimizer Adam
Loss Cross Entropy
Activation ReLU

5.2. Results obtained by the BERT-based metaphor detection framework

Before settling on the best threshold value to assess the existence or absence of a metaphorical instance
in a sentence, several values were tested. The various values tested and the accompanying accuracy
values are listed in Table 7. It is clear that at a threshold value of 0.7, the most accurate predictions were
achieved for both type 1 and type 2 metaphors. Thus, a cosine similarity of more than 0.7 accurately
indicates the absence of a metaphorical remark, whereas a cosine similarity of less than 0.7 indicates its
presence.

5.3. Results obtained by the fuzzy-based polarity shift detection framework

The confusion matrix shown in Fig. 9 depicts the performance of the fuzzy-based framework. In the
matrix, there are four distinct combinations of expected and actual values. It is evident from the matrix



36 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

Table 7

Various threshold values and their corresponding accuracy score

Threshold value Accuracy
Type 1 Type 2

0.3 0.72 0.60
0.4 0.62 0.60
0.5 0.70 0.68
0.6 0.78 0.66
0.7 0.82 0.78

Fig. 9. Confusion matrix for the fuzzy-based polarity shift detection framework.

that the framework properly identified the variations in polarity that actually indicated sarcasm at the
clausal structural level of 1,309 sentences. Additionally, 125 incorrect sentences were identified as true.
On the other hand, it also correctly identified the lack of a tone change in 1,228 sentences but failed
to recognise a polarity shift in 127 sentences. It is obvious from the matrix that the framework made
accurate predictions for 87.81% of the whole dataset. While 91.28% of all predicted true classes were
predicted actually true, 85.22% of all real true classes were predicted true by the framework. One of
the reasons for the state-of-the-art outcome is the usage of fuzzy rules to cope with uncertainties over
whether a solitary sentence is positive or negative.

5.4. Comparison of results obtained by individual base learners and DWAEF with primitive and
proposed features

The study performs and compares the results of three experiments – 1: sarcasm detection using indi-
vidual base learners, namely – TabNet, 1-D CNN and MLP with primitive features; 2: sarcasm detecton
using the same base learners with a combination of both primitive and proposed features; and 3: sarcasm
detection using DWAEF with a combination of primitive and proposed features. The hyperparameter
settings of the base learners in all the three experiments were kept the same to ensure that any observed
differences in performance were due to the changes in the feature set rather than differences in hyperpa-
rameters. Table 8 gives the corresponding hyperparameter settings for each of the base learners.

The results of experiment 1 and 2 are displayed in Table 9. The comparison shows that the outcome
of experiment 2 is better than that of experiment 1. Hence, the accuracy values of experiment 2 is then
compared with the accuracy value of the third experiment (the overall accuracy of DWAEF) and also



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 37

Table 8

Hyperparameter settings for TabNet, 1-D CNN and MLP used in DWAEF

Model Hyperparameter settings
TabNet Optimizer: Adam

Learning rate: 0.001
Step size: 10
Gamma: 1.4
Mask type: entmax

1-D CNN Seed: 1234
Learning rate: 0.0025
Dropout rate: 0.8
Loss: sparse categorical cross entropy
Optimizer: SGD

MLP Activation: ReLU
Alpha: 0.00025
Hidden layer sizes: (200, 150, 100, 50, 25)
Learning rate: Adaptive
Solver: Adam
Maximum iteration: 200
Random state: 25

Table 9

Accuracy scores for DWAEF base learners – TabNet, 1-D CNN and MLP

Stage TabNet 1-D CNN MLP
Stage 1: Primitive features only 76.80 75.03 64.09
Stage 2: Primitive features + proposed features 89.80 87.07 85.21

with the three most powerful and widely used traditional machine learning classifiers, RF, SVM and
AdaBoost (AB). The corresponding detailed comparison report is summarised in Table 10.

A confusion matrix depicting the performance of DWAEF is presented in Fig. 10. Based on the pre-
sented confusion matrix, the performance of the model can be inferred as follows. The model achieved
a high accuracy rate of 92.01%, indicating that it correctly predicted the majority of cases. Additionally,
the precision of the model was found to be 92.98%, indicating that when it predicted a positive class, it
was correct 92.98% of the time. Furthermore, the recall rate of the model was 89.59%, indicating that the
model correctly identified 89.59% of actual positive cases. The F1 score of the model was also found to
be high at 91.62%, indicating that the model performed well in terms of both precision and recall. How-
ever, the model exhibited some limitations, such as a number of false positives (FP) and false negatives
(FN). Specifically, the model produced 91 false positive predictions, which could lead to unnecessary
actions or decisions being taken. Additionally, the model produced 140 false negative predictions, which
could result in missed opportunities or errors in decision-making. In conclusion, while the model per-
formed well with high accuracy, precision, recall and F1 score, there is still room for improvement in
reducing the number of false positives and false negatives to further enhance its performance. These
findings may have implications for decision-making processes in applications that utilize this model,
and can inform future improvements in its development.

It can be inferred that the DWAEF outperforms all the models used in this study in terms of accuracy.
Also, the proposed features of this research, namely, presence of figurative comparisons, i.e., simile and



38 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

Table 10

Summary of accuracy scores of all classifiers

Model Accuracy score(%)
RF 81.37
SVM 78.58
AB 81.13
MLP 85.21
TabNet 89.80
1-D CNN 87.07
DWAEF 92.01

Fig. 10. Confusion matrix for DWAEF.

Table 11

Examples of correctly classified sentences written in a polite/formal tone

Sentences Novel indicator present Classification
result(%)

Everyone has a photographic memory, some just don’t have film. Metaphor 1
When it comes to finding a good place to eat you can’t doubt her choice,

she’s a connoisseur of food no wonder why she eats like a pig.
Simile, Clauses 1

No, you’re right, we should just put the mentally ill down like dogs if
they do something inappropriate.

Simile 1

metaphor and shift in polarity of a sentence’s constituent clauses, successfully aid in better detection of
sarcasm in online text messages. The detection of sarcasm has also been boosted by switching to a deep
weighted average ensemble framework because the framework assigns each base member’s share of the
prediction weight based on how well it performed individually during training. Moreover, researchers
in [15] failed to detect sarcasm in sentences written in a formal and polite tone. However, including the
proposed novel indicators successfully detected sarcasm in such sentences. Table 11 presents some of
them.



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 39

6. Conclusion and future work

Detection of sarcasm poses one of the leading challenges in sentiment analysis, as even a single sarcas-
tic remark can influence sentiment analyzers to produce undesirable results. Primitive techniques used
in sarcasm detection used low-level features and traditional machine learning algorithms. The study
looked into sarcasm detection with a new perspective. It proposed DWAEF, a deep-weighted ensemble-
based framework for sarcasm detection. The framework utilized figurative speech components mainly,
the presence of simile, the presence of metaphor and the change in the polarity of a sentence’s con-
stituent clauses using deep learning techniques. The predictions done by the above modules were then
fed into DWAEF, which comprised a 1-D CNN, a TabNet and an MLP as its base learners. Based on the
results, it can be concluded that combining the proposed indicators with the primitive features achieved
better results across all classifiers. It was seen that the proposed ensemble framework performed better
as compared to traditional machine learning classifiers. The proposed technique achieved the highest ac-
curacy of 92.01% when proposed indicators were combined with primitive features and evaluated using
a weighted average ensemble of deep learning algorithms. The study employed various state-of-the-art
tools and techniques; still, the proposed framework may be made to improve the model’s characteristics
and efficiency.

In future, the researchers plan to investigate the use of larger datasets for sarcasm detection in deep
ensemble framework, while considering potential drawbacks such as increased time and complexity for
training and a lack of annotation resources. Efficient resource management strategies such as unsuper-
vised learning techniques and pre-trained models, and crowd sourcing model for annotation shall be
explored to mitigate these challenges. The optimal dataset size will depend on the specific application
and available resources, and further research should identify the trade-offs and limitations associated
with using larger datasets for sarcasm detection.

While working in the domain of sarcasm detection, the authors also came across other crucial per-
spectives regarding sarcasm. It was sensed that the interpretation of sarcasm can also be influenced by
cultural and linguistic factors, and people from different cultures may interpret sarcasm differently. Dif-
ferent languages may have their own unique styles and patterns of sarcasm, which may not be easily
translatable or understandable to those unfamiliar with the language. Therefore, cultural and linguistic
contexts are crucial when studying or detecting sarcasm. Sarcasm detection models that work well in one
language or culture may not perform well in another, highlighting the importance of considering these
factors in model design and evaluation. Hence, in future, the authors plan to incorporate more advanced
tools in the DWAEF framework and fine-tune it to perform cross-lingual, cross-cultural and multimodal
predictions.

Appendix A. List of intensifiers, interjections and subordinating conjunctions

A.1. List of intensifiers

• amazingly
• ass
• astoundingly
• awful
• bare
• bloody

• crazy
• dead
• dreadfully
• colossally
• especially
• exceptionally



40 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

• excessively
• extremely
• extraordinarily
• fantastically
• frightfully
• fucking
• fully

• hella
• incredibly
• insanely
• literally
• mad
• mightily
• most

A.2. List of interjections

• aha
• ahem
• ahh
• ahoy
• alas
• arg
• aw
• bam
• bingo
• blah
• boo
• bravo
• brrr
• cheers
• congratulations
• dang
• drat
• darn
• duh
• eek
• eh
• encore
• eureka
• fiddlesticks
• gadzooks
• gee
• gee
• whiz

• golly
• goodbye
• goodness
• good grief
• gosh
• ha-ha
• hallelujah
• hello
• hey
• hmm
• holy buckets
• holy cow
• holy smokes
• hot dog
• huh
• humph
• hurray
• oh
• oh dear
• oh my
• oh well
• oops
• ouch
• ow
• phew
• phooey
• pooh
• pow

A.3. List of subordinating conjunctions

• after

• before

• as soon as

• while

• when

• as



R. Sharma et al. / DWAEF: deep weighted average ensemble framework 41

• because
• since
• if
• provided that
• as long as
• unless
• although
• though
• even though

• then
• which
• who
• that
• whose
• and
• but
• &

Appendix B. Implementation details

B.1. The initialization preprocessing steps of the GNN-based simile detection framework

For pretraining the GNN-based framework for simile detection the present study curated a dataset
comprising approximately 3,512 English language sentences that have been systematically categorized
into two groups, i.e., sentences containing similes and those that do not. The dataset can be accessed
from https://github.com/simdeol/Simile-Dataset. The dataset was curated through online sources and it
underwent a rigorous process of double-annotation to ensure its accuracy and reliability. This dataset
offers the opportunity for future research on the impact of similes in both written and spoken language,
thereby contributing to a better understanding of figurative language in general. Following preprocess-
ing, 3,000 sentences were selected for further analysis. The preprocessing steps illustrated in Fig. 4 are
described below:

• build_topology: This step builds a syntactic dependency text graph for each of the data items in the
raw dataset.

• build_vocab: This step is responsible for building vocabulary out of all tokens appearing in the data
items.

• vectorization: This step is the lookup step, responsible for converting tokens from ASCII characters
to word embeddings

B.2. The fuzzy rule set for detecting polarity shift in clauses

(1) IF (Neutral IS Weak_Neutral) AND (Negative IS Weak_Negative) AND (Positive IS Moder-
ate_Positive) THEN (Output IS positive)

(2) IF (Neutral IS Weak_Neutral) AND (Positive IS Weak_Positive) AND (Negative IS Moder-
ate_Negative) THEN (Output IS negative)

(3) IF (Positive IS Weak_Positive) AND (Negative IS Weak_Negative) AND (Neutral IS Moder-
ate_Neutral) THEN (Output IS neutral)

(4) IF (Positive IS Weak_Positive) AND (Negative IS Moderate_Negative) AND (Neutral IS Moder-
ate_Neutral) THEN (Output IS negative)

(5) IF (Negative IS Weak_Negative) AND (Positive IS Moderate_Positive) AND (Neutral IS Moder-
ate_Neutral) THEN (Output IS positive)

(6) IF (Neutral IS Weak_Neutral) AND (Negative IS Moderate_Negative) AND (Positive IS Moder-
ate_Positive) THEN (Output IS positive)

https://github.com/simdeol/Simile-Dataset


42 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

(7) IF (Neutral IS Strongly_Neutral) AND (Negative IS Weak_Negative) AND (Positive IS Weak_Pos-
itive) THEN (Output IS neutral)

(8) IF (Positive IS Strongly_Positive) AND (Negative IS Weak_Negative) AND (Neutral IS Weak_
Neutral) THEN (Output IS positive)

(9) IF (Negative IS Strongly_Negative) AND (Neutral IS Weak_Neutral) AND (Positive IS Weak_Pos-
itive) THEN (Output IS negative)

References

[1] M. Abdullah, J. Khrais and S. Swedat, Transformer-based deep learning for sarcasm detection with imbalanced dataset:
Resampling techniques with downsampling and augmentation, in: 2022 13th International Conference on Information
and Communication Systems (ICICS), IEEE, 2022, pp. 294–300. doi:10.1109/ICICS55353.2022.9811196.

[2] S.Ö. Arik and T. Pfister, Tabnet: Attentive interpretable tabular learning, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35, 2021, pp. 6679–6687. doi:10.48550/arXiv.1908.07442.

[3] S. Attardo, Sarcasm and similes, Journal of Pragmatics 27(5) (1997), 683–700. https://www.sciencedirect.com/journal/
journal-of-pragmatics.

[4] D. Bamman and N. Smith, Contextualized sarcasm detection on Twitter, in: Proceedings of the International AAAI Con-
ference on Web and Social Media, Vol. 9, 2015, pp. 574–577. doi:10.1007/BF00116827.

[5] F. Barbieri, F. Ronzano and H. Saggion, UPF-taln: SemEval 2015 tasks 10 and 11. Sentiment analysis of literal and
figurative language in Twitter, in: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015),
2015, pp. 704–708. doi:10.18653/v1/S15-2119.

[6] A. Baruah, K. Das, F. Barbhuiya and K. Dey, Context-aware sarcasm detection using BERT, in: Proceedings of the Second
Workshop on Figurative Language Processing, 2020, pp. 83–87. doi:10.18653/v1/2020.figlang-1.12.

[7] V. Basile, It’s the end of the gold standard as we know it. On the impact of pre-aggregation on the evaluation of highly
subjective tasks, in: Proceedings of the AIxIA 2020 Discussion Papers Workshop Co-Located with the 19th International
Conference of the Italian Association for Artificial Intelligence (AIxIA2020), Vols 2776, CEUR-WS, 2020, pp. 31–40,
http://ceur-ws.org/Vol-2776/paper-4.pdf.

[8] J. Borges, DeepStack: ensembles for deep learning, 2019, https://github.com/jcborges/DeepStack.
[9] M. Bouazizi and T.O. Ohtsuki, A pattern-based approach for sarcasm detection on Twitter, IEEE Access 4 (2016),

5477–5488. doi:10.1109/ACCESS.2016.2594194.
[10] P. Chaudhari and C. Chandankhede, Literature survey of sarcasm detection, in: 2017 International Conference on Wireless

Communications, Signal Processing and Networking (WiSPNET), IEEE, 2017, pp. 2041–2046. doi:10.1109/WiSPNET.
2017.8300120.

[11] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, BERT: pre-training of deep bidirectional transformers for language
understanding, 2018, arXiv preprint arXiv:1810.04805.

[12] X. Dong, Z. Yu, W. Cao, Y. Shi and Q. Ma, A survey on ensemble learning, Frontiers of Computer Science 14(2) (2020),
241–258. doi:10.1007/s11704-019-8208-z.

[13] J. Eisenstein, What to do about bad language on the Internet, in: Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Compu-
tational Linguistics, Atlanta, Georgia, 2013, pp. 359–369, https://aclanthology.org/N13-1037.

[14] S. Frenda, A.T. Cignarella, V. Basile, C. Bosco, V. Patti and P. Rosso, The unbearable hurtfulness of sarcasm, Expert
Systems with Applications 193 (2022), 116398. doi:10.1016/j.eswa.2021.116398.

[15] P. Goel, R. Jain, A. Nayyar, S. Singhal and M. Srivastava, Sarcasm detection using deep learning and ensemble learning,
Multimedia Tools and Applications (2022), 1–24. doi:10.1007/s11042-022-12930-z.

[16] M. Gori, G. Monfardini and F. Scarselli, A new model for learning in graph domains, in: Proceedings. 2005 IEEE Inter-
national Joint Conference on Neural Networks, Vol. 2, 2005, pp. 729–734. doi:10.1109/IJCNN.2005.1555942.

[17] K. Hallmann, F. Kunneman, C. Liebrecht, A. van den Bosch and M. van Mulken, Sarcastic soulmates: Intimacy and
irony markers in social media messaging, in: Linguistic Issues in Language Technology, Vols Linguistic Issues in Lan-
guage Technology, Volume 14, 2016 – Modality: Logic, Semantics, Annotation, and Machine Learning, 2016. https://
aclanthology.org/2016.lilt-14.7

[18] W. Hamilton, Z. Ying and J. Leskovec, Inductive representation learning on large graphs, Advances in Neural Information
Processing Systems 30 (2017). doi:10.48550/arXiv.1706.02216.

[19] S. He, F. Guo and S. Qin, Sarcasm detection using graph convolutional networks with bidirectional LSTM, in: Proceedings
of the 2020 3rd International Conference on Big Data Technologies, 2020, pp. 97–101. doi:10.1145/3422713.3422722.

https://doi.org/10.1109/ICICS55353.2022.9811196
https://doi.org/10.48550/arXiv.1908.07442
https://www.sciencedirect.com/journal/journal-of-pragmatics
https://www.sciencedirect.com/journal/journal-of-pragmatics
https://doi.org/10.1007/BF00116827
https://doi.org/10.18653/v1/S15-2119
https://doi.org/10.18653/v1/2020.figlang-1.12
http://ceur-ws.org/Vol-2776/paper-4.pdf
https://github.com/jcborges/DeepStack
https://doi.org/10.1109/ACCESS.2016.2594194
https://doi.org/10.1109/WiSPNET.2017.8300120
https://doi.org/10.1109/WiSPNET.2017.8300120
http://arxiv.org/abs/arXiv:1810.04805
https://doi.org/10.1007/s11704-019-8208-z
https://aclanthology.org/N13-1037
https://doi.org/10.1016/j.eswa.2021.116398
https://doi.org/10.1007/s11042-022-12930-z
https://doi.org/10.1109/IJCNN.2005.1555942
https://aclanthology.org/2016.lilt-14.7
https://aclanthology.org/2016.lilt-14.7
https://doi.org/10.48550/arXiv.1706.02216
https://doi.org/10.1145/3422713.3422722


R. Sharma et al. / DWAEF: deep weighted average ensemble framework 43

[20] M. Khodak, N. Saunshi and K. Vodrahalli, A large self-annotated corpus for sarcasm, 2017, arXiv preprint arXiv:1704.
05579. doi:10.48550/arXiv.1704.05579.

[21] S. Krishnakumaran and X. Zhu, Hunting elusive metaphors using lexical resources, in: Proceedings of the Workshop on
Computational Approaches to Figurative Language, 2007, pp. 13–20. doi:10.3115/1611528.1611531.

[22] J. Lemmens, B. Burtenshaw, E. Lotfi, I. Markov and W. Daelemans, Sarcasm detection using an ensemble approach,
in: Proceedings of the Second Workshop on Figurative Language Processing, 2020, pp. 264–269. doi:10.18653/v1/2020.
figlang-1.36.

[23] C. Liebrecht, F. Kunneman and A. van Den Bosch, The perfect solution for detecting sarcasm in tweets# not, 2013. https://
aclanthology.org/W13-1605.

[24] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm, Machine Learning
2(4) (1988), 285–318. doi:10.1007/BF00116827.

[25] S. Loria, TextBlob documentation, Release 0.15 2 (2018). https://buildmedia.readthedocs.org/media/pdf/textblob/latest/
textblob.pdf

[26] C. Lou, B. Liang, L. Gui, Y. He, Y. Dang and R. Xu, Affective dependency graph for sarcasm detection, in: Proceed-
ings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021,
pp. 1844–1849. doi:10.1145/3404835.3463061.

[27] S. Lukin and M. Walker, Really? well. apparently bootstrapping improves the performance of sarcasm and nastiness
classifiers for online dialogue, 2017, arXiv preprint arXiv:1708.08572.

[28] C.D. Manning, M. Surdeanu, J. Bauer, J.R. Finkel, S. Bethard and D. McClosky, The Stanford CoreNLP natural language
processing toolkit, in: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, 2014, pp. 55–60. doi:10.3115/v1/P14-5010.

[29] D.G. Maynard and M.A. Greenwood, Who cares about sarcastic tweets? Investigating the impact of sarcasm on sentiment
analysis, in: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14),
ELRA, 2014. http://www.lrec-conf.org/proceedings/lrec2014/pdf/67_Paper.pdf.

[30] P. Mehndiratta and D. Soni, Identification of sarcasm using word embeddings and hyperparameters tuning, Journal of
Discrete Mathematical Sciences and Cryptography 22(4) (2019), 465–489. doi:10.1080/09720529.2019.1637152.

[31] R. Misra and P. Arora, Sarcasm detection using hybrid neural network, 2019, arXiv preprint arXiv:1908.07414.
[32] S. Muresan, R. Gonzalez-Ibanez, D. Ghosh and N. Wacholder, Identification of nonliteral language in social media: A

case study on sarcasm, Journal of the Association for Information Science and Technology 67(11) (2016), 2725–2737.
doi:10.1002/asi.23624.

[33] D.Q. Nguyen, T. Vu and A.T. Nguyen, BERTweet: A pre-trained language model for English tweets, arXiv preprint, 2020,
arXiv:2005.10200.

[34] V. Niculae and C. Danescu-Niculescu-Mizil, Brighter than gold: Figurative language in user generated comparisons,
in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 2008–2018. doi:10.3115/v1/D14-1215.

[35] J. O’Donoghue, Is a metaphor (like) a simile? Differences in meaning, effect and processing, UCL Working Papers
in Linguistics 21 (2009), 125–149. https://www.semanticscholar.org/paper/Is-a-metaphor-(-like-)-a-simile-Differences-in-
%2C-*-O%E2%80%99Donoghue/b2241695af0ddfe136252b5f58a13c9895bd5333.

[36] E.W. Pamungkas, V. Basile and V. Patti, A joint learning approach with knowledge injection for zero-shot cross-lingual
hate speech detection, Inf. Process. Manag. 58(4) (2021), 102544. doi:10.1016/j.ipm.2021.102544.

[37] J.M. Pérez, J.C. Giudici and F. Luque, pysentimiento: a Python toolkit for sentiment analysis and socialNLP, 2021, tasks.
doi:10.48550/arXiv.2106.09462.

[38] J. Plepi and L. Flek, Perceived and intended sarcasm detection with graph attention networks, 2021, arXiv preprint arXiv:
2110.04001.

[39] M. Popa-Wyatt, Ironic metaphor: A case for metaphor’s contribution to truth-conditions, in: The Mind and Across Minds:
A Relevance-Theoretic Perspective on Communication and Translation, E. Walaszewska, M. Kisielewska-Krysiuk and
A. Piskorska, eds, 2010. https://philarchive.org/archive/MIHIMA.

[40] A. Rajadesingan, R. Zafarani and H. Liu, Sarcasm detection on Twitter: A behavioral modeling approach, in: Proceedings
of the Eighth ACM International Conference on Web Search and Data Mining, 2015, pp. 97–106. doi:10.1145/2684822.
2685316.

[41] M.S. Razali, A.A. Halin, L. Ye, S. Doraisamy and N.M. Norowi, Sarcasm detection using deep learning with contextual
features, IEEE Access 9 (2021), 68609–68618. doi:10.1109/ACCESS.2021.3076789.

[42] A. Reyes and P. Rosso, Making objective decisions from subjective data: Detecting irony in customer reviews, Decision
Support Systems 53(4) (2012), 754–760. doi:10.1016/j.dss.2012.05.027.

[43] E. Riloff, A. Qadir, P. Surve, L. De Silva, N. Gilbert and R. Huang, Sarcasm as contrast between a positive sentiment and
negative situation, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013,
pp. 704–714. https://aclanthology.org/D13-1066.pdf.

http://arxiv.org/abs/arXiv:1704.05579
http://arxiv.org/abs/arXiv:1704.05579
https://doi.org/10.48550/arXiv.1704.05579
https://doi.org/10.3115/1611528.1611531
https://doi.org/10.18653/v1/2020.figlang-1.36
https://doi.org/10.18653/v1/2020.figlang-1.36
https://aclanthology.org/W13-1605
https://aclanthology.org/W13-1605
https://doi.org/10.1007/BF00116827
https://buildmedia.readthedocs.org/media/pdf/textblob/latest/textblob.pdf
https://buildmedia.readthedocs.org/media/pdf/textblob/latest/textblob.pdf
https://doi.org/10.1145/3404835.3463061
http://arxiv.org/abs/arXiv:1708.08572
https://doi.org/10.3115/v1/P14-5010
http://www.lrec-conf.org/proceedings/lrec2014/pdf/67_Paper.pdf
https://doi.org/10.1080/09720529.2019.1637152
http://arxiv.org/abs/arXiv:1908.07414
https://doi.org/10.1002/asi.23624
http://arxiv.org/abs/arXiv:2005.10200
https://doi.org/10.3115/v1/D14-1215
https://www.semanticscholar.org/paper/Is-a-metaphor-(-like-)-a-simile-Differences-in-%2C-*-O%E2%80%99Donoghue/b2241695af0ddfe136252b5f58a13c9895bd5333
https://www.semanticscholar.org/paper/Is-a-metaphor-(-like-)-a-simile-Differences-in-%2C-*-O%E2%80%99Donoghue/b2241695af0ddfe136252b5f58a13c9895bd5333
https://doi.org/10.1016/j.ipm.2021.102544
https://doi.org/10.48550/arXiv.2106.09462
http://arxiv.org/abs/arXiv:2110.04001
http://arxiv.org/abs/arXiv:2110.04001
https://philarchive.org/archive/MIHIMA
https://doi.org/10.1145/2684822.2685316
https://doi.org/10.1145/2684822.2685316
https://doi.org/10.1109/ACCESS.2021.3076789
https://doi.org/10.1016/j.dss.2012.05.027
https://aclanthology.org/D13-1066.pdf


44 R. Sharma et al. / DWAEF: deep weighted average ensemble framework

[44] S.M. Sarsam, H. Al-Samarraie, A.I. Alzahrani and B. Wright, Sarcasm detection using machine learning algorithms
in Twitter: A systematic review, International Journal of Market Research 62(5) (2020), 578–598. doi:10.1177/
1470785320921779.

[45] S. Spolaor, C. Fuchs, P. Cazzaniga, U. Kaymak, D. Besozzi and M.S. Nobile, Simpful: A user-friendly python library for
fuzzy logic, International Journal of Computational Intelligence Systems 13(1) (2020), 1687–1698. doi:10.2991/ijcis.d.
201012.002.

[46] L. Wu, Y. Chen, H. Ji and B. Liu, Deep learning on graphs for natural language processing, in: Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 2651–2653.
doi:10.1145/3404835.3462809.

[47] L. Wu, Y. Chen, K. Shen, X. Guo, H. Gao, S. Li, J. Pei and B. Long, Graph neural networks for natural language
processing: a survey, 2021, arXiv preprint arXiv:2106.06090.

[48] L.A. Zadeh, Fuzzy logic, Computer 21(4) (1988), 83–93. doi:10.1109/2.53.

https://doi.org/10.1177/1470785320921779
https://doi.org/10.1177/1470785320921779
https://doi.org/10.2991/ijcis.d.201012.002
https://doi.org/10.2991/ijcis.d.201012.002
https://doi.org/10.1145/3404835.3462809
http://arxiv.org/abs/arXiv:2106.06090
https://doi.org/10.1109/2.53

	Introduction
	Related work
	Types of primitive feature sets used in sarcasm detection

	Motivation
	Simile
	Metaphor
	Clauses
	Motivation behind using a deep ensemble structure

	Methodology
	Data set preparation
	Data preprocessing
	Primitive features
	Frameworks for the proposed features
	GNN framework for simile detection
	BERT-based structure for metaphor detection
	Fuzzy logic-based approach for capturing polarity change in clauses

	DWAEF: The deep weighted average ensemble framework

	Evaluation, results and analysis
	Results obtained by the GNN-based simile detection framework
	Results obtained by the BERT-based metaphor detection framework
	Results obtained by the fuzzy-based polarity shift detection framework
	Comparison of results obtained by individual base learners and DWAEF with primitive and proposed features

	Conclusion and future work
	Appendix A. List of intensifiers, interjections and subordinating conjunctions
	List of intensifiers
	List of interjections
	List of subordinating conjunctions

	Appendix B. Implementation details
	The initialization preprocessing steps of the GNN-based simile detection framework
	The fuzzy rule set for detecting polarity shift in clauses

	References

