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Abstract.
BACKGROUND: Breast cancer is one of the leading causes of death in women worldwide. Histopathology analysis of breast
tissue is an essential tool for diagnosing and staging breast cancer. In recent years, there has been a significant increase in research
exploring the use of deep-learning approaches for breast cancer detection from histopathology images.
OBJECTIVE: To provide an overview of the current state-of-the-art technologies in automated breast cancer detection in
histopathology images using deep learning techniques.
METHODS: This review focuses on the use of deep learning algorithms for the detection and classification of breast cancer from
histopathology images. We provide an overview of publicly available histopathology image datasets for breast cancer detection.
We also highlight the strengths and weaknesses of these architectures and their performance on different histopathology image
datasets. Finally, we discuss the challenges associated with using deep learning techniques for breast cancer detection, including
the need for large and diverse datasets and the interpretability of deep learning models.
RESULTS: Deep learning techniques have shown great promise in accurately detecting and classifying breast cancer from
histopathology images. Although the accuracy levels vary depending on the specific data set, image pre-processing techniques,
and deep learning architecture used, these results highlight the potential of deep learning algorithms in improving the accuracy and
efficiency of breast cancer detection from histopathology images.
CONCLUSION: This review has presented a thorough account of the current state-of-the-art techniques for detecting breast
cancer using histopathology images. The integration of machine learning and deep learning algorithms has demonstrated promising
results in accurately identifying breast cancer from histopathology images. The insights gathered from this review can act as a
valuable reference for researchers in this field who are developing diagnostic strategies using histopathology images. Overall, the
objective of this review is to spark interest among scholars in this complex field and acquaint them with cutting-edge technologies
in breast cancer detection using histopathology images.
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1. Introduction1

According to the World Health Organization (WHO)2

report on breast cancer published in 2021, an esti-3

mated 2.3 million women worldwide were diagnosed4

with breast cancer in 2020, and the disease registered5

685,000 fatalities. Over the past five years, 7.8 million6
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women have been diagnosed with breast cancer, mak- 7

ing it the most frequent cancer among humans. Ninety 8

percent of breast cancer cases are caused by genetic 9

abnormalities that develop with ageing and from ev- 10

eryday wear and tear on cells, including DNA damage 11

and errors in copying genetic material during cell divi- 12

sion. Several non-genetic and genetic elements, such as 13

hormonal fluctuations, chemical exposure, and lifestyle 14

choices like obesity and smoking, can result in defects 15

in DNA replication, which may lead to the development 16

of malignant tissues. In India, breast cancer is prevalent 17
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Fig. 1. Samples of breast histopathology images acquired from BreakHis data set, illustrated in different magnification factors [76]. (a) 40X,
(b) 100X, (c) 200X, and (d) 400X.

among women, with a staggering statistic that every18

four minutes, one woman is diagnosed with this dis-19

ease [55]. From 2020 to 2040, the Global Breast Can-20

cer Initiative (GBCI) aims to prevent 2.5 million pre-21

ventable deaths attributed to breast cancer on a global22

scale. In women under the age of 70, this would result23

in a 25% reduction in breast cancer mortality by 203024

and a 40% reduction by 2040.1 The primary means of25

achieving these targets are public health education to26

create awareness of this disease, rapid detection, and27

effective breast cancer therapy.28

Accurate detection of the disease in its initial stage29

is crucial for successful treatment and disease man-30

agement. Tumors and microcalcifications are the most31

common types of breast cancer. Tumors represent breast32

masses that appear as lumps or thickening in the breast,33

while microcalcifications are calcium deposits within34

the breast tissue. The number of mammographically35

identified breast calcifications rises with age, from36

around 10% in women in their forties to almost 50% in37

women in their seventies. The majority of the masses38

and microcalcifications that are found practically in all39

women of old age are not cancerous [9]. Masses such as40

fibroadenomas and cysts are instances of benign breast41

abnormalities. The screening of breast masses is usu-42

ally performed manually by clinicians, and there is of-43

ten disagreement over whether a tumor is benign or44

malignant [33]. Hence, a Computer-Aided Detection45

(CAD) system holds great importance in distinguish-46

ing between malignant and benign masses. The CAD47

system can assist physicians in making quick diagnos-48

tic decisions, reducing their workload as well as the49

amount of false negative and positive results. The lower50

the rate of false positives, the lower the danger of an51

undesirable biopsy suggestion [52]. The use of imag-52

ing techniques for breast cancer diagnosis might reveal53

1https://www.who.int/news-room/fact-sheets/detail/breast-
cancer.

the morphology and location of tumor sites, providing 54

clinicians with valuable diagnostic information. Mam- 55

mography, magnetic resonance imaging (MRI), breast 56

ultrasonography, computed tomography (CT), digital 57

breast tomosynthesis (DBT), optical imaging, and ther- 58

mal imaging are the various modalities used to iden- 59

tify breast cancer. However, when contrast agents and 60

high-energy rays are used in the imaging procedures, 61

patients could suffer from negative side effects [51]. 62

Therefore, choosing the right imaging technique is im- 63

portant and should be done with utmost care. Although 64

breast cancer can be detected using a variety of imaging 65

techniques, the histopathology study (biopsy) is still the 66

gold standard for disease confirmation. 67

Histopathology is the process by which a pathologist 68

thoroughly examines and estimates a biopsy sample 69

under a microscope to identify symptoms of malignant 70

tissue spread in the organs. The tissue slide is made 71

prior to the microscopic examination of the sample. 72

Histopathological specimens typically exhibit a diverse 73

array of cell types and structures, distributed randomly 74

across various tissues. The complexity of histological 75

images makes it time-consuming to visually inspect and 76

physically understand them. It takes years of expertise 77

and experience for a manual observer to interpret these 78

images. Speedy disease diagnosis with less burden for 79

pathologists can be achieved by analytical and predic- 80

tive approaches such as computer-assisted image anal- 81

ysis. It improves the effectiveness of the histopathology 82

examination by providing a trustworthy second opin- 83

ion based on reliable analysis [33,52]. Figures 1 and 84

2 depict images from two different publicly available 85

histopathology data sets. 86

2. Image analysis using CAD system 87

In histology image analysis, detection and diagno- 88

sis are the two challenging tasks. Computer Aided 89
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Fig. 2. Sample images from BACH dataset [7] showing (a) normal, (b) benign, (c) in-situ, and (d) invasive categories.

Fig. 3. Overview of various image processing techniques used in the CAD of breast cancer detection.

Detection/Diagnosis is a cost-effective approach that90

can assist clinicians lessen their workload and inter-91

pretation errors. Computer-aided analysis can be clas-92

sified into two types namely, Computer Aided Detec-93

tion (CADe) system and Computer Aided Diagnosis94

(CADx) system [31]. The abnormalities in biomedi-95

cal images are detected and located using CADe sys-96

tems. It is employed to find the Region of Interest97

(ROI), which uses pixel-based or region-based tech-98

niques [31]. The pixel-based techniques are straightfor-99

ward but computationally expensive. On the other hand,100

with a region-based method, segmentation techniques101

with a lower processing complexity are employed to ex-102

tract the ROIs. Compared to the pixel-based technique, 103

it has a low computational complexity. 104

To identify the extracted ROI as benign or cancerous, 105

the CADx system is used. In the CADx system, medical 106

image processing and artificial intelligence algorithms 107

are integrated. It serves as an additional reader in clin- 108

ical practice, helping to make decisions and provid- 109

ing more specific information about the abnormal loca- 110

tion [5]. To distinguish malignant and benign instances, 111

image processing techniques such as pre-processing, 112

segmentation, feature extraction, feature selection, and 113

classification are employed in the images under inves- 114

tigation. Figure 3 shows an overview of various image 115

analysis techniques that a CAD system may utilize to116

screen for breast cancer.117
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3. Basic steps in a standard CAD system118

3.1. Image pre-processing119

In mammography, it is hard to identify the difference120

between normal glandular breast tissue and cancerous121

tissue. Furthermore, it is challenging to distinguish ma-122

lignant tumors from the background in the thick breast123

tissue. There will be only a slight variation in the at-124

tenuation of the X-ray beam when it traverses normal125

glandular and cancerous breast tissue. Therefore, it is126

difficult to differentiate between them if it has not been127

preprocessed. Another issue with mammography is the128

quantum noise, which reduces the quality of the images.129

This is especially true for tiny entities that have poor130

contrast, such as a small tumor in a thick breast [68]. To131

circumvent this difficulty, contrast enhancement tech-132

niques are applied, which increase the visual quality of133

an image by improving the contrast between two ob-134

jects, allowing one to readily detect the cancerous tis-135

sue. Other image pre-processing techniques commonly136

employed in histopathology images are image normal-137

ization and enhancement, image augmentation, image138

scaling, artefact removal, stain normalisation/removal,139

and so on.140

Variations in imaging settings, such as differences141

in lighting, staining, and imaging instrumentation em-142

ployed during image acquisition, can have an impact143

on the consistency of intensity values between images.144

Image normalisation is the process of converting the145

pixel values of images to a defined scale to modify the146

brightness and contrast [43]. This aids in the removal147

of any inherent variations produced by imaging condi-148

tions. Some of the frequently used normalisation tech-149

niques are Z-score normalisation, mean-standard devi-150

ation normalisation, and min-max normalisation. Also,151

various image enhancement techniques, such as con-152

trast stretching, spatial filtering, histogram equalisation153

and noise filtering, could be used to improve the visibil-154

ity of tissue structures in images [21]. These methods155

aid in enhancing the contrast of tissue features and sup-156

pressing noise, which makes it easier to spot structural157

changes that indicate the presence of malignancy.158

The process of resizing an image to a specific size or159

resolution is known as image scaling. The histopathol-160

ogy images may have varying resolutions depending on161

the imaging environment [65]. Processing large, high-162

resolution images requires a significant amount of com- 163

puting power. Therefore, it is essential to limit the size 164

and resolution to a specific level without compromising 165

the quality. Image scaling methods can be applied to fix 166

this issue. 167

Training deep learning models requires a significant 168

amount of training data, which may not always be read- 169

ily available. To overcome this challenge, image aug- 170

mentation [12,57] can be used to generate new im- 171

ages from existing ones through various transforma- 172

tions such as rotation, horizontal and vertical flipping, 173

cropping, adding Gaussian noise, translation, contrast 174

adjustment, and more. By augmenting the data set in 175

this manner, the amount of available training data can 176

be increased, thereby improving the model’s ability to 177

generalize and make accurate predictions on new, un- 178

seen data. 179

In the case of histopathology images, stain normal- 180

ization is a crucial pre-processing step that helps com- 181

pensate for the variability in staining that can arise due 182

to differences in time and the person performing the 183

process of staining [80]. Hematoxylin and eosin (H 184

& E) tissue stains are the most frequently used tissue 185

stains in histology. For instance, as seen in Figs 1 and 186

2, H stain clearly separates nuclei in blue against a pink 187

backdrop of cytoplasm and other tissue areas. Although 188

this makes it easier for a pathologist to identify and 189

evaluate the tissues, these H & E stained images must 190

be normalised [36] for automated image analysis due 191

to varying lighting conditions while capturing a digital 192

image and noise produced by the staining process. Stain 193

normalization is a process used to reduce the impact 194

of staining-related variations and ensure consistency in 195

tissue characteristics across multiple images [53,72,8]. 196

This technique aims to standardize the color and inten- 197

sity of staining, thereby making the images comparable 198

and facilitating reliable analysis. 199

3.2. Segmentation 200

The segmentation process divides the image into nu- 201

merous segments to isolate the region of interest from 202

normal tissue and background [36]. Because of the poor 203

contrast of the medical images, it is the most difficult 204

task in automatic diagnosis systems [74]. The method 205

for segmentation is chosen based on the different types 206

of features to be extracted. To extract the target area 207

in diseased images, several approaches such as region 208

growing, nuclei segmentation, Otsu thresholding, etc. 209

are utilised, along with filtering techniques like adap- 210

tive mean filtering, median filtering, and Wiener filter- 211

ing. Thresholding is frequently done after background212

correction and filtering. Background correction uses an213

empty image to normalize the images [21].214

In the case of histopathology images, a standard his-215

tology slide has a dimension of 15 mm × 15 mm tis-216
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sue region that contains both essential and unwanted217

information [83]. Due to the high resolution at which218

these images are recorded, there will be an increase in219

both processing time and computational complexity.220

Segmentation is employed to locate and extract the ar-221

eas that contain more specific information to process222

the images. Critical structures, such as malignant cells,223

tumor borders, and other key tissue components, are224

properly identified and isolated through segmentation,225

allowing for more precise analysis and feature extrac-226

tion. Accurate segmentation allows CAD systems to227

detect minor discrepancies and changes in cell mor-228

phology, resulting in higher sensitivity for detecting229

early-stage cancer. Additionally, separating key struc-230

tures decreases false positives and provides patholo-231

gists with improved diagnostic assistance. Segmented232

regions provide important information for tumor stag-233

ing and prognosis by quantifying the size, shape, and234

spread of the tumor. Furthermore, it enables advanced235

analysis such as cell proliferation and morphological236

characterization, resulting in a better understanding of237

tumor biology. The fundamental process in the analysis238

of histopathology images is the segmentation of nuclei,239

which is the control center of the cell [84]. It contains240

DNA or genes, that give each cell instructions on how241

to behave, when to grow, when to die, etc. In cancerous242

cells, damage to the DNA of nuclei will affect the nor-243

mal growth regulation of cells and result in malignancy.244

This emphasizes the significance of a thorough nuclei245

analysis. Moreover, precise quantitative characteriza-246

tion of the size, shape, and textural properties of nuclei247

is critical in histopathological image analysis. The most248

common types of segmentation are:249

1. Digital image processing-based techniques like250

edge detection, thresholding, region-based seg-251

mentation, etc.252

2. Machine learning-based segmentation techniques253

like unsupervised techniques and supervised tech-254

niques. Unsupervised machine learning tech-255

niques include k-means clustering, fuzzy C-means256

clustering, hierarchical K-clustering, etc. whereas257

supervised machine learning techniques include258

Support Vector Machine, Random Forest etc.259

3. Deep learning-based segmentation techniques like260

U-net, V-net, SegNet, DeepLabv3+, Pix2Pix etc.261

4. Attention-based models like Attention U-Net fo- 262

cus on specific regions of interest to improve seg- 263

mentation accuracy in complex areas with over- 264

lapping structures. 265

Imperfections in staining can cause fluctuations in 266

tissue appearance in histopathological images, mak- 267

ing nuclei segmentation in breast cancer imaging chal- 268

lenging [41]. Semantic segmentation combined with 269

CNN makes complex mitotic images intelligible and 270

can provide a lot of categorization information. 271

3.3. Feature extraction and selection 272

Medical images contain a wealth of information, 273

including subtle clues to pathology, irrelevant fea- 274

tures, artifacts, and overlapping structures that can 275

pose challenges for accurate interpretation. Such high- 276

dimensional data can pose several challenges for au- 277

tomated algorithms. The technique of extracting fea- 278

tures that are necessary for a given task from a set of 279

features generated from raw data is known as feature 280

extraction [27]. This approach will reduce computa- 281

tional complexity by eliminating noise and redundant 282

information in the data. The new set of variables built 283

through feature extraction should be capable of recon- 284

structing the original data. One of the main issues is 285

that using a large number of features on a small data set 286

can lead to overfitting [37]. Overfitting occurs when the 287

model is too complex and captures noise and random 288

fluctuations in the data, rather than the underlying pat- 289

terns and relationships. To address this problem, several 290

techniques can be employed, such as feature selection, 291

regularization, and dimensionality reduction [37]. 292

Feature selection involves selecting a subset of the 293

most relevant features based on their importance or rel- 294

evance to the intended task. There are three commonly 295

used methods for feature selection: filters, wrappers, 296

and embeddings [17]. Filters are less computationally 297

intensive but are slightly less accurate than the other 298

two methods. Filters work by evaluating the relevance 299

of each feature based on some statistical measure, such 300

as correlation or mutual information, and selecting the 301

top-ranked features. In contrast, wrappers and embed- 302

dings are more computationally demanding. The wrap- 303

per method selects features by evaluating the perfor- 304

mance of a machine-learning model trained on different 305

subsets of features. It can produce the best selection of 306

features but requires training a model multiple times, 307

which can be computationally expensive. Embedding 308

techniques, such as Lasso and Ridge regression, se- 309

lect features by incorporating feature selection into the 310

model training process. These techniques penalize the311

model for using irrelevant or redundant features, re-312

sulting in a more compact and accurate model. Over-313

all, the choice of feature selection method depends on314

the specific requirements and constraints of the prob-315

lem at hand, such as the size of the data set and the316

computational resources available.317
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Regularization methods, such as L1 or L2 regular-318

ization, penalize the model for using too many features,319

encouraging it to focus on the most important ones.320

Dimensionality reduction techniques, such as princi-321

pal component analysis (PCA) or t-SNE, transform the322

high-dimensional data into a lower-dimensional space323

while preserving most of the relevant information [72].324

This can be useful for visualizing the data, as well325

as reducing the computational complexity of machine326

learning algorithms that operate on high-dimensional327

data. However, it is important to note that PCA may328

not always be the best method for feature extraction,329

especially if the data has a nonlinear structure. In such330

cases, nonlinear dimensionality reduction techniques331

such as t-SNE [23] or Uniform Manifold Approxima-332

tion and Projection (UMAP) [67] technique may be333

more appropriate.334

Another challenge with high-dimensional data is the335

increased computational complexity. The learning algo-336

rithms may take a long time to train and make predic-337

tions when dealing with a large number of features [16].338

To address this issue, several methods can be used,339

such as parallel computing, distributed computing, and340

model approximation. Parallel computing involves us-341

ing multiple processors or cores to speed up the compu-342

tation, while distributed computing involves distribut-343

ing the computation across multiple machines. Model344

approximation methods, such as decision tree pruning345

or neural network compression, reduce the complexity346

of the model by simplifying its structure or reducing347

the number of parameters.348

In breast cancer detection from histopathological im-349

ages, the morphology of nuclei is a key factor to con-350

sider for disease diagnosis. To extract useful informa-351

tion from these images, various types of features need352

to be extracted using techniques such as morphological353

analysis, textural analysis, and graph-based analysis.354

Morphological features can be extracted to describe the355

size and shape of cells in the image, which can pro-356

vide valuable information about the type and stage of357

cancer. Textural features, such as smoothness, coarse-358

ness, and regularity, can be extracted to reveal patterns359

and structures in the image that may be indicative of360

cancer. Graph-based topological features can also be361

extracted to describe the shape and spatial arrangement 362

of nuclei in tumor tissue, providing insights into the 363

characteristics of cancerous tissue [20,50]. Once these 364

features have been extracted, they can be utilized in the 365

classification stage to distinguish between cancerous 366

and non-cancerous tissue. 367

3.4. Classification 368

The final stage of a computer-assisted detection sys- 369

tem is classification, which involves categorizing a set 370

of data into different categories or classes. The pri- 371

mary goal of classification is to determine the cate- 372

gory into which a particular data point will fall. To 373

achieve this, feature vectors extracted using feature se- 374

lection techniques are used as input to the classification 375

algorithm. Most classification frameworks consist of 376

three phases: training, testing, and validation. During 377

the training phase, the classifier uses available data to 378

train the model [73]. The testing phase is used to predict 379

the class of unlabeled data, and during the evaluation 380

stage, the performance of the classification algorithm is 381

assessed. 382

Breast cancer classification problems can be either 383

binary or multiclass. Binary classification is used to dif- 384

ferentiate between benign and malignant tumors, while 385

multiclass classification can be used to classify the tu- 386

mors into subtypes such as In-situ, Invasive, Normal, 387

and Benign [42]. The input features for breast can- 388

cer classification can be derived from various sources, 389

such as histopathology images or cytology data. These 390

features can include morphological or textural fea- 391

tures derived from nuclei after segmentation [8]. Var- 392

ious algorithms can be used for classifying data, in- 393

cluding logistic regression, artificial neural networks 394

(ANN), decision trees, K-Nearest Neighbors (KNN), 395

Naive Bayes, Support Vector Machines (SVM), and 396

Random Forests [30,31]. The choice of classification 397

algorithm will depend on the specific problem being 398

addressed, the available data, and the performance re- 399

quirements [32]. It is important to select the most ap- 400

propriate algorithm and to fine-tune its parameters for 401

optimal performance. By utilizing a well-designed clas- 402

sification algorithm, a computer-assisted detection sys- 403

tem can accurately categorize new data and aid in mak- 404

ing critical decisions in various applications, such as 405

medical diagnosis and surveillance. 406

In recent years, deep learning methods have gained 407

popularity and have been extensively used for classifi- 408

cation tasks due to their ability to handle large amounts 409

of data and their superior performance. DL systems 410

employing transfer learning have emerged as a power-411

ful technique for improving classification accuracy in412

breast cancer classification tasks [41]. Transfer learning413

involves pre-training a CNN on a large data set of im-414

ages and then fine-tuning the network on a smaller data415

set of breast cancer images. This approach has been416

shown to improve classification accuracy compared to417

using a CNN trained from scratch on a small data set of418

breast cancer images.419
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Fig. 4. A general block schematic of various steps employed during computer-aided diagnosis in medical images.

4. Computer aided diagnosis of breast cancer420

A CAD system for breast cancer diagnosis typically421

consists of several components, as illustrated in Fig. 4.422

The system takes in histopathological images and un-423

dergoes pre-processing techniques such as filtering to424

remove noise and enhance contrast in the input images.425

After pre-processing, the region of interest (ROI) is iso-426

lated, and suspicious regions are identified using seg-427

mentation techniques. This helps to locate and highlight428

areas of the image that may contain abnormalities or429

potential tumors. The pre-processing and segmentation430

steps are crucial, as they help to ensure that the tumor-431

ous zone is accurately identified for further analysis.432

The next stage is the detection stage, where in tradi-433

tional diagnosis, a radiologist or doctor would examine434

the images and make a diagnosis. However, with the435

implementation of a decision support mechanism, the436

process can be automated, and the system can catego-437

rize the image as malignant or benign independently.438

To enable automatic diagnosis, the decision support439

system extracts certain features from the suspicious re-440

gion. However, this process can lead to the extraction441

of redundant features, which can increase the compu-442

tational load during processing. To mitigate this, fea-443

ture selection techniques are used to identify only the444

most relevant decision-making features while eliminat-445

ing the unnecessary ones. The feature vector obtained446

after this process consists of only the critical elements447

that aid in successful diagnosis. Finally, a classifier or448

machine learning algorithm is used to categorize the449

ROI as malignant or non-cancerous. These algorithms450

are trained using large data sets of previously diagnosed451

images to recognize patterns and identify features that452

can accurately differentiate between healthy and normal453

images.454

It is worth noting that the performance of the CAD455

system depends on several factors, such as the quality of456

the input images, the choice of feature extraction meth-457

ods, the type of classifier used, and the amount of train-458

ing data available. Proper optimization and testing of 459

these components are crucial to ensuring the accuracy 460

and reliability of the CAD system for automated diag- 461

nosis [88]. In recent years, the rise of deep learning has 462

brought about significant progress in computer-aided 463

diagnosis of breast cancer. Using advanced neural net- 464

work structures, CAD systems have become valuable 465

tools, greatly improving the accuracy and efficiency of 466

breast cancer detection. These systems analyze complex 467

patterns and features present in histopathology images, 468

allowing deep learning models to identify subtle details 469

that might be missed by traditional diagnostic methods. 470

This innovative approach not only showcases increased 471

precision but also enables the early detection of tumors, 472

even when they are extremely small. The incorporation 473

of deep learning into computer-aided diagnosis repre- 474

sents a promising shift in breast cancer detection, offer- 475

ing enhanced diagnostic capabilities and contributing 476

to more efficient and timely medical interventions. 477

5. Deep learning techniques used in breast cancer 478

diagnosis 479

Deep learning techniques have become increasingly 480

popular in breast cancer diagnosis due to their ability 481

to extract complex features from medical images and 482

make accurate predictions. The deep learning frame- 483

works commonly used in breast cancer diagnosis are as 484

follows: 485

– Convolutional Neural Networks (CNNs): CNNs 486

are one of the most widely used deep learning 487

techniques for medical image analysis. They can 488

extract features at different levels of abstraction, 489

making them suitable for detecting complex pat- 490

terns in medical images. CNNs have been used 491

for tasks such as breast mass classification, tumor 492

segmentation, and breast density classification. 493
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Fig. 5. Illustration of artificial neural network (ANN).

– Recurrent Neural Networks (RNNs): RNNs are 494

another deep learning technique that has been used 495

in breast cancer diagnosis. They are particularly 496

useful in analyzing time-series data, such as mam- 497

mography images over time, to identify changes 498

in breast tissue. RNNs have been used for tasks 499

such as breast cancer risk prediction and recur- 500

rence prediction. 501

– Generative Adversarial Networks (GANs): GANs 502

are a type of deep learning technique that involves 503

two neural networks working together to generate 504

new data that is similar to the original data. They 505

have been used in breast cancer diagnosis to gen- 506

erate synthetic mammography images to augment507

the limited data set and improve the performance508

of the deep learning models.509

– Autoencoders: Autoencoders are neural networks510

that can learn to compress and reconstruct input511

data. They have been used in breast cancer diagno-512

sis to extract features from mammography images513

and identify abnormalities in breast tissue.514

These deep learning techniques have shown promis-515

ing results in breast cancer diagnosis and have the po-516

tential to improve the accuracy and efficiency of diag-517

nosis, leading to earlier detection and better patient out-518

comes. The research works corresponding to each entity519

are summarized in Table 2. In the remaining part of this520

section, we elaborate on the various deep-learning tech-521

niques that are used for breast cancer detection. In ad-522

dition, a brief explanation of artificial neural networks523

(ANNs) is also provided in the beginning, as deep neu-524

ral networks (DNN) are a type of ANN that consists525

of multiple layers of interconnected nodes, allowing526

for more complex and sophisticated computations than527

traditional ANNs.528

5.1. Artificial Neural Network (ANN)529

Artificial Neural Networks (ANNs) are computing530

systems that are designed to imitate the biological neu-531

ral networks found in the brain. At the core of a DNN532

lies the artificial neuron, which is a perceptron model 533

composed of multiple interconnected layers. The three 534

primary layers of a neural network are the input layer, 535

hidden layer, and output layer. These layers work to- 536

gether to help classify input data and make predictions. 537

The effectiveness of an ANN is largely dependent on 538

the number of hidden layers it contains. As the num- 539

ber of hidden layers increases, the performance of the 540

ANN improves and the false positive rate decreases. 541

However, this increase in performance comes at the cost 542

of increased computational complexity. In an ANN, 543

the input features are stored in the input layer, which 544

is then projected into a higher-dimensional space by 545

the hidden layer. The hidden layer processes the input 546

features through a series of interconnected nodes, each 547

of which computes a weighted sum of its inputs and 548

passes the result through an activation function. This 549

process helps extract more complex features from the 550

input data, allowing the ANN to make more accurate 551

predictions. Figure 5 presents the ANN illustration. 552

In a breast cancer diagnosis task, the goal is to clas- 553

sify samples into two categories: benign or malignant. 554

To accomplish this, the input features are fed into the 555

neural network’s input layer. The perceptron in the neu- 556

ral network processes the input attributes by passing 557

them through the input layer, hidden layer, and output 558

layer. Initially, each input is given a random weight, 559

which indicates the significance of each input variable. 560

Additionally, each perceptron has a bias value, which561

is a numerical value. An activation function processes562

each perceptron, determining whether or not the per-563

ceptron should be activated. Only activated perceptrons564

transmit data from the input to the output layer.565

The output layer calculates the probability of the566

data being either benign or malignant. If the expected567

output is incorrect, the neural network is trained using568

the back propagation method. During back propaga-569

tion, the actual results are compared to the predicted570

results, and the weights of each input are adjusted to571

minimize the error. This process leads to more precise572

results, improving the accuracy of the neural network’s573

predictions.574



co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 21/03/2024; 8:50 File: cbm–1-cbm230251.tex; BOKCTP/xjm p. 9

L. Priya C V et al. / Deep learning approaches for breast cancer detection 9

Fig. 6. Illustration of basic blocks in a convolutional neural network.

5.2. Convolutional Neural Network (CNN)575

Recently, CNNs have been widely used in breast576

cancer diagnosis as they can identify patterns and fea-577

tures in images, allowing for accurate classification. As578

shown in Fig. 6, a CNN typically consists of four main579

layers: the convolutional layer, ReLU layer, pooling580

layer, and fully connected layer. The convolutional layer581

is designed to detect spatial patterns or features in the582

input data. It uses a set of learnable filters or kernels to583

convolve over the input, performing element-wise mul-584

tiplications and aggregating the results. This process585

helps capture hierarchical features, preserving spatial586

relationships. The ReLU layer introduces non-linearity587

to the network. After the convolutional or fully con-588

nected operations, the ReLU activation function is ap-589

plied element-wise to the output. It replaces all negative590

values with zero, allowing the model to learn complex591

patterns and relationships in the data. ReLU aids in the592

network’s ability to capture non-linearity. Pooling lay-593

ers are used to downsample the spatial dimensions of594

the input volume. Common pooling operations include595

max pooling and average pooling. Pooling helps reduce596

the spatial resolution, retaining important features while597

discarding less significant details. The fully connected598

layer, also known as the dense layer, connects each neu-599

ron to every neuron in the previous and subsequent lay-600

ers. It transforms the features learned by the previous601

layers into a format suitable for classification or regres-602

sion. The output of the fully connected layer is often603

fed into a softmax activation function for classification604

tasks or a linear activation for regression tasks.605

The use of CNNs in breast cancer diagnosis allows606

for more accurate and efficient analysis of medical im-607

ages. However, CNNs require a large amount of labeled608

data to achieve good performance, which can be chal-609

lenging to obtain in some cases. One way to address 610

this issue is to use a technique known as transfer learn- 611

ing. Transfer learning is a method that utilizes a pre- 612

Fig. 7. Schematic of transfer learning process.

trained model to solve a different but related problem. 613

The pre-trained model has already learned a set of fea- 614

tures from a large data set, making it easier to train on a 615

smaller data set with a similar problem. Transfer learn- 616

ing is especially useful when the amount of available 617

data for training is limited. In a CNN, the deeper layers 618

learn task-specific attributes, while the shallower layers 619

learn more basic features such as edges, patterns, etc. 620

However, these shallow layers are harder to train due 621

to vanishing gradients. Transfer learning takes advan- 622

tage of this by freezing the earliest layers and changing 623

only the final few layers according to the specific task. 624

This allows for the transfer of knowledge from the pre- 625

trained model to the new task. Pre-trained models like 626

VGG-16, ResNets, and DenseNets have been trained on 627

massive data sets and can be used as a starting point for 628

transfer learning. By modifying the final layers of these 629

models, they can be applied to more specialized tasks, 630

such as fine-grained classification or object detection. 631

Figure 7 shows the schematic of the transfer learning 632

process. 633

5.3. Autoencoders 634

Autoencoders are a type of neural network architec- 635

ture that can learn to compress data and then reconstruct 636

the compressed data back to its original shape and size. 637

They consist of three layers: an input layer, a hidden 638
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Fig. 8. The basic structure of an autoencoder network.

layer, and an output layer. The hidden layer, also known 639

as the bottleneck layer, is where the data is compressed. 640

An autoencoder works in two stages: encoding and 641

decoding. During the encoding stage, the input data 642

is compressed into a smaller dimension in the hidden 643

layer. This is achieved through a series of mathematical 644

operations that transform the input data into a lower- 645

dimensional representation. This compressed represen- 646

tation is then stored in the hidden layer. During the de- 647

coding stage, the compressed representation is used to 648

reconstruct the original input data. The hidden layer’s 649

output is transformed back into the original input space 650

through another series of mathematical operations that 651

reverse the encoding process. The final output is com- 652

pared to the original input, and the autoencoder’s per- 653

formance is evaluated based on how accurately it can re- 654

construct the input data. Autoencoders are trained using 655

the backpropagation technique, where the difference 656

between the input data and the reconstructed output is 657

used to adjust the network’s weights. This process is re- 658

peated until the autoencoder can accurately reconstruct659

the input data. Figure 8 shows the basic structure of an660

autoencoder network.661

Autoencoders consist of an array of nodes in the in-662

put, hidden, and output layers. In order to feed an input663

image to the input array of nodes, the image must first664

be transformed into a one-dimensional array. This ar-665

ray is then encoded into a hidden representation in the666

bottleneck layer. An important goal of an autoencoder667

is to ensure that it can accurately reconstruct the input668

while avoiding overfitting or memorizing the training669

data. To achieve this, a loss function is used that con-670

siders both the reconstruction error and a regularizer671

term. The reconstruction error measures the difference672

between the input image and its reconstructed output,673

while the regularizer term tries to make the autoen-674

coder insensitive to input. The regularizer term in the675

loss function encourages the autoencoder to learn from676

the hidden representation rather than directly from the677

input. By doing so, the autoencoder only learns the678

essential features necessary for reconstructing the in-679

put image, rather than simply memorizing the training680

data. This helps to prevent overfitting and improve the681

autoencoder’s ability to generalize to new, unseen data.682

5.4. Generative Adversarial Networks (GAN)683

GAN is a type of deep learning model consisting684

of two sub-models, namely the Generator model and685

the Discriminator model. The main objective of the 686

generator model is to create synthetic data that mimics 687

the real data, while the discriminator model aims to 688

distinguish between the real and fake data produced 689

by the generator. The discriminator model is typically 690

a convolutional neural network (CNN) with multiple 691

hidden layers and a single output layer that produces a 692

binary output of either 0 or 1. A value of 1 indicates that 693

the provided data is real, while a value of 0 indicates 694

that the data is fake. On the other hand, the generator 695

model is an inverse CNN that takes a random noise 696

input and transforms it into a sample from the model 697

distribution. In other words, it generates synthetic data 698

from a piece of input data. 699

During the initial stages of training, the generator 700

produces data that is very different from the real data, 701

making it easy for the discriminator to detect it as fake. 702

However, as training progresses, the generator starts 703

producing fake data that is increasingly similar to the 704

real data, making it more difficult for the discriminator 705

to distinguish between the two. Eventually, if the gen- 706

erator training is successful, it will produce data that is 707

a perfect match for the real data, and the discrimina- 708

tor will begin to categorize the fake data as real. This 709

means that the discriminator’s accuracy will decline, 710

indicating that the generator has successfully learned 711

to generate synthetic data that is indistinguishable from 712

the real data. 713

In medical imaging applications, collecting enough 714

labeled data for training deep neural networks can be 715

challenging. GANs can be used to generate synthetic 716
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Fig. 9. The concept of generative adversarial network (GAN).

data with a probability distribution that mimics that of 717

benign samples, providing a useful tool for augment- 718

ing training data and improving the accuracy of medi- 719

cal image classification tasks. The concept of GAN is 720

illustrated in Fig. 9. 721

6. Histopathology data set722

Image data sets are essential components of research723

in machine learning and deep learning problems. These724

data sets provide a large and diverse set of images that725

researchers can use to train and evaluate their algo-726

rithms. In the case of breast cancer, histopathological727

image data sets provide a rich source of information728

about the tissue samples that is indicative of the pres-729

ence or absence of cancerous cells. These data sets con-730

tain high-resolution images that can be used to train731

learning algorithms to identify patterns and features732

associated with breast cancer, such as the size, shape,733

and structure of cells and tissue samples. The various734

data sets available are:735

1. The Breast Cancer Histopathological Image data736

set (BreakHIS) [76]: The BreakHIS data set is737

the most widely used data set for breast cancer738

histopathological image classification. It com-739

prises microscopic images of breast tissue sam-740

ples used for the diagnosis of breast cancer. These741

images are captured using a range of imaging742

techniques and magnification levels, producing743

high-resolution images of the breast tissue. The744

data set comprises 9109 microscopic images of745

breast tumor tissue collected from 82 patients,746

captured at different magnifying factors of 40 ×,747

100 ×, 200 ×, 400 ×. The data set contains a total 748

of 7909 tissue samples, out of which 2480 sam- 749

ples are benign, and 5429 samples are malignant. 750

Each image is in PNG format with a resolution of 751

700 × 460 pixels, using a 3-channel RGB color 752

space and 8-bit depth for each channel. 753

2. Breast Histology Bioimaging Competition 754

2015 [6]: The data set includes uncompressed, 755

high-resolution H & E stained breast histology 756

images with annotations. All images were digi- 757

tized with the same magnification of 200 × and 758

a pixel resolution of 0.42 µm × 0.42 µm. The 759

data set contains 249 images for extended train- 760

ing samples and 20 images for test samples. The 761

images are assigned to four categories, which are 762

evenly distributed in the data set: normal tissue, 763

benign lesion, in-situ carcinoma, and invasive car- 764

cinoma. 765

3. The BACH (ICIAR 2018) data set [7]: The data 766

set includes whole slide images (WSIs) of breast 767

histology samples stained with H & E. The im- 768

ages are provided in svs format and have a pixel 769

size of 0.467 µm per pixel. Each WSI is accompa- 770

nied by a set of labeled coordinates that indicate 771

the regions of benign tissue, in-situ carcinoma, 772

and invasive carcinoma. These labels are useful 773

for training machine learning algorithms to auto- 774

matically detect and classify breast cancer regions775

in histology images.776

4. In the TUPAC 16 data set [82]: The data set in-777

cludes whole-slide images of breast cancer cases778

with an unidentified tumor proliferation score.779

The training set consists of 500 diseased images780

from the Cancer Genome Atlas, and each case is781

represented by a single whole slide image. The782

image is labeled with both a molecular prolif-783

eration score and a proliferation score based on784

pathologist mitotic enumeration. The images in785

the TUPAC 16 data set are stored in the Aperio.svs786

file format, which is a multiresolution pyramid787

structure that allows for efficient storage and re-788

trieval of large histology images.789
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5. Kaggle Breast Histopathology Image data set790

(www.kaggle.com/datasets/paultimothymooney/791

breast-histopathology-images): The dataset in-792

cludes 162 whole mount slide images of breast793

cancer specimens scanned at a resolution of 40794

×. From these images, a total of 277,524 patches795

were retrieved, each sized 50 × 50. Of these796

patches, 198,738 were invasive Ductal Carcinoma797

(IDC) negative and 78,786 were IDC positive. The798

images are stored in PNG file format, which is a799

widely used lossless image compression format800

6. Camelyon-16 (Cancer Metastates in Lymph801

Nodes Challenge) [11]: The dataset is a collection802

of high-resolution whole-slide images of lymph803

node tissue sections that have been stained with804

H&E. The dataset was created to facilitate the de-805

velopment and evaluation of algorithms for the de-806

tection of metastatic breast cancer in lymph nodes.807

The dataset consists of 400 digital slides that were808

obtained from two hospitals in the Netherlands:809

Radboud University Medical Center and Univer-810

sity Medical Center Utrecht. The slides are di-811

vided into a training set of 270 slides and a testing812

set of 130 slides. The training set comprises 129813

positive slides that contain at least one metastasis,814

and 141 negative slides that do not contain any815

metastases. Similarly, the testing set comprises 58816

positive slides and 72 negative slides.817

7. Breast Cancer Cell(BCC) collection [24]: The818

data set contain 59 H&E stained histopathology819

images. The images are labeled as benign and820

malignant and are stored in .tiff format.821

Table 1 provides a summary of the available data set822

used for breast cancer detection using histopathology823

images.824

7. Evaluation metrics825

Evaluation of a computer-aided detection system for826

breast cancer involves assessing its accuracy and reli-827

ability in detecting the disease. This evaluation is cru-828

cial in determining whether the system is suitable for829

clinical use and identifying areas that require improve-830

ment [36]. The metrics used to evaluate the system in-831

clude sensitivity, specificity [14,89], accuracy [4,44,832

47,49], precision, F1 score [19,25,54,78], ROC curve,833

and AUC [60]. Other metrics used in medical image834

analysis systems include the image recognition rate, pa-835

tient recognition rate, and patient score [50]. In this sec-836

tion, we will explain the terminology and mathematical837

formulas used to calculate these measures.838

Fig. 10. Schematic of a confusion matrix showing true positive (P1),
true negative (N2), false positive (P2), and false negative (N1) cases.

7.1. Confusion matrix 839

A confusion matrix is a tool utilized to assess the 840

effectiveness of a classification model by analyzing the 841

predicted and actual class labels of a group of test sam- 842

ples. It presents a concise representation of the number 843

of true positive (P1), true negative (N2), false positive 844

(P2), and false negative (N1) predictions made by the 845

model. A sample confusion matrix is shown in Fig. 10. 846

It is a table that classifies predictions based on how 847

closely they correspond to the exact value. It can be 848

used to determine the ROC curve, recall, specificity, 849

accuracy, and other metrics. 850

7.2. Accuracy 851

It is a measurement of how many classes across all 852

classes are accurately predicted. Accuracy should be 853

valued as highly as possible. 854

Accuracy =
P1 +N2

P1 +N2 + P2 +N1
(1)

7.3. Precision 855

Precision is a classification performance metric that 856

measures a model’s ability to correctly identify positive 857

cases. It is the proportion of true positives (P1) to the 858

total number of predicted positive cases (P1 + P2), 859

expressed as a percentage or a decimal between 0 and 860

1. Precision is calculated as: 861

Precision =
P1

P1 + P2
(2)

7.4. Sensitivity 862

Sensitivity is a classification performance metric that 863
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measures a model’s ability to correctly identify positive864

cases. It is also known as the true positive rate (TPR)865

and is the proportion of true positives (P1) to the total866

number of actual positive cases (P1 + N1), expressed as867

a percentage or a decimal between 0 and 1. Sensitivity868

is expressed as:869

Recall =
P1

P1 +N1
(3)

7.5. Specificity870

Specificity is a classification performance metric that871

measures a model’s ability to correctly identify negative872

cases. It is the proportion of true negatives (N2) to873

the total number of actual negatives (N2 + P2) and is874

expressed as a percentage or a decimal between 0 and875

1. Specificity is expressed as:876

Specificity =
N2

N2 + P2
(4)

7.6. F1 score877

The F1 score is a classification performance metric878

that merges precision and recall into a single score. It879

is calculated as the harmonic mean of precision and880

recall and ranges between 0 and 1, with higher values881

indicating better model performance.882

Precision quantifies the proportion of true positives883

to the total number of predicted positives, while recall884

measures the proportion of true positives to the total885

number of actual positives. The F1 score equally em-886

phasizes both precision and recall, making it useful in887

evaluating models where both measures are critical.888

The F1 score is particularly valuable when dealing889

with imbalanced data sets, where one class has a much890

larger number of observations than the other. In such891

cases, the F1 score is a more reliable measure and is892

represented as:893

F1 Score =
2× Precision × Recall

Precision + Recall
(5)

7.7. ROC curve and AUC894

The ROC curve is a graphical plot that visualizes895

the effectiveness of a binary classification model across896

different classification thresholds. It compares the true897

positive rate (TPR) to the false positive rate (FPR) for898

a range of thresholds. A model with a higher TPR and899

lower FPR is considered better. The ROC curve also900

highlights the balance between TPR and FPR, with the901

area under the curve (AUC) being a metric of over-902

Fig. 11. A sample ROC curve that visualizes the effectiveness of a
binary classification model across different classification thresholds.

all performance. A perfect model has an AUC of 1.0, 903

whereas a random model has an AUC of 0.5. 904

AUC is widely used to compare different classifi- 905

cation models because it is robust against imbalanced 906

data, unlike accuracy, precision, and recall. Higher AUC 907

implies better model performance in distinguishing be- 908

tween positive and negative classes. In a ROC curve, 909

the X-axis represents the FPR, and the Y-axis represents 910

the TPR, as illustrated in Fig. 11. 911

TPR =
P1

P1 +N1
(6)

FPR =
P2

P2 +N2
(7)

By lowering the classification threshold, more objects 912

are classified as positive, increasing both true positives 913

and false positives. As the ROC curves move towards 914

the top-left corner of the ROC space, the accuracy of 915

the classifier improves. This is because the classifier 916

has a higher TPR and a lower FPR, indicating that it 917

is better at correctly identifying positive cases while 918

minimizing false positives. 919

7.8. Patient score 920

The patient score is a metric used to evaluate the 921

performance of a classification model in detecting dis- 922

eased images for individual patients. It is calculated by 923

multiplying the total number of diseased images for a 924

patient (Np) by the proportion of diseased images that 925

the model correctly recognized for that patient (Nrec). 926
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The patient score reflects how well the model per-927

forms at identifying abnormal images for each patient.928

A higher patient score indicates that the model correctly929

recognized a larger proportion of diseased images for930

that patient, while a lower score suggests that the model931

may have missed some diseased images. It is expressed932

as:933

Patient Score = Nrec ×Np (8)

7.9. Patient recognition rate934

It is the ratio of the sum of patient scores to the935

overall patient count.936

Patient Recognition Rate
(9)

=

∑
Patient Score

Total Number of Patients

8. Review of recent deep learning research works937

Over the years, histopathology images have played938

a crucial role in diagnosing breast cancer. Researchers939

are striving to improve the efficiency of automated sys-940

tems for breast cancer diagnosis using various method-941

ologies. In computer-aided diagnosis (CAD) systems,942

segmentation remains the most significant challenge,943

involving the isolation of breast cancer cells in the im-944

age from the surrounding tissue. CNNs demonstrate945

exceptional proficiency in extracting spatial features946

from histopathology images thereby categorizing them947

as cancerous or benign tissues. Commonly, pre-trained948

architectures such as VGG16 and ResNet are fine-949

tuned for this specific task, enhancing their capability950

for accurate classification. Recurrent Neural Networks951

(RNNs), renowned for their effectiveness in handling952

sequential data, are increasingly utilized for analyzing953

sequences of image patches or entire tissue slides. This954

approach holds promise for capturing additional context955

and thereby enhancing the accuracy of cancer detec-956

tion. The adversarial training process present in GAN957

not only produces more diverse training data but also958

holds the potential to improve the generalizability of the959

model across a range of histopathological images. Li960

et al. [49]. and Anwar et al. [4] used CNN-based mod-961

els to extract features, and Yari et al. [92] fine-tuned962

ResNet-50 and DenseNet-121 pre-trained on ImageNet963

for classification. Singh et al. [75] employed a hybrid964

of inception and residual blocks for feature representa-965

tion. Khan et al. [39] used a combination of VGG Net,966

GoogleNet, and ResNet to extract low-level features967

separately. Munien et al. [59] fine-tuned EfficientNets 968

for classification, and Yao et al. [91] and Yan et al. [89] 969

utilized a combination of CNN and RNN for feature 970

extraction. Overall, these studies demonstrate the ef- 971

fectiveness of deep learning methods in breast cancer 972

image classification. 973

Combining predictions from multiple DL models 974

with different strengths can lead to superior overall per- 975

formance in breast cancer detection from histopathol- 976

ogy images. The integration of various techniques con- 977

tributes to the improvement of accuracy and the robust- 978

ness of models. Ensemble Learning [28,35] proves to be 979

a powerful strategy by combining predictions from dif- 980

ferent deep learning models, each with its own unique 981

strengths. This collaborative approach often results in 982

superior overall performance compared to individual 983

models. Recently, attention mechanisms [90] have been 984

employed to focus on critical regions of the image, 985

which helps the model pay attention to relevant features 986

within the image. This targeted attention allows the 987

model to effectively capture and analyze relevant fea- 988

tures such as cell morphology and tissue architecture. 989

By emphasizing these critical regions, attention mecha- 990

nisms enhance the model’s ability to make informed de- 991

cisions about cancerous or benign tissues, contributing 992

to improved diagnostic accuracy. Moreover, the utiliza- 993

tion of weakly supervised learning [45,70] addresses a 994

significant challenge in the field, namely, the scarcity of 995

labeled data. This approach involves leveraging large 996

datasets that may be unlabeled or only partially labeled. 997

By doing so, the models are trained to recognize pat- 998

terns and features without the need for exhaustive la- 999

beling. This is particularly valuable in the context of 1000

histopathology images, where obtaining labeled data 1001

can be resource-intensive and challenging. 1002

Many studies have utilized convolutional neural net- 1003

works (CNN) such as ResNet, GoogleNet, AlexNet, 1004

VGG net, and combinations of different CNN net- 1005

works [75,39] to extract various features such as size, 1006

shape, and texture from segmented images [86,49, 1007

26]. When it comes to extracting hierarchical features 1008

from histopathological images, models like VGG-16, 1009

ResNet, and Inception have shown outstanding perfor- 1010

mance [79]. The simplicity of the VGG-16, ResNet’s 1011

residual learning ability to address the vanishing gradi- 1012

ent problem, and the Inception module for efficient in- 1013

formation extraction have made them attractive choices. 1014

CNN can automatically identify hierarchical character- 1015

istics in histopathology images, ranging from low-level 1016

features to high-level patterns. Pretrained models such 1017

as ResNet, GoogleNet, AlexNet, and VGG, which were 10181019
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trained on extensive datasets such as ImageNet, enable1020

transfer learning and improve performance even with a1021

limited amount of annotated medical data. As CNN is1022

very adaptable, it can be fine-tuned to fit specific charac-1023

teristics of histopathological images. On the other hand,1024

Deep CNNs require a lot of processing power; therefore1025

strong hardware is needed for both training and testing.1026

Moreover, it might be difficult to comprehend and in-1027

terpret the sophisticated decision-making processes of1028

CNN, which limits its applicability in medical images.1029

The development of CAD systems for automatic can-1030

cer diagnosis relies heavily on segmentation. It can1031

identify and outline tumor areas in histopathology im-1032

ages. Localization accuracy is critical for assessing the1033

level of malignant tissue and directing subsequent di-1034

agnostic and therapeutic decisions. It makes it possible1035

to quantitatively analyze the size, shape, and texture of1036

tumors. U-Net is a widely used semantic segmentation1037

technique in histopathology images [69,40]. Its design1038

includes an expansive path, a bottleneck, and a con-1039

tracting path. Spatial information is preserved in U-Net,1040

which is essential for precise segmentation of regions1041

affected by breast cancer.1042

GANs have gained interest because of their ability to1043

produce realistic synthetic images. GANs [34,71] are1044

used to augment data in the context of breast cancer1045

histology, which solves the problem of limited anno-1046

tated datasets. It creates synthetic images with realistic1047

structures. GANs may experience mode collapse, which1048

occurs when the generator produces only a few types1049

of images, limiting the diversity of synthetic images.1050

For feature extraction and robust representation of1051

breast cancer histopathology images, autoencoders, par-1052

ticularly variational autoencoders and denoising autoen-1053

coders, have been explored [86,87]. These approaches1054

enable effective feature compression and reconstruction1055

by encoding input images into a latent space. It may1056

be difficult to directly interpret the latent space repre-1057

sentations learned by autoencoders. Furthermore, deep1058

autoencoder training can be difficult, and determining1059

the best latent space representation may necessitate sub-1060

stantial hyperparameter tuning.1061

Combining generative and unsupervised methods1062

with supervised models, such as CNNs, offers a viable1063

way to increase the precision and robustness of breast1064

cancer detection systems. When selecting and putting1065

these strategies into practice, researchers should give1066

careful consideration to the unique requirements of their1067

applications. Table 2 provides a summary of recent re-1068

search employing deep learning techniques for breast1069

cancer analysis.1070

9. Discussion 1071

Deep learning is a rapidly growing field that has 1072

shown great promise in tackling a variety of research 1073

challenges, such as segmentation, object recognition, 1074

and image classification. This has led to the develop- 1075

ment and application of several algorithms for extract- 1076

ing relevant information from various machine vision 1077

tasks. In this review article, we present the application 1078

of deep learning techniques for breast cancer detection 1079

in histopathology images. 1080

Deep learning techniques have been widely used for 1081

breast cancer detection in histopathology images. Con- 1082

volutional Neural Networks (CNNs) are the most com- 1083

monly used deep learning architecture for this task. 1084

These models can automatically learn and extract fea- 1085

tures from histopathology images, making them ideal 1086

for detecting subtle changes in breast tissue that may 1087

indicate cancer. The advantages of using deep learning 1088

for breast cancer detection in histopathology images 1089

include high accuracy, automation, speed, and trans- 1090

ferability. Deep learning models have shown high ac- 1091

curacy in detecting and classifying cancerous tissue 1092

in histopathology images. They can automate the pro- 1093

cess of breast cancer detection, reducing the workload 1094

of pathologists and increasing efficiency. Deep learn- 1095

ing models can analyze large amounts of histopathol- 1096

ogy images in a short amount of time, allowing for 1097

quicker diagnosis and treatment. Pre-trained models 1098

can be adapted to work on new data sets, reducing the 1099

need for large amounts of labeled data. 1100

One main challenge in computer-assisted breast can- 1101

cer detection is achieving accurate segmentation of 1102

histopathological images. This is because cancerous ar- 1103

eas are often small and may overlap, making it difficult 1104

to differentiate them from healthy tissue. Furthermore, 1105

segmentation techniques require significant processing 1106

power, which can be a challenge for resource-limited 1107

environments, especially when dealing with large and 1108

high-resolution images. Another issue is the variability 1109

in human annotations, which can result in differences 1110

in the ground truth, making it difficult to train reliable 1111

segmentation algorithms. Different segmentation strate- 1112

gies have their strengths and weaknesses, and choosing 1113

the right method is crucial for achieving high accuracy 1114

and reducing manual labour. Accurate segmentation can 1115

improve the classification of breast cancer, making it a 1116

critical concern for researchers and practitioners in the 1117

field. 1118

However, there are also some drawbacks to using 1119

deep learning for breast cancer detection in histopathol- 1120
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ogy images. These include data quality, interpretabil-1121

ity, and hardware requirements. The accuracy of deep1122

learning models depends on the quality and diversity1123

of the training data. Poor quality or biased data can1124

result in inaccurate models. Deep learning models can1125

be difficult to interpret, making it challenging to un-1126

derstand the reasoning behind the model’s decisions.1127

Additionally, deep learning models require significant1128

computing power and resources, making it challenging1129

for smaller research groups or medical facilities to im-1130

plement. The researchers also face challenges due to1131

the limited availability of large data sets required for1132

testing a new model. Deep learning models require vast1133

amounts of annotated data to train, but the process of1134

annotating histopathology images is time-consuming1135

and requires expertise. Imbalances in the data set can1136

also negatively affect the performance of computer-1137

aided diagnosis (CAD) systems. Therefore, it is neces-1138

sary to increase the number of samples in the data set1139

to improve the efficiency of the model.1140

The future of breast cancer detection through deep1141

learning applied to histopathology images holds tremen-1142

dous promise, poised to revolutionize the landscape1143

of medical diagnosis. While its potential for deliver-1144

ing accurate diagnoses is evident, several challenges1145

linger, particularly in the areas of interpretability, lim-1146

ited data availability, and seamless integration into clin-1147

ical practices. The road ahead presents opportunities for1148

progress, with anticipated advancements in explainable1149

AI, personalized diagnosis using multi-modal data, and1150

smooth integration into existing clinical workflows. The1151

exploration of automated processes, harnessing emerg-1152

ing technologies like GANs and neuromorphic comput-1153

ing, and the prioritization of ethical considerations will1154

be crucial in navigating this transformative journey. By1155

tackling these challenges and embracing innovation, we1156

can unlock the full potential of deep learning, paving1157

the way for a future where early-stage and personalized1158

cancer diagnosis becomes a reality, saving countless1159

lives.1160

10. Conclusion1161

The utilization of deep learning-based breast cancer1162

detection techniques, particularly using histopathology1163

images, holds the potential to revolutionize the land-1164

scape of breast cancer diagnosis and treatment. Demon-1165

strating superior accuracy and reliability compared to1166

traditional methods, these techniques excel in early-1167

stage detection, including identifying tumors that may1168

be imperceptible with current imaging technologies. 1169

Their speed, automation, and cost-effectiveness position 1170

them as compelling options for public health initiatives. 1171

However, to further enhance their efficacy, addressing 1172

challenges such as the need for larger and standardized 1173

datasets for algorithm training is imperative. Ongoing 1174

research endeavors should focus on the development 1175

and refinement of computational models capable of ac- 1176

curately discerning breast cancer across diverse tissue 1177

types. Successful resolution of these challenges could 1178

establish deep learning-based breast cancer detection 1179

as a pivotal tool for public health initiatives, markedly 1180

elevating accuracy and reliability in both diagnosis and 1181

treatment. 1182

Moreover, the triumph of computer-aided diagno- 1183

sis (CAD) systems leveraging deep learning hinges on 1184

the quality and diversity of the datasets used for train- 1185

ing and validation. Overcoming challenges related to 1186

limited annotated data and imbalanced datasets is cru- 1187

cial. Integration of CAD systems into clinical work- 1188

flows, providing real-time results to clinicians, further 1189

ensures their seamless adoption. Addressing these chal- 1190

lenges not only enhances the accuracy and reliability of 1191

breast cancer diagnosis and treatment but also solidifies 1192

the role of deep learning-based breast cancer detection 1193

techniques as transformative tools in healthcare. 1194
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