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Abstract. The mobile ecosystem is dramatically growing towards an unprecedented scale, with an extremely crowded market
and fierce competition among app developers. Today, keeping users engaged with a mobile app is key for its success since
users can remain active consumers of services and/or producers of new contents. However, users may abandon a mobile app
at any time due to various reasons, e.g., the success of competing apps, decrease of interest in the provided services, etc.
In this context, predicting when a user may get disengaged from an app is an invaluable resource for developers, creating the
opportunity to apply intervention strategies aiming at recovering from disengagement (e.g., sending push notifications with new
contents).In this study, we aim at providing evidence that predicting when mobile app users get disengaged is possible with a
good level of accuracy. Specifically, we propose, apply, and evaluate a framework to model and predict User Engagement (UE)
in mobile applications via different numerical models. The proposed framework is composed of an optimized agglomerative
hierarchical clustering model coupled to (i) a Cox proportional hazards, (ii) a negative binomial, (iii) a random forest, and (iv) a
boosted-tree model. The proposed framework is empirically validated by means of a year-long observational dataset collected
from a real deployment of a waste recycling app. Our results show that in this context the optimized clustering model classifies
users adequately and improves UE predictability for all numerical models. Also, the highest levels of prediction accuracy and
robustness are obtained by applying either the random forest classifier or the boosted-tree algorithm.
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1. Introduction

Mobile applications (hereinafter “apps”) dominate the digital world today, reaching incredible num-
bers and showing no signs of slowing down its market growth anytime soon [28]. For example, as of
March 2018, there are more than 3.3 million Android applications available [44], with more than one
thousand apps being published everyday [28]. Mobile apps are not only being published in large num-
bers, but are also being consumed by users in large numbers, with more than 1.5 billion downloads from
Google Play Store every month [2]. A medium of such a large scale leads to a crowded market with
strong competition. Under this perspective, mobile app developers must keep their users active over a
sufficiently long period of time to be considered successful. Recognizing and understanding user moti-
vations are key to leading to a greater app usage [25]. To date, despite significant efforts, over 95% of
smartphone owners stop using an app by the end of the third month of download [38]. In other words,
the majority of mobile solutions fail to achieve long-term usage. This can be explained by a variety of
reasons, such as lack of personalization, user context, and finally failure to seamlessly integrate with
other apps or technologies [45,48].

A high disengagement rate is obviously non desirable to app developers, whose success depends on
the usage of their app. Furthermore, it is also a problem for researchers and other professionals who
use apps to provide services aimed at improving the user’s quality of life. For example, waste recycling
has been shown to be a positive practice for improving sustainability and diminishing carbon emissions
[26,32]. Waste recycling apps can be used as an effective tool to help users engage in recycling [6]. They
can achieve this with game-like features that remind and reward the user for consistently recycling.
However, for the app to succeed, it must be regularly utilised by the user. Hence, as a crucial quality, it
must be engaging. Crafting personal “smart interactions” is an effective way to ensure that users remain
active, on-line, and motivated [11]. Furthermore, tailored interactions aim to maintain, encourage and
ultimately increase app usage over time. Take people tracking as an example: mobile location tracking
has to be used on a opt-in basis, due to privacy issues [43]. However, once a device is being tracked,
apps may send out alerts when the tracking is turned off aiming to prevent the user to go off-line. The
nature of these interactions may vary wildly, since it is likely that users react very differently to such
interventions [4].

In the context of this study, UE can be intuitively defined as the assessment of the response of the
user to some type of activity or service provided by the mobile app. For example, in social networking
apps (e.g., Facebook or Twitter) UE is about user’s posts, comments, and interaction with other users;
differently, in shopping apps (e.g., Amazon or Wish) UE is about the products being purchased, being
listed, saved for later purchases, and so on.

Despite there being a good understanding of what is UE in different domains and which factors con-
tribute to it, there seems to be a lack of literature on whether it is possible to predict UE in mobile apps
and how different methods perform.

In this study, we provide evidence that it is possible to predict the engagement of mobile app users
with good levels of accuracy. We achieve this result by characterizing and evaluating a framework for
predicting user engagement of mobile apps. The framework is based on the application of different
types of numerical models, i.e., survival, counts, and classification. The numerical models take as input a
minimal set of information about the user, which are relatively straightforward to collect at run-time, e.g.,
the current point balance of the user (assuming the app is employing a potentially implicit gamification
mechanism), the time of the last interaction with the app, geographic position, etc. In this study, we
explore four different types of numerical models, namely: (i) survival analysis, (ii) negative binomial
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regression, (iii) random forest, and (iv) gradient-boosted trees. In order to complete our approach, one
of the most important steps to achieve better predictions is to group users based on their past behaviour
[31]. In that way, it is possible to separate – or “cluster” – users based on how (often) they interact
with the mobile app. Therefore, we also incorporate a clustering algorithm to our proposed framework,
aiming at targeting user interactions more accurately by means of drawing similarities between users
[31].

We empirically evaluate the performance of our proposed numerical framework in predicting UE on an
industrial dataset, which has been built in the context of a real mobile app in the area of waste recycling.
The dataset is composed of approximately 27,000 entries distributed over 1500 unique users.

Summarizing, the main contributions of this study are:

• a reusable framework for modeling and predicting UE in mobile apps;
• a characterization of UE by means of 4 different types of numerical models;
• the empirical evaluation of the prediction accuracy of the 4 different types of numerical models in

the context of a waste recycling mobile app.

The contributions above benefit both mobile apps developers and researchers. Developers can re-
use the proposed framework for accurately predicting the engagement of their users at run-time and
counteract it in a timely fashion (e.g., by sending a push notification for triggering new conversions) –
see [42], and (ii) learn from the evaluated numerical models which one is better suited for their own
mobile app. We support researchers since we (i) provide evidence about how various numerical models
can accurately estimate UE in mobile apps and (ii) provide a framework for modeling and predicting
UE, which can be further extended or used in other scientific studies.

It is important to note that the aim of this study is not to provide a general solution for predicting UE
for all mobile apps, instead we aim at providing (i) evidence that it is possible to predict UE with good
levels of accuracy and (ii) a flexible framework for modeling and predicting UE in mobile apps which
can be re-used by both researchers and practitioners in other projects, provided that it will be customized
according to the app under consideration, its usage scenarios, and the available data.

The remainder of this paper is organized as follows. Section 2 presents the fundamental background
needed throughout this research. Section 3 presents the modeling framework, whereas the results of
the evaluation of the prediction accuracy of the modeling framework are reported in Section 4. Finally,
Section 5 discusses and puts into context the obtained results and Section 6 closes the paper.

2. Background

In this section we provide background information about the definition of user engagement in the
context of mobile apps (Section 2.1) and present the waste recycling app dataset (Section 2.2).

2.1. Defining User Engagement

User engagement is not a trivial concept to define, especially in the mobile segment. As a first attempt,
UE can be described as a proxy for quantifying an outcome or, more generically, interpreting an action.
In [37] the authors summarized and combined several prior definitions of engagement. They argue that
UE consists of users’ activities and mental models, manifested as attention, curiosity and motivation.
As shown in Fig. 1, UE can be seen as a process composed of four main steps, namely: users (i) start
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Fig. 1. Overview of UE life cycle. The arrows indicate the possible places of interaction with technology. Figure inspired in the
four-step engagement process proposed by [37] and [36].

engaging with a mobile application, (ii) remain engaged, (iii) disengage, and finally (iv) potentially re-
engage. Building on that argument, in a later study, the same authors argued that engagement is not
only a product of experience, but also a cycle-process that depends on the interaction with technology
[36]. Closely related to [36] and [27,34] defined UE as the quality of the experiences that emphasize the
positive aspects of the user interactions.

More recently, on-line behaviour was analysed to better understand the temporal evolution of UE
in massive open on-line courses [39]. Their findings suggest the use of diverse features – such as last
lecture watched, last quiz taken, and current/total number of posts – as good quantitative indicators for
modelling UE at different points in time. In their study, they used these parameters to accurately predict
student survival rates already at the beginning of the course [39].

In the remaining of this section we introduce the fundamental concepts associated with the numerical
tools used to model UE in mobile apps. Naturally, the first point to address here is to properly classify
if a customer is engaged or not at the present time. Different definitions can be used – or combined – to
address that. Here, we discuss:

• the application is still installed on their phone after a certain number of days;
• the number of user activities is bigger than a given threshold;
• the frequency of user activities is higher than a given threshold.

One of the simplest definitions available is called User Engagement Index (UEI ). The UEI compares
the time of inactivity with the time the customer has been engaged. Mathematically it reads:

UEI = LastEvent − FirstEvent

Today − FirstEvent
, (1)

where all the terms on the right-hand side are dates. We see in Equation (1) the ratio of the time difference
between both last event and present time to the time of the first interaction. If UEI > 0.5 (where 0.5 is
a threshold defined a priori) the user is considered engaged today.

Another possible way to determine UE is by defining a threshold on the recency (R). This threshold
has to be calculated to determine if the time between actions is (long)short enough for the user to be
considered (dis)engaged. Recency is trivially defined in Equation (2):

R = �t, (2)

where �t is the time past between one action and its subsequent action. In doing so, user engagement
based on recency (UER) can be calculated for every interaction, and not only for the last one as in UEI .

We base the choice of threshold to determine UER on the statistical distribution of R. The threshold
is set as being at the edge of one standard deviation from the average recency. By doing so, we ensure
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that to be considered disengaged the user’s recency has to be less than around 32% of our entire sample
recency. That is a compromise between allowing for later re-engagement (by not tackling only users
at the very end of the distribution, i.e. almost totally disengaged) and not sending too re-engagement
messages to still engaged users (users close to the center of the distribution). Similarly to UER, we
explore the fact that user engagement can also be defined by setting a threshold on the total number of
actions (AT ) a user performed within a given time frame. Mathematically, it reads:

AT =
tN∑

t0

A(t), (3)

where t0 and tN are respectively the initial and final times of the counting. Every user surpassing a given
threshold can be considered engaged.

2.2. The waste recycling app dataset

In this study, we use a dataset from a mobile app that promotes waste recycling. The app grants
points every time an event is performed by the user, e.g., disposing trash in their selected bins, reading
educational material, or inviting friends to join the app. These points can then be redeemed for rewards
at selected partners, such as savings on local shops or discounts on sustainable goods. Extending the
framework described in [33] for tablets, we argue that the app needs to be designed and optimized
having in mind that the user is most likely on their mobile phone either redeeming points at a shop or
collecting points at the recycle bin. That is fundamental to create an intuitive interface that facilitates
these activities and promotes engagement.

The dataset contains approximately 27,000 entries distributed over 1500 unique users and 122 vari-
ables. The data was collected between April 2015 and January 2016. Each entry of the dataset contains
the following 6 features:

(1) the current point balance of the user,
(2) the time of the user’s last event within the app,
(3) the number of days since the last event,
(4) the current weekday,
(5) the current ZIP code,
(6) the current geographical position of the user in terms of latitude and longitude.

We expand each of the 27,000 entries of the dataset to contain 122 unique variables in total. We
achieve that by first generating combinations of these variables, e.g. number of days since the first event
during weekdays or time of the user’s last event within the app during a weekday/weekend. We then
proceed to calculate the following statistics (max/min/mean/med/sum/sd) for all of the variables. That
allows for more feature creation, e.g. standard deviation of the number of days since the first event
during weekdays. We calculate the most simple statistics such as mean of the current point balance or
minimum number of days since last event, but also combinations of variables with statistics – such as
median of the minutes since last event per user in a certain zip code, or the standard deviation of the
number of days since the first event during weekdays. Note that geographical position provides more
detailed information than just zip-code, given that there may be more than one recycle bin in a given
area.
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Fig. 2. Sketch of users lifespan over time. The red lines indicate customers engaged after the end of the training period.

Figure 2 shows the strategy that we follow for splitting the dataset into four main subsets, namely:
training, test, cross-validation, and validation sets [19].

Specifically, a fraction of the dataset (60%) is used to train our models and the remaining data to
test (20%) and cross-validate (20%) their performance. The last three parts (observation 1, 2, 3) are the
validation sets. They also start at the beginning of the dataset (April 24) and continue after the end of
the training period – as shown in Fig. 2.1 It is important to mention that the validation sets only contain
users that remained active, or started new interactions after the training period. Those are depicted in red
in Fig. 2. We highlight that this setup is general/flexible enough to be used by all our numerical models.

Concerning the definitions of UE, in this study, we rely on the definitions based on recency (see
Equation (2)) and total actions (see Equation (3)). The user engagement index (see Equation (1)) does
not fit the purpose of this study since it is a too coarse-grained definition and it does not provide any
information concerning the daily evolution of UE. In our case, the threshold for recency is set constant
and equal to 9 days. For the counting model, we choose a threshold of 5 interactions per 2 weeks. These
thresholds have been defined based on (i) a number of informal interviews we had with professionals
working in the company developing the waste recycling app and (ii) the need to simulate the quick
reaction of the app as soon as the users start to be disengaged. We extensively experimented with a series
of other levels of the recency and interaction thresholds around the ones used in this study, and the
results of the re-applied models did not significantly vary in all the cases (<5%). For the sake of brevity,
we do not report the whole set of the performed replications in this study. Finally, it is important to note
that the values of the thresholds used in this study strongly depend on the application domain (i.e., waste
recycling, in our case); we suggest researchers and developers willing to re-use our framework in other
domains/organizations to fine tune the selected thresholds according to the specific characteristics of
the app under consideration and its typical usage scenarios (e.g., social media users may be considered
disengaged much earlier than after 9 days of total inactivity). In addition to that, note the modelling
results – especially the quantitative component – discussed here remain specific for this dataset. Hence,
it should not be directly transferred to other application domains. Instead, the main contribution of
this paper lies on the fact that we show, by means of different types of algorithms, that it is possible to
accurately predict user engagement as well as a reusable framework that can be used to better understand
UE in mobile apps.

1For simplicity, we extrapolate the use of the term training period to indicate the period between April 24 and Dec. 1, 2015.
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3. Modelling User Engagement of mobile apps

In this Section, we detail our modelling strategy and explain the multiple steps and assumptions we
make to predict UE or counts (actions) until disengagement. Here, despite the numerical model we
choose, the first step is to describe the process of assigning our users to different groups, the so-called
clustering process. In doing so, we are firstly grouping similar users together in order to reduce uncer-
tainties and improve the predictability of our numerical models [31].

3.1. The clustering model

In this study, we use a modified Agglomerative Hierarchical Clustering (AHC) model [17]. That
means, we assign each data point to one exclusive cluster, and then combine the two clusters that are
closest to each other. This process is repeated until there is only one cluster left – containing all the ob-
servations. We utilize average linkage to perform the clustering, i.e., the average distance between each
point in one cluster to every point in the other cluster. We use the so-called Pearson-γ correlation as our
criterion to select an appropriate number of clusters [1,24]. This metric looks at the correlation of all the
distances between data points and a binary matrix, that is equal to zero for every pair of observations in
the same cluster and equal to 1 in case points are in different clusters.

Hierarchical clustering methods require a distance metric to define similarity between two observa-
tions. Here, we implement the so-called Gower’s metric [22] with optimal weights, as proposed in [47].
This metric allows for the calculation of the dissimilarity between rows of our dataset for nominal,
binary, and ordinal variables. The optimization is done with the intent to maximize the cophenetic cor-
relation coefficient (CPCC), see [40]. The CPCC is the correlation between the distance matrix used for
the clustering and the cophenetic distance matrix of the resulting hierarchical clustering. This cophenetic
distance matrix is calculated as the distance at which two observations are combined into one cluster.

The optimization of the CPCC is done through the use of the L-BFGS-B method (Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm with Bounds), a Quasi-Newton algorithm which uses
the first order derivative of a given function and an approximation of its second-order derivative to
obtain the extrema of the given function (non-linear optimization) – see [35]. We apply this method to
iteratively search for an optimal set of weights to Gower’s metric to optimize the CPCC of the resulting
agglomerative hierarchical clustering. The bounds of the L-BGFS-B method are set to [0, 1] to ensure no
weight is negative. Next to that, we also use an approximation of the analytical derivative of the CPCC
with respect to the weights to ensure we do not have to use finite differences for the L-BFGS-B method,
hence significantly reducing computation time [47].

As the last part for the configuration of our clustering, we choose which variables we consider to be
used for clustering. The variables we pick determine what our clusters represent. As an initial set of
variables for our clustering algorithm, we choose all 122 variables mentioned above. In this context,
our clusters represent different characteristics of the users and their behaviour, ranging from regional
data to frequency of use and point collection. Users in the same cluster are thus expected to be more
similar when it comes to app behaviour and geographical location compared to those in other clusters.
Hence, these clusters capture useful information for our different user engagement models to use in their
predictions.

With our users set to a particular cluster, we use these results as a predictor of UE improving modelling
results [47]. In the next subsections, we explain the numerical models we use to predict UE for every
user. We detail the three different model types – survival, counts, and classification – to evaluate the
potential of each approach and the validity of their assumptions.
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3.2. The Cox proportional hazards model

In this subsection, we explore the Cox Proportional Hazards model [15]. The Cox Proportional Haz-
ards (CPH) model is a very popular regression model that calculates survival times based on the effect
of selected predictors. It becomes especially useful here since our predictors are (highly) non-linearly
related and we may not know their distributions beforehand. Another advantage of the CPH model is the
fact that it is able to handle missing observations, i.e. sparse user interactions. The CPH model only re-
quires as independent parameters (i) the time of the analysis and (ii) the engagement status. In our case,
the status indicates if disengagement happened or not at any particular time. With these two parameters,
we estimate two functions called conditional survival and baseline hazard. The former provides the prob-
ability of not experiencing disengagement while the latter gives the probability that disengagement will
occur up to a given time – see [16]. In our context, the term proportional hazard indicates that the hazard
ratio comparing two observations is constant in between events. Furthermore, the impact of the different
factors on the hazard remains constant over time [5]. We use a threshold equal to 0.5 to determine en-
gagement/disengagement and follow [23] to ensure monotonic Receiver Operating Characteristic (ROC)
curves by means of the nearest neighbor method.

3.3. The negative binomial model

Here, we describe a regression model with count data (negative binomial model). This approach is
interesting because, in contrast to the CPH model, it allows us to model re-engagement. Here, rather
than the time of disengagement, we aim to predict the total number of actions before disengagement.
The idea is to target smart interactions aiming to keep the user engaged if the actual counts fall too close
from the prediction of disengagement. Briefly, the negative binomial (NB) distribution is the distribution
of the number of trials (actions) needed to get a fixed number of failures (in our case disengagement) –
see [30]. This distribution describes the probabilities of the occurrence of integers greater than or equal
to 0. By analyzing the distribution function, we can set a threshold on the probability of disengagement
and extract the number of counts before disengagement. NB is specially suitable to model over-dispersed
count variables. This specific regression method is implemented by fitting a generalized linear model
using a boosting algorithm based on component-wise univariate linear models – see [8,10], and [9]. In
each boosting iteration, a simple linear model is fitted (without intercept) to the negative gradient vector
and in the update step only the best-fitting linear model is used. This machine learning method optimizes
prediction accuracy and carries out variable selection. In our case, we perform 500 non-centered boosting
iterations with a step length equal to 0.05.

3.4. The random forest model

The RF model [7] basically creates many random independent subsets of the dataset containing fea-
tures and a training class. In our case, the features are the information about the user, e.g. number of
interactions and type of interaction, and the class is simply a flag indicating engaged or disengaged at
that particular moment. These subsets are used to create a ranking of classifiers. It is important to state
that RF models are typically accurate and computationally efficient. The randomness component ensures
the RF model to generalize well, and to be less likely to overfit [29].

In contrast to the other approaches, the RF model is not predicting days (CPH) or counting actions
to disengagement (NB). Here, based on past behaviour, we use the RF algorithm as a classifier (en-
gaged/disengaged) at the moment. That means, we obtain as outcome a probability value ranging be-
tween 0 and 1. With that in hand, we define a cutoff threshold to determine if the user is engaged or
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disengaged. For our dataset, the cutoff threshold is chosen as equal to 0.42 as it maximizes the F1 score
[21].

Interestingly, the RF classification has a predictive component. This is because the RF model simulates
UER. As shown in Section 2.2, this metric is defined as the difference in days between an action now and
in the next 9 days. Due to that, we assume that our results are “valid” not only at the moment but within
the recency threshold as well. Note that this links the validity of the RF model to the recency threshold.
This further motivates the choice of a short recency time, just enough to allow the app developer to send
re-engagement notifications and monitor their effectiveness.

To build this random forest model, we use 1000 non-stratified trees with replacement (to decrease
variance without increasing bias). The number of variables randomly sampled as candidates at each
split equal to 10. We use a 10-fold cross validation with 5 repeats to augment model accuracy without
increasing bias. The cross validation involves splitting our dataset into 10 subsets. Each subset is then
put apart and the model is trained on the leftover subsets. The overall accuracy of our model is then
determined after averaging the results obtained with the 5 individual repeats.

3.5. The XGBoost model

The last approach used to predict UE takes advantage of boosted-trees algorithms. XGBoost is a
very popular and scalable end-to-end tree-boosting system [13] currently applied to several different
fields of knowledge, such as Physics, stock market prediction, biology and language networks, among
others [12,14,18,46]. In a nutshell, this classifier constructs trees to make the predictions, but unlike RF,
where every tree provides a definite answer and the final result is obtained by a voting process (i.e.,
bagging), every tree in XGBoost contains a continuous score, which are combined to provide an answer
(i.e., boosting). Despite differences with the RF algorithm, the implementation and the use of XGBoost,
however, is done very similarly. We utilize the same features to train the model and the output is also a
probability percentage indicating whether the user is disengaged at the moment. We use a small learning
rate equal to 0.001 to ensure convergence and error minimization. The maximum depth of each tree is
capped at 15 and the maximum number of trees is fixed at 1000 (similar to RF).

4. Evaluation of predicting User Engagement of mobile apps

In this section we report on the empirical evaluation of the proposed modeling framework in the con-
text of a waste recycling mobile app. Specifically, we aim at answering the following research questions:

• RQ1 – To what extent using a clustering algorithm impacts the accuracy of UE prediction?
• RQ2 – Which types of numerical models provide the most accurate UE prediction?

∗ RQ2.1 – What is the prediction accuracy of the Cox proportional hazards model?
∗ RQ2.2 – What is the prediction accuracy of the negative binomial model?
∗ RQ2.3 – What is the prediction accuracy of the random forest model?
∗ RQ2.4 – What is the prediction accuracy of the XGBoost model?

We begin by showing the performance of our AHC algorithm followed by the predictions of UE for
our other numerical models. We highlight that a direct comparison between numerical models is not
always possible due to their different natures – classification and regression. Thus, we aim to charac-
terize and evaluate them mostly individually. When possible, we try to place our results in a broader
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Fig. 3. Pearson-γ correlation for the AHC – optimized (blue) and standard (red) – against the number of clusters.

perspective. To keep to the brief character of this manuscript we summarize our model results in terms
of ROC curves [20]. These are plots that illustrate the performance of a binary classifier, outlining their
overall performance. The true positives are defined as the engaged users who were correctly classified as
engaged by our model. False negatives represent the engaged users incorrectly classified as disengaged.
The area under the ROC curve (AUC) represents the model accuracy, where unity means a perfect model
and 0.5 indicates a random result. We use the ROC curve as our performance indicator – similarly to
[34] – because it evaluates the performance of the models across all possible thresholds. In addition,
AUC delivers a result comparable across all our model approaches and is threshold independent. This is
important in our case since the impact of a false positive vs false negative is comparable.

4.1. Impact of the clustering model (RQ1)

Implementing the weight-optimized Gower’s metric – as described by [47] – augments the CPCC by
around 15% (from 0.84 to 0.97) if compared with the case where all weights are set to unity. We calculate
the Pearson-γ correlation for our dataset to further investigate the benefits of our optimized clustering
methodology. The results are shown in Fig. 3.

Implementing the optimized weights for Gower’s metric increases the Pearson-γ correlation by around
11%. That, together with the 15% improvement in the CPCC, indicates that our methodology to optimize
weight works significantly better than the standard procedure. We note a slight decrease in the Pearson-
γ correlation for the AHC optimized results at 4 clusters followed by a sharp decrease at 13 clusters.
From the 13 clusters with a high Pearson-γ correlation, 4 main clusters contain around 98% of the total
amount of unique users. Nevertheless, we include all 13 clusters in our analysis to ensure that these
outliers do not influence these main 4 clusters.

4.2. Prediction accuracy of the Cox proportional hazards model (RQ2.1)

In Fig. 4 we show our results for the CPH model. We do so, by means of a ROC plot for four different
time spans within the testing set.

We observe in Fig. 4 the predictions for increasing time spans. As expected, the ROC curves approach
the diagonal line (random prediction) as we move forward in time. Note that these predictions are based
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Fig. 4. ROC curves for the CPH model based on the testing set. TP and FP indicate true positive and false positive, respectively.
The legend indicates the different time spans.

Fig. 5. ROC curves for the NB model. The legend indicates the datasets. The timespan is fixed to 14 days.

on the testing set, and not yet on the validation sets. That is because, at this stage, we are interested in the
generalization capabilities of this model. We explain: these ROC curves are derived from the survival
chance as a function of time. This means 100% survival chance for day 0, decaying eventually to 0% as
time progresses (Kaplan–Meier curve). Based on the these probabilities, the ROC curves are generated
within the testing set as an universal discrete prediction for the CPH model from 9 to 39 days. We see
that both short- and long term predictions are accurate. The AUC ranges from 0.8 to 0.91 for 39 and 9
days, respectively.

4.3. Prediction accuracy of the negative binomial model (RQ2.2)

Figure 5 presents the ROC curves for the NB model. Contrarily to the CPH model, the NB model
predicts actions until disengagement. That means it would be fairly impossible to create a binary classi-
fier able to estimate the exact number of actions before disengagement. Instead, we use 5 counts per 14
days as a threshold to determine if a user is engaged or not. In this case, a user is considered engaged
if exceeding the threshold. Nevertheless, we note that the outcome is inferior compared to the results
obtained by the CPH model. Due to the unexpected results for the testing set, we also analyze the perfor-
mance of the NB model for the validation sets. The results, shown in Fig. 5, remain reasonably similar
to the ones obtained for the testing set. The AUC is fairly constant and equal to 0.67 for all the sets.

Figure 6 presents the number of events observed and predicted by the model to further understand the
performance of the NB model.
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Fig. 6. Comparison between the number of events predicted (black) and observed (red) for the different sets, as indicated in the
headers. The time span is fixed to 14 days.

Besides the fact that some of the predictions coincide with the observations, a very significant part of
the observed values is crudely underestimated by the model. That means the model is able to reasonably
predict the so-called “true positive” values but fails to predict the “true negative” ones. These results
suggest that this model is, to a certain extend, accurately predicting the right counts to disengagement,
albeit with many inaccurate predictions included as well.

4.4. Prediction accuracy of the random forest model (RQ2.3)

In Fig. 7, we visualize the ROC curves for the RF model applied to the different sets. We find that the
AUC ranges from 0.93 to 0.83 for the testing and validation 3 sets, respectively. The high AUC values
mean that the RF model is generic enough to classify our user as engaged or disengaged for all our
dataset.

To further understand which processes/features determine the behaviour of this model, in Table 1
we show the mean decrease in accuracy (MDA) for some of the predictors. The MDA is calculated
by permuting the values of each predictor and then measuring by how much the predictive accuracy
decreases.

In our case, removing groups, number of actions, longitude, or weekday, from the predictors list would
decrease the accuracy of this model by over 30%. We point out to the reader that the MDA is computed
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Fig. 7. ROC curves for the RF model. The test set curve is shown in red, followed by the validation 1, 2, and 3 sets in green,
blue, and cyan, respectively.

Table 1

Selection of predictors and their respec-
tive mean decrease in accuracy (MDA)

Predictor MDA (%)
Groups 36.5
Number of actions 35.5
Longitude 34.0
Weekday 33.5
Latitude 27.0
Observation time 21.0

after the RF is trained. Therefore, training the model without these predictors will not drop the per-
formance by the amounts shown in Table 1. Instead, the new model may find new correlated features
unknown to the current model. We also notice in Table 1 the importance of adequately clustering users
since groups, calculated with the optimized AHC algorithm, is responsible for the highest MDA value.

4.5. Prediction accuracy of the XGBoost model (RQ2.4)

Figure 8 presents the XGBoost curves for the different sets. The AUC range is virtually the same as
the one for the RF, with the values from 0.93 to 0.82 for the testing and validation 3 sets, respectively.

To keep our comparison similar to that of the RF we have selected the same predictors and seen if there
was any difference in their relative importance distribution. To calculate their importance we examined
the “Gain” value. Interestingly, we see that the order of the importance remains the same as per the RF
with “groups” being the predictor with the highest Gain value (0.06) and “obs time” with the lowest
(0.0001). That reinforces the importance of having well-defined and accurate groups as output from the
clustering algorithm.

5. Discussion

Concerning RQ1, the modified clustering algorithm containing optimized weights for Gower’s met-
ric performed adequately. The results showed an improvement of ≈11% on the Pearson-γ correlation,
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Fig. 8. ROC curves for the XGBoost model. The test set curve is shown in red, followed by the validation 1, 2, and 3 sets in
green, blue, and cyan, respectively.

and ≈15% on the cophenetic correlation, if compared to a standard clustering methodology. The clus-
tering outcome proved to be the most important predictor for both RF and XGBoost algorithms. That
provides further motivation to optimize the clustering process aiming at sharpening the groups definition
and as a consequence improve the machine learning results.

Concerning RQ2, we applied the four models on the dataset and analysed the results obtained, mainly
via the use of ROC curves. All models performed well, in their own right, with Cox proportional hazards,
random forest and the boosted-tree models resulting in similar performance when predicting UE. The
performance of the negative binomial model was not comparable to the other three algorithms. Most
importantly, we concluded that under this framework we were able to better understand our observations.

As shown in Section 4, CPH, RF and XGBoost models result in similar values of accuracy. Their
AUC values are similar, ranging roughly from 0.8 to 0.9. Our fourth model, the NB model, resulted in
an AUC of 0.67. It is important to re-iterate that this AUC values should be taken as individual measures
of performance and not used to compare models, as the manner of predicting and even the element of
prediction is different according to the algorithm used.

Even with a high AUC score, there are still, however, a number of caveats concerning the general-
ization of the CPH model. More specifically, the results obtained with this model vary significantly for
different sets of predictors. Interestingly, the good results found by the RF and XGBoost models can be
partially explained by their generality. We will take advantage of this feature and use these models to
“classify” UE in the future as well.

We are also interested to model re-engagement. Given the fact that the CPH model is unable to do so
(since it predicts survival times), a Markov-like stochastic model becomes then a plausible replacement.
The reason is that these models are able to provide the transition paths between engaged-disengaged and
to obtain the rate parameter of these transitions. We emphasize that the RF and XGBoost models are
also able to model re-engagement. In the near future, we aim to compare in detail the results obtained
by the RF and XGBoost, with the transition model.

Finally, it is important to note that the accuracy we obtained in our evaluation is specific to the dataset
related to the waste recycling app and cannot be directly transferred to other mobile apps or application
domains. Indeed, the aim of this study is not to provide a general solution for all mobile apps in all
domains, but rather, we focus on (i) providing evidence that it is possible to predict when app users are
getting disengaged with good levels of accuracy and (ii) providing a reusable modeling framework for
UE in mobile apps. Researchers and practitioners in application domains other than waste recycling can
re-use our proposed framework and its underlying techniques, provided that they will be customized
according to (i) the characteristics of their specific app domain (e.g., a user of a social media app may
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be considered as disengaged after 1 day of inactivity, instead of 9 days) and (ii) the performance of the
trained models (e.g., in a different domain the negative binomial model may perform better than RF or
XGBoost).

6. Summary and future work

In this study, we provided evidence that predicting when users of mobile apps get disengaged is pos-
sible with a good level of accuracy. We achieve this result by proposing and evaluating a framework
to model and predict user engagement in mobile applications. The framework consists of a modified
clustering model that serves as baseline for other four numerical models: (i) a Cox proportional hazards,
(ii) a negative binomial, (iii) a random forest, and (iv) a boosted-tree algorithm. These models were
trained and validated against an observational dataset obtained from a real waste recycling mobile ap-
plication. Our results show that in our case both machine learning approaches (RF and XGBoost) are
adequate to model user engagement for the considered app. In this study, we tested our framework on
data obtained from a waste recycling app. Hence, our findings would likely remain valid only for applica-
tions with usage dynamics and features similar to those within the waste recycling domain. Specifically,
geographical information plays a crucial role to determine different user behaviours (as seen in our
study) and hence a successful application of this methodology to a different domain would most likely
be dependent of a strong tie to location. As an example, domains such as fitness or language learning
[3,41], tend to have daily activities presented to the user in a game-like manner and have a strong tie
to the user’s location. Given these were key features used to train our models, it is plausible that this
framework could be applied to these and other similar domains.

Analyzing user behaviour to predict and prevent disengagement certainly poses a significant chal-
lenge, both from the methodological and analytical points of view. Due to the complexity of this task,
we limited this study to characterizing and evaluating our methodology to predict UE. In a follow-up
study, we will investigate how to ultimately influence user behaviour by increasing re-engagement rates
and decreasing disengagement. Moreover, further research will touch upon studying the re-engagement
process. We then intend to use push notification information – extending on the work of [42] – to ulti-
mately determine the most appropriate interaction for each user at any given time, aiming to augment
usage (maintain engagement) and prevent disengagement. Understanding the role gamification plays in
mobile apps is also crucial. It can be done by further investigating how people redeem their points earned
(e.g. immediately after achieving a minimum threshold or after some accumulation). That information
helps in determining the type of notification that can be sent to each user.
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