
co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 21/03/2024; 9:28 File: cbm–1-cbm230340.tex; BOKCTP/xjm p. 1

Cancer Biomarkers -1 (2024) 1–9 1
DOI 10.3233/CBM-230340
IOS Press

Curating retrospective multimodal and
longitudinal data for community cohorts at
risk for lung cancer

Thomas Z. Lia,b,∗, Kaiwen Xuc, Neil C. Chadaa,b, Heidi Chend, Michael Knighte, Sanja Antice,
Kim L. Sandlerf , Fabien Maldonadoe, Bennett A. Landmanb,c,f,g and Thomas A. Laskoc,h
aMedical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
bBiomedical Engineering, Vanderbilt University, Nashville, TN, USA
cComputer Science, Vanderbilt University, Nashville, TN, USA
dBiostatistics, Vanderbilt University, Nashville, TN, USA
eMedicine, Vanderbilt University Medical Center, Nashville, TN, USA
fRadiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
gElectrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
hBiomedical Informatics, Vanderbilt University, Nashville, TN, USA

Received 8 August 2023

Accepted 10 February 2024

Abstract.
BACKGROUND: Large community cohorts are useful for lung cancer research, allowing for the analysis of risk factors and
development of predictive models.
OBJECTIVE: A robust methodology for (1) identifying lung cancer and pulmonary nodules diagnoses as well as (2) associating
multimodal longitudinal data with these events from electronic health record (EHRs) is needed to optimally curate cohorts at scale.
METHODS: In this study, we leveraged (1) SNOMED concepts to develop ICD-based decision rules for building a cohort
that captured lung cancer and pulmonary nodules and (2) clinical knowledge to define time windows for collecting longitudinal
imaging and clinical concepts. We curated three cohorts with clinical data and repeated imaging for subjects with pulmonary
nodules from our Vanderbilt University Medical Center.
RESULTS: Our approach achieved an estimated sensitivity 0.930 (95% CI: [0.879, 0.969]), specificity of 0.996 (95% CI: [0.989,
1.00]), positive predictive value of 0.979 (95% CI: [0.959, 1.000]), and negative predictive value of 0.987 (95% CI: [0.976, 0.994])
for distinguishing lung cancer from subjects with SPNs.
CONCLUSION: This work represents a general strategy for high-throughput curation of multi-modal longitudinal cohorts at risk
for lung cancer from routinely collected EHRs.
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1. Introduction 1

The use of predictive models to inform clinical diag- 2

nosis, management, and prognosis is an area of intense 3

research, especially in the early diagnosis of lung cancer 4

from detected pulmonary nodules [1,2]. Large repre- 5

sentative cohorts are a key ingredient in developing and 6

validating predictive models that generalize well across 7
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communities [3]. Although prospective clinical trials8

such as the National Lung Screening Trial [4] have pro-9

vided a richly annotated datasets for this purpose, they10

are costly to replicate at scale and are limited in scope11

as they only include high-risk, lung cancer screening12

patients. Without well-funded clinical trial enrollment,13

electronic health records (EHRs) represent the next best14

window into clinical populations [5,6]. Curating a ret-15

rospective cohort from the EHRs is a two-step pipeline16

that includes (1) defining a phenotype to separate cases17

and controls within an appropriate time window, and18

(2) mining data across modalities and time.19

Individuals with an indeterminate pulmonary nodule20

(IPN) detected incidentally or during screening, and21

without a recent or active history of any cancer, repre-22

sent a clinical challenge due to limitations of available23

noninvasive methods to risk stratifying IPNs [7]. In con-24

trast, individuals with an active cancer or recent cancer25

history who present with an IPN undergo more aggres-26

sive diagnostic investigations due to a higher pretest27

probability of malignancy. The value of predictive mod-28

els is limited in this setting, so these individuals should29

excluded from study cohorts for lung cancer predic-30

tion [8,9]. A common starting point for finding diag-31

noses from the EHR are International Classification of32

Diseases (ICD) codes, a hierarchical terminology of33

medical findings, diagnoses, and conditions that is ubiq-34

uitously used for reimbursement requests in the United35

States [10]. For many diagnoses, including lung cancer,36

there is no consensus on which ICD codes should be37

included to define the diagnostic event. Furthermore,38

identifying cases where an IPN resulted in a diagnosis39

of lung cancer is a nontrivial issue as the information40

is often only accessible as non-structured data within41

biopsy reports and clinical notes. This study proposes a42

strategy for defining lung cancer and IPN events based43

on existing SNOMED-CT concepts [11]. We further44

leverage the implicit timing between the two events to45

label cases and controls.46

Once cases and controls have been identified, data47

from these subjects are commonly retrospectively ex-48

tracted. An imaging study would require chest CT scans49

that capture SPNs, ideally with multiple scans that show50

nodule change over time. To this end, imaging studies51

require expensive and time-consuming visual assess-52

ments of each image. Studies of non-imaging risk fac-53

tors likewise undertake challenging efforts to extract54

clinical concepts from the EHR. These challenges mo-55

tivate a scalable method for medical image and clini-56

cal concept mining that would enable high-throughput57

research or at least preliminary curation to minimize58

manual effort. This study proposes to implicitly curate 59

images and clinical concepts that occur in clinically- 60

informed time windows surrounding the lung cancer or 61

SPN events. 62

Standardized cohort curation methods are needed to 63

increase the chance that cohorts are comparable across 64

geographic and institutional boundaries. However, the 65

underlying data structure of EHRs differ by institution, 66

with each facing unique challenges in extracting infor- 67

mation from heterogeneously structured, sparse, and 68

irregularly sampled data. The methods put forth in this 69

study seek to be agnostic to data structure by inferring 70

phenotypes from ICD codes only. We test the validity 71

of these inferences by comparing our cohorts with our 72

institution’s cancer registry [12]. The proposed method 73

was used to curate three cohorts from our home insti- 74

tution: a clinical concepts cohort and two longitudinal 75

imaging cohorts. 76

2. Data 77

All data were collected from Vanderbilt University 78

Medical Center (VUMC) under a protocol approved by 79

the Vanderbilt Human Research Protections Program, 80

IRB #140274. Non-imaging data were pulled from the 81

Research Derivative, our archive of 2.5 million EHRs 82

from VUMC starting from 1990 to the present day [13]. 83

The full history of ICD codes and their occurrence 84

date were retrieved for each subject in the study. We 85

also tapped ImageVU, our linked imaging archive that 86

contains an incomplete subset of chest and full body 87

CTs acquired at VUMC after 2012. Clinical scans that 88

are not available in ImageVU were excluded due to 89

administrative or technical barriers such as temporary 90

server downtime during scan acquisition. 91

3. Methods 92

Risk factors, biomarkers, and predictive models are 93

most valuable when they inform early risk stratification 94

before patients undergo invasive procedures and well 95

before the disease becomes metastatic. We choose to 96

retrospectively capture this population by finding indi- 97

viduals with a SPN detected incidentally or by screen- 98

ing who do not have a history of any cancer. We use 99

ICD-based rules to define the presence of pulmonary 100

nodules, lung cancer, and history of any cancer, and 101

leverage their relative timing to distinguish those who 102

developed lung cancer from those with benign disease. 103
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Fig. 1. Archives linking EHRs to imaging allowed for the selection
of subjects via ICD rules. Scans that were low quality and data that
did not fall within observation windows were excluded. VU-SPN:
subjects with no cancer history prior to an SPN code. VU-LI-SPN:
subjects in VU-SPN with imaging. VU-LI-Incidence: subjects with
imaging.

These methods are used to curate three different cohorts104

that represent populations from VUMC with (1) an105

SPN, (2) an SPN and longitudinal chest CT imaging,106

and (3) longitudinal chest CT imaging. We denote these107

cohorts as VU-SPN, VU-LI-SPN, and VU-LI respec-108

tively. VU-SPN included those with and without longi-109

tudinal imaging data while VU-LI-SPN only includes110

subjects with longitudinal imaging available. Other than111

this, both employ the same inclusion criteria and there-112

fore the former is a superset of the latter. In contrast,113

VU-LI employed different inclusion criteria to cap-114

ture more imaging data. There is an incomplete overlap115

in subjects between VU-LI and the other two cohorts116

(Fig. 1).117

3.1. ICD-based phenotypes118

ICD-based phenotypes can be inferred using clinical119

expert-designed schemas that map high level clinical120

concepts to aggregations of ICD codes. The leading121

expert-designed schemas that have emerged include122

Phecodes [14,15], representing diseases for PheWAS-123

based clinical and genetic research, and SNOMED- 124

CT, a comprehensive terminology that broadly includes 125

clinical concepts beyond diseases. The phenotyping 126

efforts in this study leveraged a mapping between 127

SNOMED-CT concepts and ICD codes [16], but we 128

note that Phecodes result in similar phenotype defini- 129

tions for lung cancer and pulmonary nodules. 130

For the SPN phenotype, we used SNOMED-CT with 131

SCTID 427359005, concept name “Solitary nodule of 132

lung (finding)”, to identify ICD-9 793.11 and ICD-10- 133

CM R91.1 both named “solitary pulmonary nodule”. 134

For the lung cancer phenotype, we aggregated the de- 135

scendants of SCTID 363358000, concept name “Malig- 136

nant tumor of lung”, and mapped them to ICD-9/ICD- 137

10/ICD-10-CM codes, ultimately finding 56 matching 138

codes in our archives (Table 1). This aggregation of 139

codes represents a broad phenotype of lung cancer and 140

includes any malignancy found in the bronchus or lung, 141

but excludes malignancies of the trachea, larynx, me- 142

diastinum, and pleura. The phenotype can be further 143

factorized to distinguish between primary lung cancer 144

and metastasis to the lung from other cancers if the 145

need arises. Finally, a phenotype for any malignancy 146

was created by aggregating the descendants of SCTID 147

363346000, concept name “Malignant neoplastic dis- 148

ease” and mapping the concepts to ICD codes. 149

3.2. Criteria for inclusion, case, and control 150

We defined the cohort inclusion criteria as individu- 151

als with a SPN phenotype and no cancer phenotype oc- 152

curring before the SPN phenotype (Fig. 1). Lung cancer 153

cases are individuals with a lung cancer phenotype oc- 154

curring 4 to 1095 days after the SPN phenotype. Lung 155

cancer phenotypes occurring imminently after a SPN 156

event is likely to represent patients where the presence 157

of lung cancer is known concurrently or before the SPN 158

detection. Therefore we used 4 days as a heuristic cutoff 159

to exclude these patients from the cohort. 1095 days 160

was chosen as the maximum follow up period because a 161

SPN that is stable for three years is highly unlikely to be 162

malignant [8,17]. Controls are individuals that meet the 163

inclusion criteria but not the positive case criteria. Im- 164

portantly, we excluded records that ended within three 165

years of an SPN. We defined the end of a record as the 166

date of the last ICD code plus a 1 month buffer. These 167

rules were used to label VU-SPN and VU-LI-SPN. 168

These criteria represent a conservative strategy that 169

may not be adequately sensitive for capturing lung can- 170

cer incidence, since subjects must have a SPN that rises 171

to the threshold of being worked up to be included in 172
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Table 1
ICD-based phenotypes for SPN and lung cancer

Version Code Description
Phenotype: Solitary pulmonary nodule
ICD-9 793.11 Solitary pulmonary nodule
ICD-10 R91.1 Solitary pulmonary nodule
Phenotype: Lung cancer
ICD-9 162† Malignant neoplasm of trachea bronchus and lung
ICD-9 197.0 Secondary malignant neoplasm of lung
ICD-9 209.21 Malignant carcinoid tumor of the bronchus and lung
ICD-9 176.4 Kaposi’s sarcoma, lung
ICD-10 C34∗ Malignant neoplasm of bronchus and lung
ICD-10 C7A.090 Malignant carcinoid tumor of the bronchus and lung
ICD-10 C46.5∗ Kaposi’s sarcoma of lung
ICD-10 C78.0∗ Secondary malignant neoplasm of lung
†Includes all sub-categories below the hierarchy except 162.0 “Malignant neo-
plasm of trachea”. ∗Includes all sub-categories below the hierarchy under this
general category.

Table 2
Cohorts characteristics

Cohort VU-SPN VU-LI-SPN VU-LI
No. subjects 6254 199 535

Cases/controls 946 (6%)/5308 30 (15%)/169 66 (12%)/469
No. scans N/A 436 1337

Cases/controls N/A 42 (9.9%)/394 88 (6.6%)/1249
Age 57.2 ± 15.8 59.9 ± 13.1 62.0 ± 11.0
Sex (male) 2776 (44%) 126 (59%) 383 (72%)
BMI 29.2 ± 7.03 27.5 ± 7.23 27.1 ± 6.33

the cohort. We defined a broader inclusion criteria to173

identify those with and without lung cancer, regardless174

of SPN presence. Cases were those without cancer of175

any type before an occurrence of a lung cancer phe-176

notype. Controls were those without lung cancer, and177

no cancer of any type before an observation. Any data178

occurring after a diagnosis of cancer were excluded.179

These rules were used to label VU-LI.180

3.3. SPN cohort181

We collected records from the Research Derivative182

with ICD codes matching the SPN phenotype. Our ob-183

servation window for each subject ranged inclusively184

from the start of their record to the date of their lung185

cancer event. Within this window, we collected demo-186

graphics, ICD codes, laboratory values, and medication187

orders. Observations occurring after the lung cancer188

code was excluded (Table 2).189

3.4. Longitudinal Imaging cohorts190

We assembled a cohort with repeated chest CTs that191

captured pulmonary nodules or untreated lung cancer192

for a longitudinal imaging study (Fig. 1). We started193

with an initial discovery cohort of individuals in Im- 194

ageVU with three CTs within five years. As a quality as- 195

surance step, we algorithmically analyzed the imaging 196

metadata to discard images with poor slice contiguity 197

and unrealistic physical dimensions. We also performed 198

a fast manual review to remove CTs that did not fully 199

include the lung field or had occluding artifact. Finally, 200

we retrieved ICD codes for the discovery cohort that 201

passed this quality assurance and identified cases and 202

controls (Table 2). 203

A unique challenge in building imaging cohorts is 204

inferring which images best capture a lung cancer with- 205

out the need for visual assessment or robust natural 206

language processing of radiologic reports. The scans 207

for cases and controls were classified differently. We 208

hypothesized that in lung cancer cases, the diagnostic 209

value of images is related to its time-distance from the 210

lung cancer diagnosis. In control subjects, the diagnos- 211

tic value of images depends on its time-distance from 212

the observation of a pulmonary nodule. To reflect this, 213

we implicitly classified images from lung cancer cases 214

based on their timing relative to the first occurring lung 215

cancer event (Fig. 2). The classes are distinguished as 216

follows. Pre-3+: Images acquired three or more years 217

before the lung cancer phenotype. They are unlikely to 218

capture any relevant pulmonary nodules. Pre-3: Images 219
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Fig. 2. Distribution of collected imaging surrounding first diagnosis of lung cancer in cases and the first observation of a pulmonary nodule in
controls. Scans were classified into disjoint time windows (in chronological order: Pre 3+, Pre 3, Pre 1, Post 3, and Post 3+) based on their
proximity to the first lung cancer event for cases or first SPN event for controls. For cases (a), scans occurring at or before the lung cancer event
(Pre 3+, Pre 3, Pre 1) were included in the cohort while scans collected after were excluded (Post 3, Post 3+). For controls (b), scans that were
acquired before or within three years after the first SPN code (Pre, Post 3) were included in the cohort while scans acquired three years after were
excluded (Post 3+).

acquired 1–3 years before the lung cancer phenotype.220

They are likely to capture pulmonary nodules in the221

pre-malignant stage. Pre-1: Images acquired from the222

date of the lung cancer phenotype to 1 year before. They223

are likely to capture undiagnosed and untreated lung224

cancer [8,9]. Post-3: Images acquired 3 years after the225

lung cancer phenotype was observed. They are likely226

to capture lung cancer that was diagnosed and treated.227

Post-3+: Images acquired more than 3 years after the228

lung cancer phenotype. They are not likely to capture229

findings relevant to lung cancer. For controls, we desig-230

nate two classes of images as useful for analysis: images231

before the SPN code (Pre) and those within three years232

after the SPN (Post-3). Images acquired more than three233

years after the SPN (Post-3+) were discarded due to234

the possibility of containing unlabeled lung cancer.235

3.5. Validation236

The ICD-based decision rules for distinguishing lung237

cancer cases and controls were compared against the238

VUMC Cancer Registry (VCR), an externally devel-239

oped registry of all patients who received a cancer di-240

agnosis or first course treatment for a cancer at VUMC241

from 1983 to 2023. For inclusion in the registry, records242

are first broadly selected using pathology reports or243

the presence of ICD codes. Each selected record is re-244

viewed by trained clinicians and confirmed cases are245

reported the Tennessee State Registry. We estimate that246

this process produces an extremely low false positive247

Table 3
VU-SPN cases/controls vs. presence in VUMC
Cancer Registry (VCR) (Number of subjects that
we chart reviewed from each cell)

VCR
Present Absent

VU-SPN
Predicted cases 675 (0) 271 (28)
Predicted controls 50 (50) 5258 (526)

rate for inclusion in the VCR to indicate a true cancer 248

case [12]. However, the false negative rate is difficult 249

to bound because the VCR does not include patients 250

diagnosed at other institutions who then receive second 251

course treatment or beyond at VUMC. 252

To explain the gap between our cohorts and the VCR, 253

we conducted a chart review of the mismatched patients 254

using clinical notes and pathology reports (Table 3). 255

Due to the large cohort size, we reviewed a random 256

10% of cases and controls absent from the VCR. We 257

did not review cases present in the VCR because they 258

are manually reviewed and we expected a negligible 259

false positive rate. 260

3.6. Statistics 261

We used the following bootstrap procedure to esti- 262

mate the proportions of cases and controls that truly 263

meet criteria from our chart review. First, we attained 264

100,000 samples by sampling with replacement from 265

subjects whose charts were reviewed. The size of each 266
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Table 4
Estimated proportion of predicted cases and controls in VU-SPN that truly met criteria, reported as median
and 95% CI of bootstrapped samples

Estimated
True case True control Do not meet inclusion criteria

VU-SPN
Predicted cases 0.979 [0.948, 1.00] 0.021 [0.00, 0.052] 0 [0, 0]
Predicted controls 0.013 [0.006, 0.024] 0.987 [0.976, 0.994] 0.009 [0.002, 0.019]

Table 5
Estimated true cases and controls from VU-LI-SPN and VU-LI. Only
mismatches between cohort vs. VCR were reviewed (Number of
subjects that we chart reviewed from each cell)

VCR Estimated

Present Absent
True
case

True
control

VU-LI-SPN
Predicted cases 28 (0) 2 (2) 30 0
Predicted controls 5 (5) 164 (0) 0 169

VU-LI
Predicted cases 58 (0) 8 (8) 66 0
Predicted controls 3 (3) 466 (0) 3 466

sample was 627, which is 10% of VU-SPN. We strati-267

fied the sampling by the comparison between VU-SPN268

and VCR. That is, each bootstrapped sample was the269

union of a 10% sample from the 675 cases present in270

VCR, a 100% sample from the 28 reviewed cases absent271

from VCR, a 10% sample from the 50 reviewed con-272

trols present in VCR, and a 100% of the 526 reviewed273

controls absent from VCR. We report the proportion274

estimates as the bootstrapped medians. Values at the275

2.5th and 97.5th percentile among bootstrap samples276

formed the 95% confidence intervals of each estimate277

(Table 4). We also computed the sensitivity, specificity,278

positive predictive value (PPV), and negative predictive279

value (NPV) in each bootstrap sample and report their280

aggregate estimates using the same procedure.281

For imaging cohorts, we simply conducted reviewed282

the predicted cases absent from VCR and predicted283

controls present in the VCR (Table 5). We did not per-284

form a full review of these imaging cohorts because285

we conducted our validation with a larger overlapping286

cohort in VU-SPN.287

4. Results288

4.1. Clinical concepts289

16,053 unique subjects were found to match inclu-290

sion criteria. However, 9769 controls were excluded291

due to their record ending within three years of the292

SPN date. Ultimately we identified 946 cases and 5308293

controls (Table 2). We collected all demographics, ICD 294

codes, laboratory tests, and medications occurring be- 295

fore the SPN. 296

4.2. Longitudinal imaging 297

4229 CT scans across 1672 subjects were included in 298

the initial discovery cohort. From the discovery cohort, 299

4110 chest CTs across 1636 subjects were found to 300

meet quality standards. 199 of these subjects met the 301

SPN inclusion criteria with 30 lung cancer cases and 302

169 controls. The broader inclusion criteria identified 303

535 subjects with 66 cases and 469 controls. 304

VU-LI-SPN cases were associated with 167 chest 305

CTs with 0 in the Pre-3+ class, 13 in Pre-3, 29 in Pre-1, 306

94 in Post-3, and 31 in Post-3+ (Fig. 2a). Controls were 307

associated with 465 chest CTs with 189 in the Pre class, 308

205 in Post-3, and 71 in Post-3+ (Fig. 2b). VU-LI cases 309

were associated with 2082 chest CTs, with 1 in the Pre- 310

3+ class, 16 in the Pre-3 class, 71 in the Pre-1 class, 311

543 in Post-3, and 202 in Post-3+. Since images in the 312

Post-3 and Post-3+ class are likely to capture cancers 313

that have been diagnosed and treated, their diagnostic 314

value to an imaging study is uncertain and they should 315

excluded. After excluding usable scans, VU-LI-SPN 316

captured 436 scans across 199 subjects while the VU-LI 317

captured 1337 scans across 535 subjects (Table 2). 318

4.3. VCR validation 319

In the VU-SPN cohort we reviewed all 50 controls 320

present in the VCR, 28 out of 271 cases absent from 321

the VCR, and 451 out of 5258 controls absent from 322

the VCR. Within the first group, 4 (8%) were diag- 323

nosed with lung cancer before the SPN date, 10 (20%) 324

were diagnosed within three years after the SPN, and 325

36 (72%) were diagnosed beyond three years after the 326

SPN. Within the second group, we found that 24 records 327

met case criteria while 4 were unable to be confirmed as 328

cases via chart review. 2 of these 4 subjects were likely 329

to have lung cancer based on the clinical picture, but the 330

diagnosis was not confirmed due to patient choice and 331

patient death. For the third group, we found 1 (0.19%) 332



co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 21/03/2024; 9:28 File: cbm–1-cbm230340.tex; BOKCTP/xjm p. 7

T.Z. Li et al. / Curating retrospective multimodal and longitudinal data for community cohorts at risk for lung cancer 7

subject with lung cancer, 5 (0.95%) subjects with a333

history of cancer before their SPN, and 520 (98.8%)334

subjects that met control criteria. With bootstrapping,335

we estimated that 0.979 (95% CI: [0.948, 1.00]) of pre-336

dicted cases and 0.987 (95% CI: [0.976, 0.994]) of pre-337

dicted controls to truly meet their respective criteria338

(Table 4). Our method achieved a median sensitivity339

of 0.930 (95% CI: [0.879, 0.969]), specificity of 0.996340

(95% CI: [0.989, 1.00]), and positive predictive value341

of 0.979 (95% CI: [0.959, 1.000]), negative predictive342

value of 0.987 (95% CI: [0.976, 0.994]).343

In the VU-LI-SPN cohort, there were 5 controls344

present in the VCR and 2 cases absent from the VCR.345

All of the former developed lung cancer more than three346

years after their first observed SPN code, meaning they347

were appropriately labeled as a control. Chart review348

of the latter confirmed that they all met case criteria349

despite being absent from the VCR. In VU-LI there350

were 3 controls present in the VCR and 8 cases absent351

from the VCR. Chart review determined that all of the352

former did have lung cancer, while all of the latter met353

case criteria (Table 5).354

5. Discussion355

In this work we outline a strategy that leverages sim-356

ple and well-defined rules around ICD codes to curate357

three cohorts for studying pulmonary nodules at risk358

for lung cancer from our local institution. Our approach359

avoids any systematic assumptions about the institution360

or the EHR, except for similarity in the use of the rel-361

evant ICD codes for reimbursement purposes. Within362

these cohorts we verify that our approach is highly ac-363

curate in identifying subjects with and at risk for lung364

cancer. We are not surprised that lung cancer codes365

have high specificity, at 0.996, and high PPV, at 0.979,366

because billing for this life-changing condition should367

not occur unless clinicians are certain of the diagnosis.368

We believe this is a reasonable explanation for our re-369

sults that likely holds across code sets of other cancers370

and across different institutions. For cancers that are371

not associated with observable nodules, the appropriate372

selection criteria should be used in place of the SPN373

phenotype. For example, studies for prostate cancer di-374

agnosis can leverage elevated Prostate-Specific Anti-375

gen levels as a broad selection criteria and phenotypes376

targeting prostate cancer to identify cases and controls.377

Applying our approach in other types of cancers is a378

future area of study.379

We offer two strategies, conservative vs. liberal, for380

defining cases and controls that lead to two different co-381

horts. In the conservative approach used for VU-SPN, 382

subjects are required to be initially observed with an 383

SPN phenotype whereas no such inclusion criteria was 384

imposed in VU-LI. Using the conservative approach, 385

72% of the predicted controls present in the VCR de- 386

veloped lung cancer 3 years after SPN diagnosis. These 387

lung cancers are most likely unrelated to the first SPN 388

and may have arisen from other nodules that the sub- 389

jects acquired after the first. They may have also rep- 390

resented cancers that grew so rapidly that serial CT 391

scans were unable to capture gradual growth or cancers 392

that presented at late-stage due to a lack of health care 393

surveillance [18]. If these patients had imaging, they 394

would have been labeled as lung cancer cases in VU-LI, 395

which was the case for 4 of the controls in VU-LI-SPN 396

that became lung cancer cases in VU-LI. In this sense, 397

the conservative SPN-based approach leads to cohorts 398

focused on pulmonary nodule diagnosis with the trade- 399

off of possibly being more bias towards indolently pre- 400

senting lung cancers. 401

In this work, we excluded a large portion of data 402

because it fell outside of the observation windows of 403

interest. The observation window for non-imaging data 404

was anytime before the SPN event, while the window 405

for imaging data depended on its proximity to the lung 406

cancer and SPN events. This strategy is suitable for 407

building a validation cohort because it prevents esti- 408

mates of the posterior probability, found in data after 409

the lung cancer event, from leaking into the validation. 410

However, including data that occurs after the lung can- 411

cer event can be beneficial for hypothesis generation or 412

model development, as this research may gain insight 413

from seeing posterior observations. For example, unsu- 414

pervised training on imaging acquired after diagnosis of 415

lung cancer can lend statistical strength to a predictive 416

model even if those images have no diagnostic value. 417

Institutional cancer registries are highly specific for 418

lung cancer but they have fundamental limitations. Our 419

approach was more sensitive for lung cancer cases than 420

VUMC’s Cancer Registry, which missed an estimated 421

quarter of the true cases. Moreover, other institutions 422

may not have cancer registries or may implement them 423

differently according to state-specific requirements. In 424

contrast, our approach is reproducible at any site that 425

uses the ICD billing system. 426

A few edge cases demonstrate the limitations of our 427

approach. First, the SPN phenotype was used to broadly 428

select for patients at risk for lung cancer in this study, 429

but we do not directly measure its sensitivity and speci- 430

ficity for detecting patients that were actively undergo- 431

ing management for a pulmonary nodule. The billing 432

practices of SPN codes may vary across institutions. 433
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Second, our validation supports a 7% false negative434

rate with various modes of failure. 14 out of the 20 false435

negatives developed lung cancer but were incorrectly436

billed and did not receive a lung cancer code. 5 of the437

false negatives were subjects who had a clinical note438

citing a remote history of cancer before their SPN and439

therefore should not have met our inclusion criteria.440

There was no corresponding ICD code for these sub-441

jects. A single false negative had a code for mucosa-442

associated lymphoid tissue lymphoma (MALT), which443

can arise in the lung and present as a SPN [19]. How-444

ever, ICD taxonomy does not distinguish pulmonary445

MALT lymphoma from MALT lymphoma in other or-446

gans. In summary, our high-throughput method is ef-447

fective at curating and labeling cohorts for lung cancer448

research from subjects that have a EHR footprint in the449

form of billing codes, but rare limitations arise when450

relying on the medical billing system.451
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