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Abstract.
BACKGROUND: Chronic atrophy gastritis (CAG) is a high-risk pre-cancerous lesion for gastric cancer (GC). The early and
accurate detection and discrimination of CAG from benign forms of gastritis (e.g. chronic superficial gastritis, CSG) is critical for
optimal management of GC. However, accurate non-invasive methods for the diagnosis of CAG are currently lacking. Cytokines
cause inflammation and drive cancer transformation in GC, but their utility as a diagnostic for CAG is poorly characterized.
METHODS: Blood samples were collected, and 40 cytokines were quantified using a multiplexed immunoassay from 247 patients
undergoing screening via endoscopy. Patients were divided into discovery and validation sets. Each cytokine importance was
ranked using the feature selection algorithm Boruta. The cytokines with the highest feature importance were selected for machine
learning (ML), using the LightGBM algorithm.
RESULTS: Five serum cytokines (IL-10, TNF-α, Eotaxin, IP-10 and SDF-1a) that could discriminate between CAG and CSG
patients were identified and used for predictive model construction. This model was robust and could identify CAG patients with
high performance (AUC = 0.88, Accuracy = 0.78). This compared favorably to the conventional approach using the PGI/PGII
ratio (AUC = 0.59).
CONCLUSION: Using state-of-the-art ML and a blood-based immunoassay, we developed an improved non-invasive screening
method for the detection of precancerous GC lesions.
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1. Introduction

Gastric cancer (GC) is the fifth most common ma-
lignant tumor in the world, both in terms of incidence
and mortality [1]. In China, the incidence of GC is ex-
tremely high, only lung cancer and colorectal cancer
rank higher [2]. A report on cancer incidence in 2020
stated that there were approximately 479,000 new cases
of GC (ranked second) and 374,000 deaths related to
GC (ranked third) in China [2]. GC is thought to de-
velop in a progressive manner, and Correa et al. pro-
posed the following gastric cancer progression cascade
(from benign to malignant stages): Chronic Superfi-
cial Gastritis (CSG) – Gastric Atrophy (GA) – Gastric
Intestinal Metaplasia (GIM) – Dysplasia – GC. This
progressive cascade is currently recognized as the main
mode of formation of intestinal type GC3. CSG is the
more benign, chronic mucosal inflammation stage often
caused by Helicobacter pylori (H. pylori), at this stage
the mucosal structure destruction is typically reversible.
The GA and GIM phenotypes are collectively known
as Chronic Atrophy Gastritis (CAG) [4]. CAG consists
primarily of precancerous lesions that can develop into
GC, and these are thus the gastritis states that need to
be identified in an accurate and timely manner to im-
prove patient outcome. In 2020, the American Society
of Gastroenterology conducted a meta-analysis of the
medical history of GIM patients; it was found that 1
in 100 GIM patients developed GC during the 5-year
follow-up period [5]. Another study showed that the in-
cidence rate of GC in the 5 years following CAG diag-
nosis was 0.6% [6]. H. pylori has been listed as a human
carcinogen by international cancer research institutes,
and is known to promote the development of GC [7]. In
recent years, many studies have suggested that antibi-
otic eradication of H. pylori reduces the risk of GC if
enacted prior to the development of CAG, unfortunately
beyond this point, the malignant progression to GC can
no longer be reversed [8]. Thus, the diagnosis of CAG
patients is extremely important so that these patients
can be monitored more closely to allow for the early
detection of those patients that progress to GC.

The gold standard method for CAG diagnosis is en-
doscopy (gastroscopy) combined with gastric biopsy, a
relatively invasive procedure that can cause anxiety and
discomfort for the patient. As a result, a large proportion
of the population are reluctant to undergo this type of
examination. This delays the identification of CAG pa-
tients who would benefit from close monitoring for pro-
gression to GC. In addition, endoscopic examination is
expensive and consumes significant hospital resources.

There is thus a clear clinical need for a non-invasive,
scalable, and accurate diagnostic method for the early
detection of CAG patients. Existing approaches such as
measuring the ratio of serum concentrations of pepsino-
gen I to II (PGI and PGII), or the commercialized
GastroPanel, an ELISA-based approach that measures
serum gastrin-17 (G17), PGI, PGII, and H. pylori anti-
bodies [9], are the most widely used non-invasive ap-
proach for the diagnosis of CAG [10]. However, these
are not accurate enough to replace endoscopy for the
diagnosis of CAG patients [11]. Therefore, the gap for
an accurate diagnostic method to detect CAG patients
remains.

In the last couple of decades, cytokines have been
implicated in multiple aspects of tumor development
and progression [12], including GC [13]. Chronic in-
flammation in the stomach, often caused by H. pylori
infection is a known risk factor for GC. Cytokines, par-
ticularly pro-inflammatory ones such as TNF-α, IL-1,
and IL-6 are produced during chronic inflammation and
can contribute to the development of cancer [14,15].
Studies have shown that TNF-α and IL-1 can recruit
immune cells and induce inflammation [16,17], which
can have both positive and negative effects on tumor
progression. In addition, cytokines secreted by immune
cells and tumor cells within the tumor microenviron-
ment can influence tumor growth, invasion, and metas-
tasis. For example, cytokines TGF-β and VEGF can
promote angiogenesis necessary for tumor growth and
metastasis [18,19]. Specific to GC, the expression of
cytokine/chemokine/growth factor markers is higher in
the gastric tumor stroma compared to the normal gas-
tric stroma [20]. Particularly, circulating cytokines play
a pivotal role in the pathogenesis of the cancer [21].
A serum cytokine biomarker panel has been proposed
for GC diagnosis [22], another study reported that in-
creased circulating levels of IL-8 may indicate increased
risk of GC [23] and serum IL-17A level increases sig-
nificantly in H. pylori-infected patients with prema-
lignant gastric lesions [24]. Furthermore, studies have
shown that levels of circulating cytokines, IL-6, VEGF,
and TNF-α, are associated with an increased risk of
colorectal cancer [25]. Therefore, we hypothesize that
the measurement of circulating cytokines has the po-
tential to become a non-invasive and accurate method
for CAG diagnosis.

In this, a diagnostic performance study, blood sam-
ples were collected from 247 patient prior to a routine
endoscopy procedure [26]. The patients were divided
into two groups: CSG and CAG, according to the gas-
tric mucosa histopathological grading – with CSG as
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Table 1
The characteristics of the clinical features between the CAG and CSG

Variable CSG (n = 157) CAG (n = 90)
Age, years (mean ± SD) 56.35 ± 7.98 58.98 ± 8.08
Sex, (n)

Male 64 39
Female 93 51

H. Pylori (n)
Positive 75 43
Negative 63 47
NA 19 −

Standard Gastritis Markers (ng/mL)
PGI (mean ± SD) 180.41 ± 92.25 175.74 ± 87.48
PGII (mean ± SD) 15.27 ± 7.36 16.09 ± 8.63
PGI/PGII (mean ± SD) 11.94 ± 2.34 11.25 ± 2.23∗

CSG: Chronic Superficial Gastritis, CAG: Chronic Atrophy Gastritis, SD:
standard deviation, NA: Not Available, ∗P < 0.05, compared with CSG
group.

the “control” group. We quantified 40 cytokines in each
serum sample, using the Meso Scale Discovery (MSD)
enzyme linked immunoassay platform. We identified
those cytokines that exhibited the highest CAG predic-
tion capacity utilizing the Boruta algorithm [27,28]. We
then selected these cytokines for the establishment of a
predictive machine-learning (ML) model, based on the
LightGBM algorithm, to accurately identify CAG from
non-CAG patients. LightGBM is an ensemble model of
decision trees used for classification and regression pre-
diction, shown to have prediction precision and model
stability [29]. Taken together, we successfully devel-
oped a scalable, non-invasive lab-based assay in com-
bination with a ML predictive model for the early de-
tection of CAG versus CSG patients.

2. Materials and methods

2.1. Ethics statement

All studies involving human participants were re-
viewed and approved by Institutional Ethics Commit-
tee of Nanjing Medical University (KY21069). The pa-
tients provided their written informed consent prior to
enrollment.

2.2. Study population inclusion and exclusion criteria

The target population, aged between 40 and 69 years,
were invited to participate in the study from January to
December of 2021. In China, the incidence of GC rises
rapidly after the age of 40 [30]. Additionally, as this
study was a community-based GC screening project, in-
dividuals over the age of 70 were excluded as they have
a higher risk of complications associated with undergo-
ing gastroscopy and biopsy. Individuals were excluded

from the study for any of the following reasons: history
of gastric surgery, including endoscopic mucosal resec-
tion or submucosal dissection, coagulation disorders or
severe cardiovascular or cerebrovascular diseases, liver,
kidney, or psychiatric disorders. In addition, patients
were excluded if taking proton pump inhibitors within
2 weeks because these can influence PG Levels in the
serologic tests. In addition, patients who routinely take
an antiplatelet drug such as aspirin were excluded, as
these drugs can cause gastrointestinal bleeding during
the endoscopic biopsy procedure.

2.3. Sample size calculation

We based our sample size calculation on obtaining a
sensitivity and specificity of 0.7. From prior experience
approximately 30–40% of patients screened at our hos-
pital have CAG. Using this information, we calculated
that for a sensitivity of 0.7 and with 35% positivity rate
we would require 230 patients for this study [31].

2.4. Patient characteristics

A total of 247 samples, including 157 CSG patients
(the control group for this study) and 90 CAG patients,
met the inclusion criteria and were included in our
study. The overall male to female ratio was 103:144.
The median age was 58. The clinical characteristics and
cytokines levels of the two cohorts are summarized in
Tables 1 and 2 respectively.

2.5. Human blood sample collection and serum
preparation

Blood samples were obtained immediately prior to
the endoscopy procedure for 247 patients as part of a
community-based screening program for gastric cancer
between January and December of 2021. The blood
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Table 2
The cytokines concentration between the CAG and CSG. The average concentration (pg/ml) ± the
standard deviation for the 37 cytokines. The adjusted p-value between CAG vs CSG patients were
calculated for all these features, with the significantly different features marked with bold

Cytokine CSG (n = 157) CAG (n = 90) Adjusted_P_value
GM-CSF 1.19 ± 12.07 0.12 ± 0.11 0.573
IFN-γ 14.65 ± 27.0 13.81 ± 10.84 0.822
IL-10 0.51 ± 0.83 0.37 ± 0.25 0.526
IL-17A 1.71 ± 1.36 1.62 ± 1.08 0.728
IL-1β 0.19 ± 0.31 0.15 ± 0.19 0.427
IL-4 0.12 ± 0.78 0.05 ± 0.05 0.595
IL-5 0.7 ± 0.75 0.57 ± 0.41 0.463
IL-6 1.12 ± 0.61 1.28 ± 1.12 0.444
IL-8 4.09 ± 10.16 3.05 ± 4.95 0.565
ENA-78 519.08 ± 924.45 532.03 ± 732.69 0.935
Eotaxin-2 1041.79 ± 949.26 898.57 ± 371.24 0.4
IL-12p70 2.53 ± 3.41 1.78 ± 1.79 0.337
IL-13 9.4 ± 8.2 8.41 ± 6.43 0.522
IL-1RA 185.2 ± 350.63 173.76 ± 186.0 0.843
IL-2Ra 961.68 ± 305.48 1017.43 ± 318.22 0.385
IL-33 1.88 ± 2.44 1.47 ± 1.49 0.397
TNF-α 5.06 ± 4.67 3.06 ± 2.16 0.004
VEGF-A 54.41 ± 95.34 39.72 ± 53.04 0.372
Eotaxin 206.25 ± 72.75 262.93 ± 88.93 5.76e-06
Eotaxin-3 94.34 ± 838.24 30.81 ± 88.01 0.629
IP-10 459.47 ± 211.84 519.96 ± 244.58 0.32
MCP-1 86.29 ± 25.39 88.38 ± 23.54 0.648
MCP-4 72.96 ± 52.06 84.0 ± 56.69 0.507
MDC 955.84 ± 334.25 984.48 ± 302.8 0.644
MIP-1α 15.89 ± 7.23 16.16 ± 6.4 0.858
MIP-1β 74.52 ± 41.71 83.15 ± 46.71 0.509
MIP-3α 22.11 ± 21.15 29.43 ± 60.61 0.426
TARC 68.36 ± 76.05 76.72 ± 102.51 0.641
G-CSF 6.78 ± 2.37 7.23 ± 2.82 0.337
IL-12/IL-23p40 191.91 ± 75.54 207.86 ± 110.22 0.354
IL-15 3.13 ± 0.86 3.44 ± 0.8 0.055
IL-16 352.02 ± 881.33 402.35 ± 1045.45 0.796
IL-7 3.26 ± 4.53 3.24 ± 4.48 0.971
SDF-1a 1624.61 ± 608.45 1844.76 ± 520.9 0.055
TNF-β 0.51 ± 0.27 0.47 ± 0.28 0.491
MIF 92429.07 ± 116540.46 71956.35 ± 86443.54 0.424
MIP-5 13841.92 ± 7452.53 12392.17 ± 4733.04 0.523

was collected into two vacutainers (5 ml into each) con-
taining K2 Ethylenediamine tetraacetic acid (EDTA),
one sample was used for multiplex cytokine concentra-
tion detection by Meso Scale Discovery (MSD) and the
other for pepsinogen detection by enzyme-linked im-
munosorbent assay (ELISA). The blood samples were
mixed by gentle inversion and kept at room temper-
ature (RT) for no more than 2 hours, they were then
centrifuged at 3,000 × g for 10 min at 4◦C, The upper
one-third of the serum supernatant was collected. The
serum samples were aliquoted and stored at −80◦C
until sample analysis.

2.6. Biopsy collection and histological reporting

All participants underwent a biopsy procedure during
the gastroscopy procedure. Two biopsies were taken,

one from the antrum and one from the small curvature
of the stomach for histology examination. We did not do
the full 5-point biopsy according to the OLGIM (Oper-
ative Link on Gastric intestinal metaplasia assessment)
evaluation system because a severity grading of atrophy
was not required for this study.

2.7. Diagnosis of the CSG and CAG by histological
examination of biopsy samples

Chronic Superficial Gastritis (CSG) was character-
ized by the gastric mucosa having lymphocytes and
plasma cell infiltration without changes in atrophy or
intestinal metaplasia by pathological analysis. Gastric
Atrophy (GA) refers to the reduction of intrinsic glands
in the gastric cavity, the thinning of gastric mucosa, and
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the shallowing of gastric pits by pathological analysis.
Gastric Intestinal Metaplasia (GIM) is the replacement
of gastric mucosa epithelial cells by intestinal mucosa
epithelial cells (goblet cells, pan cells and absorptive
cells) by pathological analysis [32]. In this study, we
collectively referred to GA and GIM as Chronic At-
rophic Gastritis (CAG) [33].

There are two types of CAG: a gastric antrum pre-
dominant type in patients infected with H.pylori, and
an autoimmune type limited to the gastric body and
fundus [34]. Due to the rare occurrence of the autoim-
mune type, a distinct subgroup of patients with specific
biomarkers gastrin G17 and pepsinogen [35], none of
the autoimmune type were included in this study.

2.8. Serum detection of Pepsinogen I (PGI) and
Pepsinogen II (PGII)

Serum expressions of Pepsinogen I (PGI) and
Pepsinogen II (PGII) were determined using Enzyme-
linked immunosorbent assay (ELISA). A total of 5 ml
of blood was collected from each of the 247 patients,
and the serum was separated from the blood by centrifu-
gation at 3000 × g for 10 minutes at 4◦C. The PGI and
PGII concentrations (in nanograms per liter) were mea-
sured using an ELISA kit (Biohit Co., Ltd., Finland) im-
mediately according to the manufacturer’s instructions.
Briefly, both standard and serum samples were added to
the ELISA plates (100 µl/well), followed by a 2-hour
incubation at 37◦C. After that, detection solution A was
added (100 µl/well) and incubated at 37◦C for 1 hour.
The plates were washed 3 times, and detection solution
B was added (100 µl/well) and incubated at 37◦C for
1 hour, followed by 5 washes. Tetramethylbenzidine
(TMB) substrate was added (90 µl/well), and the plates
were incubated at 37◦C for 15–25 minutes. Finally, the
reaction was terminated by adding termination solution
(50 µl/well), and the optical density (OD) value was
read out at 450 nm.

2.9. Cytokine concentration quantification by
multiplex Meso Scale Discovery (MSD) enzyme
linked immunoassay

The following 40 cytokines: Tumor necrosis factor-α
(TNF-α). Tumor necrosis factor-β (TNF-β), Eotaxin,
Eotaxin-3, interferon-inducible protein-10 (IP-10),
Stromal cell-derived factor 1α (SDF-1α), Macrophage
migration inhibitory factor (MIF), Macrophage Inflam-
matory Protein-5 (MIP-5), Interferon gamma (IFN-
γ), Macrophage Inflammatory Protein-3α (MIP-3α),

MCP-4, Eotaxin-2, Interleukin-12p70 (IL-12p70),
Macrophage-derived chemokine (MDC), Macrophage
inflammatory protein-1β (MIP-1β), Interleukin-13(IL-
13), Interleukin-15(IL-15), Interleukin 17A(IL-17A),
Interleukin-1RA (IL-1RA), Interleukin-1β (IL-1β),
Interleukin-2 (IL-2), Interleukin-4 (IL-4), Interleukin-
5 (IL-5), Interleukin-6 (IL-6), Interleukin-8 (IL-8),
Interleukin-10 (IL-10), Interleukin 12 (IL-12/IL-23p40),
Interleukin-15 (IL-15), Interleukin 16 (IL-16), Interleu-
kin-1α (IL-1α), Interleukin7 (IL-7), Interleukin-1RA
(IL-1RA), Interleukin-2Ra (IL-2Ra), Interleukin-3 (IL-
3), Interleukin-33 (IL-33), Granulocyte-macrophage
colony-stimulating factor (GM-CSF), Epithelial-neutro-
phil activating peptide (ENA-78), and Vascular en-
dothelial growth factor A (VEGF-A) were measured us-
ing the Meso Scale Discovery platform (MSD) accord-
ing to the manufacturer’s instructions (product insert of
K15067, MSD, Rockville, MD).

MSD is an indirect binding quantitative electro-
chemiluminescence (ECL) method designed to detect
multiple antibodies in human serum simultaneously.
In the MSD platform, biological reagents (antigens or
antibodies) are coated on the carbon electrode at the
bottom of a micro titer plate. Bound samples are then
incubated with a ECL labeled (SULFO-TAG) detec-
tion antibody. Following application of an electrical
current across the carbon electrode, the SULFO-TAG
reacts with the Ru(bpy)32+ reagent and Tripropylamine
(TPA) catalyst in the detection buffer and resulting in
the emission of light that can be quantitated at 620 nm
with a CCD camera.

2.10. Data pre-processing and statistics

Three cytokines, IL-2, IL-3 and IL-1α were not de-
tected in 42.5%, 69.2% and 45.6% of patients, and
therefore, were excluded in subsequent machine learn-
ing analyses. For the remaining 37 cytokines, the aver-
age missing rate is 0.52% (the median is 0). The few
missing values for these cytokine concentrations were
filled in using the lower limit of detection (LLOD) of
the MSD assay divided by 10, reflecting the fact that
the concentration of these cytokines is too low to be
detected. Student t-test was used to assess the statis-
tical significance of cytokine levels between the dif-
ferent groups. An overall adjusted p-value of 0.05 us-
ing Benjamini-Hochberg for multiple testing correction
was considered as the significance cut-off for all sta-
tistical analyses. All statistical analyses and machine
learning algorithms for this study were performed us-
ing R version 4.1.0 and Python version 3.8.8 [36]. In
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order to reduce overfitting in the downstream analy-
ses from the feature selection and machine learning,
we randomly divided the whole dataset into a training
dataset (Dataset1) and a validation dataset (Dataset2)
for five times, while maintaining the proportion of CAG
and CSG for each division (Supplementary Table 1).
The Dataset2 here is considered as a validation dataset
since it is a dataset the algorithm did not include in the
training process and was only used for validation. In
detail, the Dataset1 includes 125 CSG and 72 CAG,
while Dataset2 includes 32 CSG and 18 CAG.

2.11. Feature selection

To reduce over-fitting and improve the generalizabil-
ity of the model feature selection was employed [37].
The machine learning model then only utilizes the se-
lected features as its input.

Feature selection was performed using the Boruta
algorithm [27,28] and other redundant or non-important
features were discarded. Boruta was used to select the
features that correlated with the dependent variable.
Boruta feature selection was performed on each of the 5
training datasets and the common features from all five
data splits were then used by the ML algorithm. The
Boruta method is a wrapping algorithm that is based on
the random forest (RF) method. It shuffles the original
real features to construct shadow features, then joins the
real features and shadow features into a feature matrix
for training. Finally, the feature importance score of
shadow features is used as the reference base to select
the feature set truly related to the dependent variable
from the real features (see Supplementary Method for
more detail).

The Boruta program that we used in this work was
Python package Boruta (version 0.3), the default pa-
rameters were selected for execution.

2.12. Machine Learning Algorithms: LightGBM

LightGBM is a well-known gradient boosting frame-
work that uses a tree-based learning algorithm [38,39,
40]. It can be regarded as an improved version of Gra-
dient Boosting Decision Tree (GBDT), which uses the
negative gradient of the loss function of the current De-
cision Tree (DT) as an approximation of the residual
and fits a new DT recursively. It is designed to be dis-
tributed and efficient by incorporating two new tech-
nologies, gradient based one side sampling (GOSS) and
exclusive feature bunching (EFB) [41], both of which

greatly improve the efficiency and ensure the accuracy
of classification.

In this study, the features are modeled using Light-
GBM and the parameters are continuously optimized
by means of a grid search features (see Supplementary
Methods for more detail). LightGBM program (ver-
sion 3.3.5) is implemented through a Python package,
Scikit-learn [36].

2.13. Model evaluation

Model evaluation is a crucial step in machine learn-
ing to assess the performance of a predictive model.
There are various metrics that can be used to evalu-
ate the model’s performance, and here we mainly use,
area under the curve (AUC), area under the precision
recall curve (PR-AUC) and accuracy. AUC is the area
under the receiver operating characteristic curve (ROC
curve) and is a metric that evaluates the model’s ability
to distinguish between positive and negative classes.
The ROC curve is created by plotting the true posi-
tive rate (TPR) against the false positive rate (FPR)
at different threshold values. PR-AUC, the area under
the precision-recall curve, is a metric that evaluates the
model’s ability to identify positive class instances while
minimizing false positives. The PR-AUC is calculated
as the area under the precision-recall curve. Precision
is the fraction of true positives (TP) among the sam-
ples predicted as positive (TP + false positives), and
recall (or sensitivity) is the fraction of true positives
among all the actual positives (TP + false negatives).
Accuracy is a metric that measures the ratio of correctly
predicted observations (true positive + true negative)
to the total number of observations. From the design of
these different metrics, AUC and PR-AUC focus on the
detection of the positive samples, while the accuracy
metric gives the same “importance/weight” on both the
positive samples and negative samples. In this study,
our aim is to accurately identify the positive samples
(CAGs), therefore, we evaluated the predictive models
primarily based on AUC and PR-AUC.

2.14. The subgroup analysis of logistic regression
model

Hypertension, diabetes, coronary heart disease, stroke,
and chronic hepatitis B are common chronic diseases.
We examined whether these common chronic diseases
were confounding factors in this study. A subgroup
analysis using a logistic regression model was per-
formed on these five confounding factors using the R
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Table 3
The feature importance based on the Boruta feature selection method, performed five independent times.
Five cytokines ranked consistently high, across all five feature selection runs

No.1 Rank No.2 Rank No.3 Rank No.4 Rank No.5 Rank
TNF-α 1 TNF-α 1 TNF-α 1 TNF-α 1 TNF-α 1
Eotaxin 1 Eotaxin 1 Eotaxin 1 Eotaxin 1 Eotaxin 1
IL-10 1 IL-10 1 IL-10 1 IL-10 1 IL-10 1
IP-10 1 IP-10 1 IP-10 1 IP-10 1 IP-10 1
SDF-1a 1 SDF-1a 1 SDF-1a 1 SDF-1a 1 SDF-1a 1
IL-12p70 1 MIF 1 IL-12p70 1 MCP-4 1 MIF 1
IL-1RA 1 IL-12p70 1 MCP-4 1 IL-15 1
MIP-3α 1 MCP-4 1
IL-15 1 MIP-3α 1

PGI/PGII 1

software (R version 4.2.3), and then the differential ef-
fects of the 5-cytokine panel diagnosis were compared
in each subgroup dataset. By examining the interac-
tion in the subgroup regression of the generalized linear
model (p for interaction), we assessed whether these
confounding factors had an impact on the 5-cytokine
panel diagnostic effects.

3. Results

3.1. Serum cytokine measurements

For all 247 patients, we collected blood samples and
extracted serum. We measured the concentrations of
40 key cytokines in the serum using MSD. The raw
cytokine concentration data were cleaned, as described
in the Materials and Methods section, leaving data on
37 cytokines for further analysis (Table 2).

3.2. Machine learning based biomarker discovery
study design

To optimally utilize the information from our patient
cohort and develop a predictive model for CAG patients,
we designed the process outlined in Fig. 1. Starting with
the cytokine concentration matrix composed of 247 pa-
tient samples (including 157 CSGs and 90 CAGs) and
37 cytokine features, we first performed feature anal-
ysis in order to identify the most relevant features for
our downstream analyses. We calculated the statistical
significance for all features among the two groups, to
determine the difference of these features between CSG
and CAG patients (the adjusted p-value is shown in
Table 2). Only two cytokines TNF-a and Eotaxin were
found to be significantly different between the groups.
Then, we utilized the Boruta algorithm [27,28] to se-
lect the features (all cytokine features plus the clinical

features) with the highest capacity for discrimination
between CSG and CAG patients.

Once we had identified five key features, we devel-
oped a machine learning model based on the selected
features by utilizing the LGBM model [41]. We divided
the whole dataset (a total of 247 samples) into training
set (Dataset 1) and test set (Dataset 2), and we repeated
this split randomly five times to avoid over-fitting. We
used Dataset1 for training with 5-fold cross-validation
and Dataset2 for validation (i.e., validation in a dataset
the algorithm has never seen).

3.3. Feature Selection enables us to reduce the input
features for our subsequent Machine Learning
modeling

Clinical features (PGI/PGII ratio, age and gender,
Table 1) and cytokine features (Table 2) were first ana-
lyzed using the Boruta method [27,28]. For this feature
selection procedure, we exclusively used the training
set. For every one of the five independent training sets
(Supplementary Table 1), we utilized Boruta for fea-
ture selection, and calculated the feature importance,
ranking their capacity to distinguish CAG vs CSG pa-
tients. In turn, we selected the features which ranked
first (i.e. rank of “#1”) for each separate training (see
Fig. 2A and Table 3 for details, see Supplementary Ta-
ble 2 for all features ranking). Subsequently, we took
the intersection of these five separate feature selection
attempts, which yielded a total of 5 features: IL-10,
TNF- α, Eotaxin, IP-10 and SDF-1a. These features
(cytokine levels) were retained as the key features that
would be used for the follow-up modeling (see Table 3,
in bold). We also did feature selection using another
method Lasso [42], these 5 features also rank very high
by Lasso (see Supplementary Table 3).

Furthermore, we compared the differences of each
feature in the two groups through statistical testing (stu-
dent’s t-test), and we verified that four of these five
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Fig. 1. Schematic showing the details of the ML-based biomarker discovery pipeline following the serum cytokine measurements.

cytokine features, TNF-α, Eotaxin, IP-10 and SDF-1a,
demonstrate statistically significant differences between
the two groups (P < 0.05) (Supplementary Fig. 1),
although two of them, IP-10 and SDF-1a, showed no
significance after correction for multiple testing (see ad-
justed P -value in Table 2). In addition, we analyzed the
correlation between different features among patients
(see Fig. 2B and Supplementary Table 4) and found
that some features showed strong correlations with each
other. This indicating the redundancy of some features
and the benefits of the feature selection performed here.
The correlation plot also shows the independent predic-
tive power of the five features we selected here as they
did not correlate with each other (Fig. 2B), again shows
the validity of the feature selection process. In addition,
the 5 selected cytokines showed no significant corre-
lation with age or gender demonstrating these clinical
features would not confound the results.

In order to assess whether common health conditions
could confound the 5-cytokine panel diagnostic abil-
ity, we conducted a subgroup analysis using a logis-
tic regression model on common confounding factors.
These results demonstrated that hypertension, diabetes,
coronary heart disease, stroke, and chronic hepatitis B
all had insignificant interaction values with these cy-
tokines, with the one exception for hypertension with
IP-10 levels (p = 0.009). Therefore, the 5-cytokine
diagnostic panels efficiency is largely unaffected by

the above confounding factors (see Supplementary Ta-
ble 5).

3.4. Building an accurate predictive model for CAG
patients, using LGBM

After reducing the number of the features to those
that show significant predictive capacity for CAG pa-
tients, we moved on to develop a predictive model for
CAG patients. For our predictive model, considering the
relatively small sample size, the light gradient-boosting
machine (LGBM) classifier was selected [41]. To avoid
overfitting – a typical challenge in machine learning
approaches – we randomly divided the whole dataset
into training set (Dataset 1) and validation set (Dataset
2) for five times, as specified in the Material and Meth-
ods section. For each division, there is a training set as
well as its corresponding validation set (Supplemen-
tary Table 1). We further performed five-fold-cross-
validation on the training set to avoid overfitting to the
maximum degree. The LGBM model included the five
selected features, namely IL-10, TNF- α, Eotaxin, IP-
10 and SDF-1a, as input candidate features. The clas-
sifier with the best model performance was selected
by continuously iterating the optimization parameters
for the training set of each division. Out of all 5 dif-
ferent independent runs, the training set of division
1 (sheet of “Training1” in Supplementary Table 1) is
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Fig. 2. Feature importance and correlation analysis. (A). Heatmap of feature importance based on the Boruta feature selection method (scores
range from 1 to 35), performed five independent times through five random splits of the data. Showing the results for 37 cytokines, Gender, Age,
PGI, PGII, and PGI/PGII ratio. The five cytokines with the highest ranking are displayed in bold. (B). Heatmap of absolute values of Pearson
correlation coefficients of features among samples. The five selected features show low correlation with each other.

shown in Fig. 3; the performance of the other divisions
(Training2 to Training5) are provided in Supplemen-
tary Fig. 2, and demonstrate similar performance. In
summary, the performance of our model was quite high,

with AUC = 0.85, and PRAUC = 0.81. Furthermore,
we also constructed the predictive models using other
6 machine learning classifiers, i.e., Logistic Regres-
sion (LR), Decision Tree (DT), Support vector Machine
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Fig. 3. The training performance of the five cytokine features derived LGBM modelling based on Training1 of division 1. (A). The mean AUC
curve is shown in blue. The light gray shade shows the standard deviation stemming from the five-fold-cross validation results. (B). The PRAUC
mean is shown in red. The light gray shade shows the standard deviation stemming from the five-fold-cross validation results. AUC: Area Under
the Curve, PRAUC: Precision Recall Area Under the Curve.

Table 4
Robustness and stability of the constructed five cytokine based LGBM
model among the five different divisions by interrogating the valida-
tion set performance

Division AUC PRAUC Accuracy
1 0.88 0.76 0.78
2 0.83 0.78 0.68
3 0.81 0.69 0.72
4 0.79 0.63 0.74
5 0.85 0.77 0.82
Variance 0.00121 0.00432 0.00292

AUC: Area Under the Curve, PRAUC: Precision Recall Area Under
the Curve.

(SVM), Neural Network (NN), Naive Bayes (NB), K
Nearest Neighbors (KNN), and compared their perfor-
mances with the model constructed by LGBM. Overall,
the LGBM model’s performance is better than other 6
machine learning models (see Supplementary Table 6
and 7).

3.5. Validation

The final LGBM model was validated in its corre-
sponding validation dataset (“Validation1” in Supple-
mentary Table 1). The obtained AUC = 0.88, PRAUC
= 0.76, Accuracy = 0.78, Sensitivity = 0.78, Speci-
ficity = 0.78 show that our model’s capacity to ac-
curately predict CAG patients is high. The validation
results are shown in Fig. 4.

In the same way as the training sets (division 1), we
also evaluated the performance of each of the other 4
training division derived models on their respective val-
idation set (Supplementary Fig. 3). We have summa-

rized the validation performance of the different train-
ing set derived model in Table 4. It clearly shows that
the models’ performance across all different data parti-
tions stays high and shows robustness. As the main goal
of our work here is to accurately identify CAG patients,
the metrics, “AUC” and “PRAUC” are most relevant as
they focus on the true positive – the CAG patients (as
opposed to using the “accuracy” metric (TP+TN)/total
samples). By inspecting the variance of the models’
performance (AUC, PRAUC and Accuracy) among the
five divisions, we can clearly see the limited variance,
which indicates the model is very stable and robust
against changes in the training datasets. Therefore, we
conclude that, the derived model is valid and can be
generalized.

To further demonstrate that the five features selected
by the Boruta method led to the best prediction algo-
rithm, we compared the performance of our 5-cytokine
based ML model with a ML model that includes the
complete set of 37 cytokines we measured (Supplemen-
tary Fig. 4) as well as a 40-feature ML model which
contains all available features (37 cytokines + 3 clinical
features) (Supplementary Fig. 5). In addition, we also
built a model based only on the significant cytokines,
(TNF- α, Eotaxin; adjusted P value < 0.05) (Table 2),
with the aim to see whether our feature selection in
combination with ML outperforms this simple com-
bination (Supplementary Fig. 6). In summary, our re-
sults demonstrate that the performance of our concise
5-feature (cytokine) predictive model is comparable
with the performance of the much more complex multi-
feature models, and better than the simple statistical
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Fig. 4. The performance of the five cytokines based LGBM model in the independent, validation dataset shows high predictive capacity. (A). Area
under the curve analysis. (B). Precision recall area under the curve analysis. AUC: Area Under the Curve, PRAUC: Precision Recall Area Under
the Curve.

test derived marker model, which demonstrates that the
five selected features suffice to empower our predictive
model to accurately distinguish CAG patients.

We next examined how our model compared to
white-light gastroscopy, a slightly less invasive proce-
dure than the gold-standard gastroscopy/biopsy pro-
cedure, as it does not require the collection of biop-
sies. We found that clinician diagnosis of CAG using
white-light gastroscopy (Supplementary Table 1) had
a lower accuracy than the 5-cytokine ML model (0.67
vs 0.78) and a dramatically lower sensitivity (0.4 vs
0.78). This sensitivity is similar to a previously pub-
lished study that indicated white-light gastroscopy had
a sensitivity of 0.41 [43]. In contrast white-light gas-
troscopy had a slightly higher specificity than the 5-
cytokine ML model (0.83 vs 0.78). This demonstrates
that the 5-cytokine ML model outperforms white-light
gastroscopy on accuracy and sensitivity in addition to
being a less invasive procedure for the patients.

3.6. Evaluation of the predictive power of PGI/PGII in
our dataset

As previous approaches to identify CAG patients
have utilized PGI and PGII measurements, we wanted to
investigate how our approach compared with these more
established approaches. We found the PGI/PGII ratio
to be significantly different between the two sample
groups in this study using a standard student t-test (P =
0.023) (Fig. 5A).

First, we employed the criteria that has been used in
a number of publications [44], (PG I 6 70 ng/mL and a
PG I/PG II ratio of 6 3) to interrogate our full dataset,

we found only 3 samples met this criterion (Sample IDs:
1907649, 1908664, 1907503, see detail in sheet “Com-
plete_data” of the Supplementary Table 1). Only one
of these was a true positive, CAG (1908664), and other
two were false positives, CSG (1907649, 1907503),
this gives rise to a Sensitivity = 0.01 and Accuracy
= 0.63 (of note, only the PG I/PG II ratio influenced
the outcome in this analysis). This performance is dra-
matically lower than the 5-cytokine approach that we
have developed. We next sought to determine whether
the utility of PGI/PGII could be improved with the aid
of machine learning. To properly evaluate the discrim-
inatory capacity of PGI/PGII on CAG detection, we
constructed a model based on logistic regression to pre-
dict CAG patients, using the PGI/PGII ratio. We per-
formed five-fold cross validation by employing the en-
tire sample set, which leads to a model with a mean
AUC of 0.59 (Fig. 5B). This result strongly suggests
that a model based solely on the PGI/PGII informa-
tion fails to accurately discriminate CAG patients from
CSG patients. Taken together, these results demonstrate
that with or without machine learning, the common ap-
proach for CAG identification utilizing PGI and PGII
concentrations cannot achieve the performance of our
cytokine-based model.

In addition, we tested whether the addition of the
remaining clinical features (age and gender) to the
PGI/PGII ratio could improve the prediction perfor-
mance. We therefore trained a LGBM model using these
three features and evaluated the performance in its ca-
pacity to discriminate CAG vs CSG patients. These re-
sults confirm once more that the clinical features alone
do not have strong predictive capacity (see Supplemen-
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Fig. 5. (A). The difference of PGI/PGII between CSG and CAG patients is significant (p-value = 0.023, using student’s t-test). (B). The performance
of PGI/PGII in classifying CAG with the logistic regression: the classifier does not have strong discrimination capacity. CSG: Chronic Superficial
Gastritis; CAG: Chronic Atrophic Gastritis; PGI: pepsinogen I; PGII: pepsinogen II.

tary Fig. 7), and is in line with our previous findings,
which demonstrated that their feature importance did
not typically rank highly (Fig. 2A).

4. Discussion

Detecting potential GC patients as early as possible
is of paramount importance for optimal treatment out-
comes. If the guidelines for screening, early diagnosis,
and treatment of GC, for example in China were fol-
lowed [45], there would be approximately 300 million
people whom would require a gastroscopy. To reduce
the burden on both the patient and the healthcare sys-
tem, an effective and efficient method to screen for the
high-risk individuals is critical. With only these high-
risk patients required to undergo the more invasive gas-
troscopy. In this study, using a non-invasive blood sam-
pling approach, we utilized the concentrations of just
five circulating cytokines to build a Machine Learn-
ing based predictive model, able to discriminate CAG
patients with a high confidence.

Circulating cytokines play a pivotal role in the patho-
genesis of the cancer [21]. In this study, the concen-
tration of 40 circulating cytokines were detected using
an MSD assay. These cytokine features as well as PGI,
PGII, age, and sex were ranked using the Boruta algo-
rithm. This led to the identification of 5 key cytokines,
namely IL-10, TNF-α, Eotaxin, IP-10 and SDF-1α
that were able to discriminate CSG from CAG. Out

of these five cytokines, two had significant differences
between CSG and CAG patients (Eotaxin and TNF-
alpha). It has been observed that CAG patients tend to
have increased expression of a number of cytokines and
chemokines [46]. Our results are consistent with many
other works: TNF-α is an inflammatory cytokine which
may play a role in the development of GC [47]. The
chemokine (CXCL) family plays an important role in
inflammation, with chemokine family members such as
CXCL10 (IP-10), CXCL12 (SDF-1α) hypothesized to
play a very important role in the pathogenesis of GC
and have also been suggested as markers for the devel-
opment of GC [48]. Eotaxin, a C-C motif chemokine
is a chemoattractant primarily for eosinophils but also
other immune cell types [49]. Although it has been pre-
viously identified as a potential biomarker for GC in a
small patient cohort [50], and also in a number of other
cancer types, there is currently limited understanding
for its direct role in cancer development or progres-
sion [49]. While in contrast to our findings a previous
study indicated that the level of anti-inflammatory cy-
tokines such as IL-10 were increased in the blood of
GC patients and could be used as a potential biomarker
for the diagnosis of GC [51]. This could indicate that
IL-10 levels fluctuate during the different stages of GC
development with them dropping during CAG forma-
tion before rising again when patients progress to GC.
Of note our machine learning approach did not iden-
tify pro-inflammatory cytokines such as IL-6 and IL-1β
that are known to associate with several other malig-
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nancies as well as other common conditions such as
hypertension [52,53].

As cytokines are involved in many biological pro-
cesses, single cytokine concentration measurements in
the context of cancer may be influenced by processes
apart from cancer development. For example, the cy-
tokine concentration may differ due to different inflam-
matory conditions or illnesses. Thus, to get a robust
prediction, the screening of a large number of cytokines
is necessary to identify those that correlate most closely
with disease. These can then be used to develop the
machine learning model. However, traditional cytokine
measurement methods such as ELISA do not scale well
for analyzing multiple cytokines. In contrast, MSD is
an immunoassay-based platform that is designed to de-
tect multiple cytokines in human serum simultaneously.
MSD is more efficient and sensitive than ELISA. The
power of MSD Multiplex has previously been utilized
to analyze immune responses to SARS-COV-2 [54] and
to identify other circulating cytokine biomarkers [55,
56]. In this study, we measured the concentration of 40
cytokines. From these 40 cytokines we identified 5 cy-
tokines that could discriminate CAG from CSG. These
cytokines were chosen in an unbiased manner using
the Boruta algorithm. The analysis showed that predic-
tions based on these 5 cytokines is robust (Table 4),
which indicates that they may also play an important
role in gastric cancer development. This would be an
interesting avenue for future research.

CAG is widely recognized as one of the main precur-
sors to intestinal-type GC, once a patient is diagnosed
with CAG, there is no proven treatment including H.
pylori eradication that can effectively reverse disease
progression [57]. Thus, the early diagnosis and man-
agement of CAG patients are important to allow for the
closer monitoring of patients most likely to progress to
GC. Previously, one of the most frequently used non-
invasive clinical biomarkers for early CAG patient de-
tection, were the values of PG I and the PG I/PG II
ratio. In particular, a value of PG I 6 70 ng/mL and
a PG I/PG II ratio of 6 3 has been frequently used in
the CAG diagnosis [58]. In the current study, we found
that the ratio of PGI/PGII was significantly different
between CAG and CSG patients. However, the logistic
regression analysis we performed clearly showed that
the PGI/PGII ratio is insufficient to distinguish CAG
from CSG patients (Fig. 5B). This is supported by a
meta-analysis that PGI/PGII diagnosis values for sen-
sitivity, specificity and diagnostic odds ratio are much
lower in CAG [44]. This strongly suggests that using the
values of PGI and the PGI/PGII ratio alone would not

have enough accuracy for the diagnosis of CAG [11]. In
contrast, our cytokines-based machine learning method
can accurately discriminate CAG from CSG (AUC on
validation dataset was 0.88), which has the potential
to replace invasive endoscopy method as the reliable
CAG detection method in the future. It is important to
note that the further validation of this 5-cytokine panel
and machine learning algorithm approach on additional
patient cohorts would be critical before this approach
could be adopted in the clinic. Future studies could also
apply the multiplexed cytokine-based machine learning
method described in this study as a framework for iden-
tifying predictive biomarkers for other cancer types.

Machine learning is increasingly gaining traction in
the medical domain, demonstrating highly promising
results [59]. Specifically, in recent years, LGBM mod-
els have been widely employed for calculating indi-
vidual patient’s risk of developing cancer [60,61,62].
These models combine conventional machine learning
techniques with deep learning technology, allowing for
the extraction of knowledge regarding cancer molecular
mechanisms from diverse signals, such as multi-omics
data encompassing genomics, proteomics, epigenetics,
and transcriptomics. Consequently, this enables more
precise cancer risk prediction. A recent study high-
lighted the efficacy of an LGBM model in accurately
diagnosing ovarian cancer, thereby enhancing the over-
all effectiveness of cancer prediction [63]. Furthermore,
LGBM models find utility in analyzing the pathogene-
sis and predict the treatment outcomes of liver cancer,
where such models were utilized in helping doctors bet-
ter identify high-risk patients, provide more effective
treatment plans, and predict the development of the dis-
ease more accurately [64]. It has been demonstrated that
LightGBM exhibits superior performance compared to
other algorithms in terms of prediction precision, model
stability, as well as computing efficiency through a se-
ries of benchmark tests [29]. Our results further con-
firm that LightGBM is the best algorithm for predictive
model generation. In line with these studies, our result
here also confirms the validity of the machine learning
approach in cancer risk prediction, in particular, the
early CAG detection along the GC development.

4.1. Limitations of the study

It is important to note that this was a single center
study and that further validation of this 5-cytokine panel
machine learning algorithm in additional patient cohorts
would be critical before this approach could be adopted
in the clinic. Furthermore, while the incorporation of
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5 cytokines in this model rather than a single cytokine
measurement does increase the specificity of this test
it is possible that some other cancer types or diseases
may lead to a similar cytokine profile and thus lead to
false positive results.

As there were no autoimmune type CAG patients
included in this study, further studies would need to be
conducted to demonstrate whether this 5 cytokine panel
has any utility in this patient subgroup.

Finally, while most components of the GastroPanel,
the alternate serum screening method, were compared
to the 5-cytokine panel model, a direct comparison with
the GastroPanel was not included in this study, we thus
cannot definitively state that this new system is superior
to the GastroPanel.

5. Conclusions

In this study, we developed a model constructed from
the serum concentration of 5 cytokines that can predict
whether a patient has CAG with high accuracy. This
method is an improvement over the traditional meth-
ods utilizing PGI and PGII concentrations. We believe
our results can pave the way for the introduction of a
5-cytokine lab assay into standard clinical practice, en-
abling the earlier, more accurate diagnosis of patients.
While at the same time reducing the burden (in terms
of both time and cost) on the health system and patient.
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