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Letter to the editor

Incoherence between systemic and skin
tissue response to transfusion in
volume-resuscitated patients without
acute bleeding

Elaine Cavalcante dos Santos∗, Jacques Creteur and Fabio Silvio Taccone
Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium

Abstract. Alterations in skin blood flow (SBF) may help to detect occult hypoperfusion in critically ill patients after fluid
resuscitation. In this study, SBF is globally unaltered by red blood cell transfusion (RBCT) in non-bleeding critically ill
patients after initial resuscitation; however, 37.5% of patients showed a significant increase in SBF. No correlation between
relative changes in SBF and systemic variables after RBCT was observed.
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Dear Editor,
The primary objectives of resuscitation encompass the restoration of adequate flow and pressure,

thereby ameliorating tissue perfusion and mitigating tissue hypoxia. Nevertheless, several studies have
highlighted that despite the normalization of systemic variables following the initial resuscitative
efforts, tissues may persist in a state of hypoperfusion [1]. Consequently, the monitoring of tissue
perfusion emerges as a valuable tool for identifying patients who may derive benefit from therapies
aimed at enhancing microvascular blood flow and oxygenation [2, 3], with red blood cell transfusions
(RBCT) representing one potential intervention. Indeed, the decision to transfuse an anemic patient
is still a challenge in the intensive care unit (ICU) and should always consider the risks of anemia,
including failed weaning from mechanical ventilation [4] or an increased risk of poor outcome [5],
as well as the potential harms associated with RBCT [6]. As such, tissue perfusion may be a specific
trigger used to decide when to transfuse an ICU patient in a more personalized way. Because alterations
in skin perfusion can occur early in patients with shock, even before hemodynamic variables are altered,
and remain altered despite hemodynamic stabilization, the skin is considered a window for detecting
alteration in tissue perfusion [2]. The methods of cutaneous blood flow monitoring have been mainly
based on optical microscopy [7–9] and laser Doppler techniques [10]. Microscopic techniques, such
as nailfold capillaroscopy (NVC), provide a direct measurement of cutaneous microcirculation [7–9,
11] and have found clinical applications in diseases affecting digital skin microcirculation [8, 9, 11].
Besides microscopic methods, the Skin Laser Doppler (SLD) technique is used to estimate the skin
blood flow (SBF) [11].
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In the context of septic patients, Sakr et al. have reported that RBCT could ameliorate microvascular
blood flow, but only in those cases where it was impaired at baseline [12]. Furthermore, the alterations
in microcirculation following RBCT have exhibited no significant correlation with systemic variables
[12]. SLD technique has been increasingly used to assess microvascular flow in critically ill patients
at the bedside [2]. This technique provides measurements of blood flow in a variable volume of tissue,
which represents the blood flow in arterioles, venules, and capillaries, with the volume of the venous
vessels being predominant [10]. Therefore, SLD does not describe exclusively the skin microcirculatory
blood flow [10]. Nevertheless, alterations in SBF assessed by SLD have been associated with the
severity of the underlying disease [2], have prognostic value [2], and respond to clinically relevant
interventions in critically ill patients [3, 13]. However, no data are available on the correlation between
changes in global hemodynamics and SLD after RBCT in non-bleeding critically ill patients after
initial resuscitation.

We performed a secondary analysis of critically ill patients who received RBCT and who were
included in a previous study [14]; for this study, we included those patients who had cardiac output
(CO) monitored during RBCT. Skin blood flow (SBF) measurements, hemoglobin (Hb), cardiac index
(CI), heart rate (HR), mean arterial pressure (MAP), arterial lactate, central venous pressure (CVP),
the partial pressure of carbon dioxide in venous (PvCO2) and arterial (PaCO2) blood, as well as their
difference (Pv-aCO2), central or mixed venous oxygen saturation (ScvO2 or SvO2) and arterial oxygen
saturation (SaO2) were obtained before and after RBCT. Oxygen-derived variables were calculated
using standard formulas. Organ driving pressure (DP) was calculated using the difference between
MAP and CVP. Relative changes (�) for all variables were calculated using the formula: ((Post-
transfusion value – Pre-transfusion value)/Pre-transfusion value) × 100%. Finally, the relationships
between relative changes in systemic and microcirculatory variables were assessed.

Out of the cohort comprising 175 critically ill patients, 48 individuals (27.4%) met the eligibility
criteria for this study. The baseline clinical characteristics of the study population are presented in
Table 1. Our study found that RBC transfusion had no straightforward effect on skin microvascular
flow in a group of critically ill patients after resuscitation without acute bleeding despite the significant
improvement in macrohemodynamic parameters, including oxygen delivery (DO2) and ScvO2 or SvO2,

Table 1

Characteristic of the study population, according to SBF response to RBCT (responders vs. non-responders)

All Responders Non-Responders P value
(n = 48) (n = 18) (n = 30)

Age, years 63.8 ± 11.4 66.7 ± 7.6 62.1 ± 13.0 0.18
Male gender, n (%) 33.0 (68.8) 14.0 (77.8) 19.0 (63.3) 0.29
Acute physiology failure assessment score 20.7 ± 6.8 22.6 ± 7.0 19.6 ± 6.6 0.14
Sequential organ failure assessment score 9.6 ± 2.8 9.3 ± 2.6 9.8 ± 2.9 0.56
Characteristics of measurements

Time in ICU before study inclusion (days) 3.0 (0.5–17.0) 3.5 (0.5–17.0) 3.0 (0.5–16.0) 0.43
Interference, n (%) 2.0 (4.2) 1.0 (5.6) 1.0 (3.3) 0.99

Characteristics on the study day, n (%)
Mechanical ventilation 26.0 (54.2) 11.0 (61.1) 15.0 (50.0) 0.45
Sedation 18.0 (37.5) 8.0 (44.4) 10.0 (33.3) 0.44
Norepinephrine dose (mcg/Kg/min) 0.09 (0.01–1.73) 0.10 (0.01–0.78) 0.08 (0.01–1.73) 0.98

During ICU stay, n (%)
28-day mortality 9.0 (18.8) 4.0 (22.2) 5.0 (16.7) 0.71

Note: Data are reported as mean (SD), median (IQRs), or count (%). Abbreviations: ICU, Intensive Care Unit.
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Table 2

Hemodynamic and skin tissue perfusion parameters before and after RBCT

All patients (n = 48) SBF responders (n = 18) SBF No-responders (n = 30)
Baseline 1-hour p Baseline 1-hour p Baseline 1-hour p

Hb, g/dL 7.6 ± 0.8 9.0 ± 1.0 <0.01 7.6 ± 0.8 8.8 ± 1.1 <0.01 7.7 ± 0.8 9.0 ± 0.9 <0.01
MAP, mmHg 81.9 ± 14.8 83.6 ± 15.4 0.35 82.0 (64.0–101.0) 84.5 (47.0–111.0) 0.18 76.5 (56.0–131.0) 80.5 (67.0–129.0) 0.30
HR, bpm 91.0 ± 18.8 92.7 ± 19.3 0.19 86.0 (72.0–126.0) 84.0 (66.0–120.0) 0.19 91.8 ± 20.9 95.2 ± 20.5 0.09
CVP, mmHg 10.5 ± 5.2 10.5 ± 5.1 0.91 10.2 ± 4.9 10.1 ± 5.1 0.73 10.6 ± 5.4 10.8 ± 5.2 0.73
CI, L/min/m2 3.4 ± 1.2 3.3 ± 1.0 0.25 2.8 (1.7–6.1)∗ 2.9 (1.8–5.5) 0.55 3.6 ± 1.2 3.5 ± 1.0 0.28
DO2, ml/min/m2 345.6 ± 117.8 392.5 ± 121.9 <0.01 296.3 ± 87.8∗ 341.9 ± 92.8 <0.01 375.1 ± 124.7 422.9 ± 128.4 <0.01
VO2, ml/min/m2 116.5 ± 41.9 122.1 ± 38.5 0.23 107.5 (59.0–180.0) 117.5 (54.0–198.0) 0.048 119.2 ± 48.8 123.0 ± 42.8 0.58
O2ER, % 35.9 ± 12.2 33.0 ± 11.0 <0.01 39.7 ± 10.6 36.6 ± 10.1 0.02 33.7 ± 12.8 30.9 ± 11.0 0.05
Blood Lactate, mmol/L 1.4 (0.7–5.6) 1.7 (0.5–5.4) 0.19 1.8 (0.7–5.1) 1.8 (0.5–5.2) 0.79 1.3 (0.7–5.6) 1.5 (0.7–5.4) 0.13
SaO2, % 98.0 (91.8–99.9) 97.7 (93.1–99.7) 0.30 97.6 (91.8–99.2) 97.8 (93.1–99.7) 0.36 98.2 ± 1.1 97.5 ± 1.6 0.02
ScvO2 or SvO2, % 63.3 ± 12.4 66.0 ± 11.2 <0.01 58.9 ± 10.3∗ 62.6 ± 10.5 <0.01 65.9 ± 12.9 68.0 ± 11.3 0.11
Pv-aCO2, mmHg 5.2 ± 2.3 6.2 ± 2.7 0.02 5.4 ± 2.9 6.2 ± 2.7 0.21 5.1 ± 1.9 6.1 ± 2.8 0.05
SBFBT , PU 131.6 ± 89.2 113.6 ± 108.8 0.14 51.8 (4.3–279.3)∗ 80.2 (9.8–561.6) <0.01 161.6 ± 81.7 101.8 ± 76.4 <0.01
SBF37, PU 140.0 (11.2–444.6) 122.2 (13.6–585.3) 0.31 88.8 (11.2–285.9)∗ 108.5 (15.1–585.3) <0.01 178.4 ± 86.5 123.5 ± 73.4 <0.01
�SBF/�T, PU/◦C 2.0 (–16.4–21.8) 2.8 (–14.2–48.2) 0.54 2.83 (–1.39–21.84) 4.16 (–7.68–48.15) 0.68 1.76 (–16.36–18.72) 2.53 (–14.15–27.66) 0.44

Note: Data are reported as mean (SD), or median (IQRs). Abbreviations: Hb, hemoglobin; MAP, mean arterial pressure; HR, heart rate; CVP, central venous pressure; CI,
cardiac index; DO2, oxygen delivery; VO2, oxygen consumption; O2ER, oxygen extraction ratio; SaO2, arterial oxygen saturation; ScvO2 or SvO2, central or mixed venous
oxygen saturation; Pv-aCO2, veno-arterial carbon dioxide difference; SBFBT, skin blood flow at basal temperature; SBF37, skin blood flow at 37◦C; �SBF/�T= (SBF37-
SBFBT/T37◦C-T at baseline); PU, perfusion units; *p < 0.05 between SBF responders vs SBF non-responders.
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Fig. 1. Correlation between the relative change in SBFBT and the relative change in systemic variables. Upper panel: correlation
between the relative change in SBFBT and the relative change in CI (A), between the relative change in SBFBT and the relative
change of MAP (B), and between the relative change in SBFBT and lactate (C) after RBCT. Lower panel: correlation between
the relative change in SBFBT and the relative change in Pv-aCO2 (D), and the relative change in SBFBT and the relative change
in DP (E) after RBCT.

as depicted in Table 2. However, there was considerable interindividual variability; 37.5% of patients
had a significant increase in SBF at basal temperature (SBFBT) after RBCT (SBF responders – Table 2).
No significant correlation was observed between the changes in SBFBT and the changes in CI (Fig. 1A),
blood pressure (Fig. 1B), arterial lactate (Fig. 1C), � Pv-aCO2 (Fig. 1D), or DP (�DP) (Fig. 1E) after
RBCT. The substantial rise in DO2 was associated with a significant increase in oxygen consumption
(VO2), but solely within the group of SBF responders (Table 2).

Subsequently, our analysis revealed an absence of a discernible correlation between modifications
in skin tissue perfusion and shifts in systemic variables within the critically ill patient cohort following
RBCT. Furthermore, it became apparent that the impact of RBCT on tissue perfusion exhibits con-
siderable heterogeneity among this patient population and remains unpredictable based on presently
available variables. This underscores the necessity for a more comprehensive patient evaluation, one
that incorporates assessments of tissue perfusion, to guide the decision-making process regarding
RBCT, in this clinical context. Indeed, it becomes evident that an increase in DO2 only yields a concur-
rent rise in VO2 among those individuals who exhibit a favorable response in terms of tissue perfusion,
such as an improvement in microvascular flow. This observation suggests that cellular metabolism is
contingent upon an adequate peripheral supply of oxygen. Skin tissue perfusion monitoring might help
to individualize transfusion strategies in this setting.
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