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Abstract. We study the computational content of the Radon-Nokodym theorem from measure theory in the framework of the
representation approach to computable analysis. We define computable measurable spaces and canonical representations of the
measures and the integrable functions on such spaces. For functions f , g on represented sets, f is W-reducible to g if f can be
computed by applying the function g at most once. Let RN be the Radon-Nikodym operator on the space under consideration and
let EC be the non-computable operator mapping every enumeration of a set of natural numbers to its characteristic function. We
prove that for every computable measurable space, RN is W-reducible to EC, and we construct a computable measurable space
for which EC is W-reducible to RN.
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1. Introduction
The Radon-Nikodym theorem is one of the fundamental theorems in measure theory. In textbooks versions of various
generality are proved [1, 2, 10–12, 16, 21]. We will study aspects of effectiveness of the following fairly general
version.

Theorem 1.1 (Radon-Nikodym). Let (Ω,A,λ) be a measured space where λ is a σ-finite measure. Let µ be a finite
measure that is absolutely continuous w.r.t. λ. Then there exists a unique function h ∈ L1(λ) such that for all A ∈ A,

µ(A) =
∫

A
h dλ.

The function h is called the Radon-Nikodym derivative, or density of µw.r.t. λ, and is denoted by dµ
dλ . A measure µ

is called absolutely continuous w.r.t. a measure λ, µ� λ, if (λ(A) = 0 =⇒ µ(A) = 0) for all measurable sets A. We
mention that the condition (∀A ∈ A)µ(A) =

∫
A h dλ is equivalent to the condition (∀f ∈ L1(µ))

∫
f dµ =

∫
f h dλ.

In this article we ask whether the function h can be computed from the measures λ and µ. An answer can be
given only relatively to computability concepts on the measures and functions under consideration, which must be
defined in advance. For studying computability on general spaces we use the representation approach for computable
analysis (TTE, Type Two theory of Effectivity)[8, 19, 31]. In TTE computability on finite words w ∈ Σ∗ and infinite
sequences p ∈ ΣN is defined explicitly, for example by Turing machines, and then such finite or infinite sequences
are used as names of abstract objects.
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For the special application in measure theory we introduce computable measurable spaces and representations
of measures and of integrable functions. In this setting, the Radon-Nikodym operator RN mapping λ and µ to the
function h is not computable. We characterize its degree of non-computability in the ≤W hierarchy of problems on
represented sets [6, 7, 28]. Let EC be the non-computable operator mapping every enumeration of a set of natural
numbers to its characteristic function. We prove that for every computable measurable space the operator RN can be
computed with a single application of EC, that is, RN ≤W EC. On the other hand we construct a simple computable
measurable space such that EC can be computed with a single application of the operator RN on this space, that is,
EC ≤W RN.

In Section 2 we summarize very shortly some definitions from TTE. In Section 3, we define computable
measurable spaces with representations of the σ-finite measures and the finite measures and integrable functions.

In Section 4 we prove that for a computable measurable space the Radon-Nikodym operator RN, mapping every
σ-finite measure λ and every finite measure µ� λ to the Radon-Nikodym derivative h = dµ

dλ can be computed
with a single application of the operator EC, that is RN ≤W EC. In the proof we use two classical theorems: Levy’s
zero-one law [11, Section 10.5] and the classical Radon-Nikodym Theorem.

In Section 5 we construct a simple computable measurable space for which EC can be computed with a single
application of the operator RN, precisely EC ≤sW RN (see Section 2). Therefore, for sufficiently rich computable
measurable spaces, RN and EC have the same degree of non-computability, RN ≡W EC.

In Section 6 we discuss other proofs of RN ≤W EC and give a condition sufficient for proving computability of
the Radon-Nikodym derivative h = dµ

dλ [18].

2. Computability via Representations
In this section we outline very shortly some concepts of the representation approach to computable analysis (TTE)
[8, 31]. In TTE computability of functions on “concrete” sets such as N, NN, Σ∗ (finite words) and ΣN (infinite
sequences) for some finite alphabet Σ with {0, 1} ⊆ Σ is defined canonically. Then these “natural” sets are used as
sets of “names” of abstract objects.

A representation of a set M is a surjective partial function δ : ⊆Y → M where Y is a natural set, (M, δ) is
called a represented space. Every p ∈ dom(δ) such that δ(p) = x is called a δ-name of x (or name of x if δ is clear
from the context). An element x ∈ M is computable if it has a computable name. Let δi : ⊆Yi → Mi (i = 1, 2) be
representations. A realizer for a (partial) function f : ⊆M1 → M2 is a (partial) function F : ⊆Y1 → Y2 such that
f ◦ δ1(y) = δ2 ◦ F(y) for all y ∈ dom( f ◦ δ1). A realizer operates on names. The function f is (δ1, δ2)-computable if
it has a computable realizer. If δ1, δ2 are clear from the context we will omit the prefix and simply say computable.
The image of a computable element by a computable function is computable. Of course, computability on a set M
depends crucially on the representation. For many spaces we use standard representations, for example νN for the
natural numbers, νQ for the rational numbers and ρ for the real numbers [31]. For computable topological spaces
there are very natural standard representations, which are admissible [22, 31, 33].

Consider fixed represented spaces. For every theorem of the form (∀x)(∃y)Q(x, y) we can ask whether there is
a computable (w.r.t. the given representations) function (or multi-function) mapping every x to some y such that
Q(x, y). Very often problems of this kind have no computable solution. But sometimes a solution of one problem
can help to solve another one. Such “helping” between in general non-computable problems can be formalized by a
reducibility relation as follows: For functions f , g between represented spaces define f ≤W g if there are computable
(partial) functions K, H on natural sets such that for every realizer G of g, p 7→ K(p, G ◦ H(p)) is a realizer of f
([6, 7], where ≤W is called Weihrauch reducibility). In other words, f ≤W g if f can be computed using one single
application of g (provided by an oracle) in the computation [26, Theorem 7.2]. If there are computable functions
K, H such that K ◦ G ◦ H is a realizer of f if G is a realizer of g then f is called strongly reducible to g, f ≤sW g [7].
These reducibilities have already been used for comparing a number of non-computable mathematical theorems, for
example, in [4–7, 15, 20, 28, 29]. For proving ≤W , [27, Theorem 7.2] is a useful tool. The analogy of this project to
reverse mathematics [25] has been discussed in [7, 15].
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An important non-computable operator is EC, the operator transforming every enumeration of a set of natural
numbers into its characteristic function. Define representations En and Cf of 2N by

dom(En) = {0n0 10n1 10n2 1 . . . | ni ∈ N, (ni = nj 6= 0 =⇒ i = j)}
En(p) = {n ∈ N | 10n+11 is a subword of p}
Cf(p) = {n ∈ N | pn = 1}

where p ∈ ΣN and pn is the n-th symbol in p. Thus, if En(p) = A then p enumerates A without repetitions using
ni = 0 as a dummy. The En-computable sets are the r.e. sets and the Cf-computable sets are the recursive sets.
We define the operator EC as the identity from the represented space (2N, En) to the represented space (2N, Cf). It
transforms every enumeration of a set into its characteristic function. EC is not computable. In [4] it is proved that
EC is equivalent to the ordinary limit map of any (sufficiently rich) computable metric space X. Furthermore, EC
is complete for effectively Σ0

2-measurable functions (in the Borel hierarchy) with respect to ≤W [4, Theorem 7.6].
Many non-computable problems from Analysis are equivalent to EC [6, 7, 28].

3. Computable Measurable Spaces
In this section we briefly recall some basic definitions and facts from measure theory and then introduce the
computational background for studying computability of the Radon-Nikodym theorem. For a complete treatment
of measure theory see for example [1, 2, 11, 16, 21]. A ring R over a set Ω is a collection of subsets of Ω such
that ∅ ∈ R and A ∪ B, A ∩ B, A \ B ∈ R if A, B ∈ R. A σ-algebra A (over the set Ω) is a collection of subsets of Ω
which contains Ω and is closed with respect to complementation and countable union. For a ring R let σ(R) be the
smallest σ-algebra over Ω containing R (the σ-algebra generated by R). In this article we will work with a fixed
measurable space (Ω,A), where A is a σ-algebra generated by a countable ring R. Members of A = σ(R) will be
referred to as measurable sets.

A measure on a collection C (which is closed with respect to finite union) of subsets of Ω is a function µ : C →
R∞ (= [0,∞]) such that i) µ(∅) = 0, µ(E) ≥ 0 for all E ∈ C, and ii) µ(

⋃
i Ei) =

∑
i µ(Ei) for pairwise disjoint

sets E0, E1, . . . ∈ C such that
⋃

i Ei ∈ C. A measure µ on a collection C is σ-finite, if there are sets E0, E1, . . . ∈ C
such that µ(Ei) <∞ for all i and Ω =

⋃
i Ei. It is well-known that every σ-finite measure on a ring R has a unique

extension to a measure on the σ-algebra σ(R).
For a measure µ on a measurable space (Ω,A), L1(µ) denotes the set of µ-integrable functions f : Ω→ R,

that is, functions f for which
∫

f dµ exists. L1(µ) is an R-vector space with a seminorm ‖f‖µ =
∫
|f | dµ. With the

equivalence relation (f ≡µ g ⇐⇒ ‖f − g‖µ = 0) we obtain the normed vector space

L1(µ) := L1(µ)/≡µ = {[f ] | f ∈ L1(µ)} where [f ] = {g ∈ L1(µ) | ‖f − g‖µ = 0}

with the norm ‖ [f ] ‖µ := ‖f‖µ. As usual in measure theory for f : Ω→ R we will often say “f ∈ L1(µ)” instead of
“f ∈ L1(µ)” or “[f ] ∈ L1(µ)”.

For studying computability we introduce effective versions of the definitions. In [34] computable measure spaces
are defined. Since in this article we want to study the set of all measures on a fixed measurable space, we first define
computable measurable spaces by omitting the measure in the definition from [34].

Definition 3.1. A computable measurable space is a tuple (Ω,A,R,α) where

1. (Ω,A) is a measurable space,R is a countable ring such that Ω =
⋃
R and A = σ(R),

2. α : N→ R is a numbering such that the operations (A, B) 7→ A ∪ B, (A, B) 7→ A ∩ B and (A, B) 7→ A \ B are
computable w.r.t. α.

In the following, (Ω, A, R, α) will be a fixed computable measurable space.

We will consider only measures µ : A → [0,∞] such that µ(E) <∞ for every E ∈ R. Observe that on our
computable measurable space such a measure µ is σ-finite, and therefore well-defined by its values on the ring R.
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We generalize the definition of a computable measure in [34] to representations of measures such that a measure
in [34] is computable if it has a computable name.

Definition 3.2. LetM be the set of measures µ such that µ(E) <∞ for all E ∈ R and letM<∞ be the set of all
finite measures. Define representations δM : ⊆ΣN →M and δM<∞ : ⊆ΣN →M<∞ as follows:

1. δM(p) = µ, iff p is (more precisely, encodes) a list of all (u, n, v) ∈ Q× N×Q such that u < µ ◦ α(n) < v,
2. δM<∞(p) = µ, iff p = 〈p1, p2〉 such that δM(p1) = µ and p2 is (more precisely, encodes) a list of all (u, v) ∈

Q2 such that u < µ(Ω) < v.

The definition of δM is not artificial but follows from a very general principle. A δM-name p of a measure µ is
a list of all (names of) (a, E, b) ∈ Q×R×Q such that a < µ(E) < b. According to [33, Definition 8, Theorem 9]
δM is the canonical representation of the effective predicate space (M,σ, ν), where ν(a, E, b) = {µ ∈M | a <
µ(E) < b} such that δM is admissible w.r.t. the topology onM generated by the set range(ν) as a subbase.

A δM-name p allows to compute µ(E) for every ring element E with arbitrary precision. A δM<∞ -name allows
additionally to compute µ(Ω). Obviously, δM<∞ ≤ δM and δM<∞ ≡ δM if Ω ∈ R. But in general, not even the
restriction of δM to the finite measures is reducible to δM<∞ . Also, there is a δM-computable finite measure that is
not δM<∞ -computable. (There is a computable sequence (a0, a1, . . .) of rational numbers such that

∑
i ai is finite but

not computable [31]. Let Ω := N, A := 2N, R := the set of finite subsets with canonical numbering α, µ({n}) :=
an.) A computable measurable space with δM-computable measure µ is the “computable measure space” from [34].
Definitions 3.1 and 3.2 generalize the definitions from [30] (probability measures on Borel subsets of [0, 1]), [13, 14,
17, 23, 24] (computable finite measures on the Borel subsets of a computable metric space) and [34] (computable
measure on a computable σ-algebra).

For E ⊆ A, let χE : Ω→ R be the characteristic function of E. A rational step function is a finite sum

s :=
j∑

k=1

akχEk ,

where ak ∈ Q and Ek ∈ R. Then s ∈ L1(µ) and the integral of s with respect to µ is∫
s dµ =

∫ j∑
k=1

akχEk dµ =
j∑

k=1

akµ(Ek).

Since ‖ . ‖µ is a norm, dµ with dµ( f , g) := ‖f − g‖µ is a metric on L1(µ). The set RSF of rational step functions is
dense in the metric space (L1(µ), dµ).

Let α̂ be a canonical numbering of the set RSF of rational step functions. For fixed measure µ,
(L1(µ), dµ, RSF, α̂) is an effective metric space [31, Definition 8.1.2]. The Cauchy representation δµ : ⊆ΣN →
L1(µ) for this space is defined by:

δµ(p) = f ⇐⇒
{

p is (more formally, encodes) a sequence (s0, s1, . . .)
of rational step functions such that ‖si − f‖µ ≤ 2−i.

Notice that (∀j > i)‖si − sj‖µ ≤ 2−i =⇒ (∀i)‖si − f‖µ ≤ 2−i =⇒ (∀j > i)‖si − sj‖µ ≤ 2 · 2−i.

For a δM-computable measure µ, integration f 7→
∫

f dµ is (δµ, ρ)-computable. We need computability
also in µ. For expressing this we introduce a “universal” multi-representation δ. Computability w.r.t. multi-
representations is defined in [27, 32].

Definition 3.3. Define a multi-representation δ of the set L :=
⋃
µ∈M L1(µ) by

(∀µ ∈M) (∀f ∈ L1(µ)) ( f ∈ δ(p) ⇐⇒ f = δµ(p)).
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Lemma 3.4.

1. The function H1 :M× RSF→ L where (H1(µ, s) = f :⇐⇒ s = f ∈ L1(µ)),
is (δM, α̂, δ)-computable.

2. The function H2 :M× RSF→ R, H2(µ, s) :=
∫

s dµ, is (δM, α̂, ρ)-computable.
3. The function H3 : ⊆M× L→ R, where (H3(µ, f ) = x :⇐⇒ f ∈ L1(µ) ∧

∫
f dµ = x)

is (δM, δ, ρ)-computable.
4. The function H4 : ⊆M× L→ R, where (H4(µ, f ) = x :⇐⇒ f ∈ L1(µ) ∧ ‖f‖µ = x)

is (δM, δ, ρ)-computable.

Proof. Straightforward. 2

4. The Upper Bound
In this section we prove that for every computable measurable space (Ω,A,R,α) the (the non-computable) operator
EC, mapping every enumeration of a subset of N to its characteristic function, is an upper bound in the≤W -hierarchy
of the Radon-Nikodym operator.

Theorem 4.1. The function RN mapping every σ-finite measure λ ∈M and every finite measure µ ∈M<∞
such that µ� λ to the function h ∈ L1(λ) such that µ(E) =

∫
E h dλ for all E ∈ σ(R), is computable via the

representations δM, δM<∞ and δ with a single application of the operator EC. Formally, RN ≤W EC.

Proof. Let λ = δM(p) and µ = δM<∞(q). From p and q we want to find a δλ-name of the function h.
First we “partition” λ into a sequence of finite measures. Let F0 := α(0) and Fn+1 := α(n + 1) \ (F0 ∪

. . . ∪ Fn). Then Fi ∩ Fj = ∅ for i 6= j and Ω = (F0 ∪ F1 ∪ . . .). By Definition 3.1 the function i 7→ Fi is (νN,α)-
computable and by Definition 3.2, the function (λ, i) 7→ λ(Fi) is (δM, νN, ρ)-computable. There is a (δM, νN, νN)-
computable function d such that d(λ, i) > λ(Fi) · 2i.

For λ ∈M define the function wλ : Ω→ R by wλ(x) := 1/d(λ, i) if x ∈ Fi. Then∫
wλ dλ =

∑
i

λ(Fi)/d(λ, i) < 2.

Define a new measure ν by its values on the ringR:

ν(E) :=
∫

E
wλ dλ (for E ∈ R). (1)

Since wλ(x) > 0 for all x and
∫

wλ dλ < 2, ν(E) is well-defined for all E ∈ R. Since ν is a σ-finite measure on
R, it has a unique extension to the algebra A = σ(R). Since the function (λ, E) 7→ ν(E) is (δM,α, ρ)-computable
and the function λ 7→ ν(Ω) =

∫
wλ dλ is (λ, ρ)-computable, the measure ν is finite and the function λ 7→ ν is

(δM, δM<∞)-computable.
Since wλ(x) > 0 for all x, (ν(E) = 0 ⇐⇒ λ(E) = 0) for all E ∈ R, hence (ν(A) = 0 ⇐⇒ λ(A) = 0) for all

A ∈ A. Therefore, ν � λ� ν.
For the finite measures µ and ν with µ� ν by the classical Radon-Nikodym theorem there is a function h′ ∈

L1(ν) such that

µ(E) =
∫

E
h′ dν (for all E ∈ R). (2)



8 M. Hoyrup et al. / Computability of the Radon-Nikodym Derivative

First, we compute a sequence (t′0, t′1, . . .) of rational step functions converging to h′ in norm ‖ . ‖ν . For a partition
P ⊆ A of Ω and a function g ∈ L1(ν), define E(g|P) : Ω→ R as follows: for x ∈ E ∈ P let

E(g|P)(x) :=

{∫
E g dν/ν(E) if ν(E) 6= 0

0 if ν(E) = 0

Let P0 ⊆ P1 ⊆ . . . ⊆ A be a sequence of partitions such that σ(
⋃

n Pn) = A. Then by Levy’s zero-one law [11,
Section 10.5]

E(g|Pn) −→
n→∞

g in L1(ν). (3)

Let α be the numbering of the ringR. For every n ∈ N define

Qn :=

{
{G0 ∩ . . . ∩ Gn | Gj ∈ {α(j), (α(0) ∪ . . . ∪ α(n)) \ α(j)}}
∪
⋃

i≥n (α(i + 1) \ (α(0) ∪ . . . ∪ α(i))) .

Then Qn ⊆ R,
⋃
Qn =

⋃
i α(i) = Ω and A ∩ B = ∅ for A, B ∈ Qn with A 6= B. Therefore, Pn := Qn \ {∅} ⊆ R

is a partition of Ω. Obviously Pn ⊆ Pn+1 and σ(
⋃

n Pn) = A. Since union, intersection and difference on R are
computable w.r.t. α, there is a computable function H : N× N→ N such that for all n ∈ N,

Qn = {α ◦ H(n, i) | i ∈ N} and α ◦ H(n, i) ∩ α ◦ H(n, j) = ∅ for i 6= j

By (2), for hn := E(h′|Pn) we have: for x ∈ E ∈ Pn

hn(x) =

{
µ(E)/ν(E) if ν(E) 6= 0

0 if ν(E) = 0.

From (δM<∞ -names of) ν and µ and (an α-name of) E we can compute µ(E)/ν(E) provided ν(E) 6= 0. Since
ν(E) > 0 cannot be decided we cannot compute the functions hn “directly”. Therefore, we proceed as follows. For
every n there are some finite set I ⊆ N and rational numbers ai, i ∈ I, such that

(∀i ∈ I) ν ◦ α ◦ H(n, i) > 0,∑
i∈I µ ◦ α ◦ H(n, i) > µ(Ω)− 2−n−1,∑
i∈I |µ ◦ α ◦ H(n, i)− ai · ν ◦ α ◦ H(n, i)| < 2−n−1.

 (4)

Since the predicate (4) is r.e. in the variables, for ν,µ and n we can compute some finite I ⊆ N and rational numbers
ai (i ∈ I) such that (4) is true. Therefore, we can compute an α̂-name of t′n :=

∑
i∈I ai · χα◦H(n,i). Then by (4),

‖hn − t′n‖ν =
∑
i∈I

∫
α◦H(n,i)

|hn − t′n| dν +
∑
i6∈I

∫
α◦H(n,i)

|hn − t′n| dν

=
∑
i∈I

∣∣∣∣µ ◦ α ◦ H(n, i)
ν ◦ α ◦ H(n, i)

− ai

∣∣∣∣ ν ◦ α ◦ H(n, i) +
∑
i 6∈I

∫
α◦H(n,i)

hn dν

=
∑
i∈I

|µ ◦ α ◦ H(n, i)− ai · ν ◦ α ◦ H(n, i)|+
∑
i 6∈I

µ ◦ α ◦ H(n, i)

< 2−n.
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Since ‖h′ − t′n‖ν ≤ ‖h′ − hn‖ν + ‖hn − t′n‖ν , the sequence (t′n)n of rational step functions converges to h′ in L1(ν)-
norm. As we have observed (α̂-names of) the functions t′n ∈ RSF can be computed from (δM<∞ -names of) µ and ν.

Suppose E ⊆ Fi and g ∈ L1(ν). By (1), ν(E) = λ(E)/d(λ, i), hence∫
E

g dν =
∫

E
g/d(λ, i) dλ =

∫
E

gwλ dλ, (5)∫
g dν =

∑
i

∫
Fi

g dν =
∑

i

∫
Fi

gwλ dλ =
∫

gwλ dλ (6)

Let h := h′wλ. Then for E ∈ R,

µ(E) =
∫

E
h′dν =

∫
χEh′dν =

∫
χEh′wλdλ =

∫
E

h dλ

Since ‖t′nwλ − h‖λ =
∫
|t′nwλ − h′wλ| dλ =

∫
|t′n − h′|wλ dλ =

∫
|t′n − h′| dν = ‖t′n − h′‖ν , the sequence t′nwλ of

rational step functions converges to h in L1(λ)-norm.
Let tn := t′nwλ. Then from (a δM<∞ -name of) µ and (a δM-name of) λ, (α̂-names of) the tn ∈ RSF can be

computed such that the sequence (tn)n∈N converges to the Radon-Nikodym derivative h of µ w.r.t. λ in L1(λ)-norm.
We apply the non-computable operator EC for finding a δ-name of h, that is, a sequence (sn)n of rational step

functions rapidly converging to h in L1(λ)-norm. For λ ∈M and a sequence (ti)i of rational step functions define
T ⊆ N by

T := {〈n, k〉 | (∃i > n) ‖tn − ti‖λ > 2−k}.

An enumeration of T can be computed from λ ∈M and (ti)i. The operator EC produces the characteristic function
of T . Let n0 be the smallest number n such that 〈n, 0〉 6∈ T and, inductively, let nk be the smallest number n > nk−1
such that 〈n, k〉 6∈ T . Obviously, ‖tnk − h‖λ ≤ 2−k.

Therefore for the computable measurable space (Ω,A,R,α), a δλ-name of the Radon-Nikodym derivative dµ
dλ

can be computed from µ and λ with a single application of the non-computable operator EC. 2

5. The Lower Bound
We construct a computable measurable space S such that the operator EC can be computed with a single application
of the Radon-Nikodym operator for S.

Let Ω := [0; 1) ⊆ R. For n ∈ N and 0 ≤ k < 2n let Jnk := [k/2n; (k + 1)/2n) be the kth simple binary
subinterval of length 2−n. For n ≥ 0 let BIn := {Jnk | 0 ≤ k < 2n}, and let BI :=

⋃
n BIn be the set of all simple

binary intervals with canonical notation α′. Let R be the set of finite unions of intervals from BI with canonical
notation α. Then S := (Ω,σ(R),R,α) is a computable measurable space.

We will show that the operator EC can be computed with a single application of the Radon-Nikodym RN operator
on S. It suffices to apply the restriction of RN to a fixed measure λ0 and the finite measures µ ≤ λ0.

Let λ0 be the restriction of he Lebesgue measure to Ω := [0; 1) ⊆ R, that is λ0(J) = length(J) for every interval
J ⊆ [0; 1). Let RN0 be the operator mapping every measure µ such that µ(Ω) = 1/2 and µ ≤ λ0 to the Radon-
Nikodym derivative h ∈ L1(λ0) such that µ(E) =

∫
E h dλ0 for all E ∈ R.

Theorem 5.1. The operator EC can be computed with one application of RN0, precisely, EC ≤sW RN0.

Proof. It suffices to find computable functions K, H on ΣN such that p 7→ K ◦ G ◦ H(p) realizes EC if G realizes
RN0. First, for p ∈ dom(En) we define a function hp ∈ L1(µ).
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x

0

1

0

1/2

2−n − 1 2−n

Figure 1. The function t3 + 1/2 for the case n3 = n + 1.

For every interval [a; b) ∈ BI define the double jump r[a; b) ∈ RSF by

r[a; b)(x) :=


0 if x < a or x ≥ b,

1/2 if a ≤ x < (a + b)/2,
−1/2 if (a + b)/2 ≤ x < b.

Suppose p = (0n0 10n1 10n2 1 . . .) ∈ dom(En). Define functions tk ∈ RSF for k ∈ N and hp : [0; 1)→ R as
follows:

tk :=

{
0 if nk = 0,∑
{r(I) | I ∈ BIn+1+k, I ⊆ [2−n−1; 2−n)} if nk = n + 1,

hp := 1/2 +
∑
k∈N

tk.

Figure 1 shows the function t3 + 1/2 for the case n3 = n + 1. There are 8 = 23 up-down-up jumps in the interval
[2n−1; 2n).

If A = En(p) then hp has up-down-up jumps in the interval [2−n−1; 2−n) iff n ∈ A, and the number of jumps in
this interval is 2k where nk = n + 1.

First, we observe that for all I, I′ ∈ BI, I ∩ I′ = ∅, I ⊆ I′ or I′ ⊆ I. Therefore∫
E

r(I) dλ0 = 0 for all E, I ∈ BI such that length(I) ≤ length(E)).

Then for E ∈ BIm,∫
E

∑
k∈N

tk dλ0 =
∫

E

∑
k∈N

∑
{r(I) | I ∈ BIn+1+k, I ⊆ [2−n−1; 2−n), nk = n + 1} dλ0

=
∑
k∈N

∑
{
∫

E
r(I) dλ0 | I ∈ BIn+1+k, I ⊆ [2−n−1; 2−n), nk = n + 1}

=
∑
k<m

∑
{
∫

E
r(I) dλ0 | I ∈ BIn+1+k, I ⊆ [2−n−1; 2−n), nk = n + 1}

which is a finite sum. Therefore, from p and (any α-name of) E we can compute
∫

E hp dλ0. This is true also for all
E ∈ R. Since hp ≥ 0 and hp ∈ L1(λ0) a measure µp on the computable measurable space S is defined by µp(E) :=∫

E hp dλ0. Therefore, there is a computable function H : ⊆ΣN → ΣN that maps every p ∈ dom(En) to some δM<∞-
name of µp.

Since hp ≤ 1, µp ≤ λ0. Obviously, hp is the Radon-Nikodym derivative of µp w.r.t. λ0 and µp(Ω) = 1/2. Let G
be an arbitrary (δM<∞ , δ)-realizer of the operator RN0. Then for every p ∈ dom(En), G ◦ H(p) is a δλ0 -name of hp.
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From the definition of hp, ∫
[2−n−1;2−n)

|hp − 1/2| dλ0 =
{

2−n−1/2 if n ∈ En(p)
0 otherwise (7)

(see Figure 1). The operator f 7→ |f − 1/2| is (δλ0 , δλ0)-computable, hence by Lemma 3.4, the function ( f , E) 7→∫
E |f − 1/2| dλ0 is (δλ0 ,α, ρ)-computable. Therefore by (7) there is a computable function K : ⊆ΣN → ΣN that

from a δλ0 -name of hp computes a Cf-name of En(p).
In summary, there are computable functions H, K on ΣN such that K ◦ G ◦ H realizes EC if G realizes RN0,

hence EC ≤sW RN0. 2

6. Final Remarks
In our proof of the effective version of the Radon-Nikodym theorem, Theorem 4.1, via the function wλ we can
replace the (possibly) infinite measure λ by the finite measure ν. For solving the problem for finite measures µ� ν,
we have assumed that the classical Radon-Nikodym theorem is true and have applied Levy’s zero-one law [11,
Section 10.5] for showing that our sequence (hn)n converges to the Radon-Nikodym derivative h′ = dµ

dν . Elstrod
[12, Page 278] gives a simple elementary proof for finite measures µ ≤ ν based on [3], which essentially includes
the proof of Levy’s zero-one law for this case and the definition of a sequence of step functions converging to dµ

dν .
This proof can be easily turned into an effective version, where at the end, the operator EC must be applied to
produce a fast converging sequence. Then the computability result can be extended from finite measures µ ≤ ν to
finite measures µ� ν and to finite µ and σ-finite λ such that µ� λ [3].

Another proof of the classical theorem by J. v. Neumann applies the Fréchet-Riesz representation theorem for
continuous linear functionals on Hilbert spaces using the fact that L2(µ) with the product ( f ; g) :=

∫
fg dµ is a

Hilbert space. Also this proof can be effectivized. A computable version of the Fréchet-Riesz representation theorem
for computable Hilbert spaces has been proved in [9]: from a linear functional F and its norm a point aF can
be computed such that F(x) = (x; aF). In our application, aF will be the Radon-Nikodym derivative. But for our
uniform theorem we need a version of the Fréchet-Riesz theorem uniform on the class EH of all “effective” Hilbert
spaces with RSF as a dense subspace. We can prove: From a space H ∈ EH and the linear functional F a sequence
of rational step functions can be computed converging (not necessarily fast) to aF. By an application of EC a fast
converging subsequence can be selected. Also, form H, F and its norm ‖F‖ a sequence of rational step functions
can be computed fast converging to aF. Notice that ‖F‖ can be computed from below (a ρ<-name [31]) and that (a
ρ-name [31] of) ‖F‖ can be computed from F with a single application of EC. In [18] it is shown that for computable
measures a specific computability condition (“µ is computably normable relative to λ”) on the measures λ and µ
suffices to compute a δλ-name of the Radon-Nikodym derivative without using the operator EC. The proof includes
a direct proof of the computable Fréchet-Riesz representation theorem.
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