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Subcutaneous fat predicts bone metastasis in
breast cancer: A novel multimodality-based
deep learning model
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Abstract.
OBJECTIVES: This study explores a deep learning (DL) approach to predicting bone metastases in breast cancer (BC) patients
using clinical information, such as the fat index, and features like Computed Tomography (CT) images.
METHODS: CT imaging data and clinical information were collected from 431 BC patients who underwent radical surgical
resection at Harbin Medical University Cancer Hospital. The area of muscle and adipose tissue was obtained from CT images at
the level of the eleventh thoracic vertebra. The corresponding histograms of oriented gradients (HOG) and local binary pattern
(LBP) features were extracted from the CT images, and the network features were derived from the LBP and HOG features as
well as the CT images through deep learning (DL). The combination of network features with clinical information was utilized to
predict bone metastases in BC patients using the Gradient Boosting Decision Tree (GBDT) algorithm. Regularized Cox regression
models were employed to identify independent prognostic factors for bone metastasis.
RESULTS: The combination of clinical information and network features extracted from LBP features, HOG features, and CT
images using a convolutional neural network (CNN) yielded the best performance, achieving an AUC of 0.922 (95% confidence
interval [CI]: 0.843–0.964, P < 0.01). Regularized Cox regression results indicated that the subcutaneous fat index was an
independent prognostic factor for bone metastasis in breast cancer (BC).
CONCLUSION: Subcutaneous fat index could predict bone metastasis in BC patients. Deep learning multimodal algorithm
demonstrates superior performance in assessing bone metastases in BC patients.
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Key points:
– Subcutaneous fat index is an independent prognostic factor for bone metastasis in BC patients;
– A multimodal model using computed tomography (CT) images, local binary pattern (LBP) features, and histograms of oriented

gradient (HOG) features can effectively predict bone metastases;
– The mask-guided attention mechanism effectively makes the model focus on the fat area.
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1. Introduction

Breast cancer (BC) is a prevalent cancer that is most
commonly found among female cancers and is the sec-
ond leading cause of cancer death among women glob-
ally [1]. Bone metastasis is one of the most common
metastatic sites in BC patients [2]. Patients with bone
metastasis are accompanied by osteoclast-mediated
bone destruction and have a 5-year overall survival rate
of 22.8% [3,4]. Early detection of bone metastasis is
crucial for improving survival. However, the predictors
for bone metastasis have not been sufficiently eluci-
dated. Therefore, there is an urgent need for identifying
novel markers for bone metastasis.

Obesity is associated with an increased risk of death
in the general population [5], but this contradicts with
some reports on the relationship between obesity and
mortality in cancer patients [6,7]. An important reason
for the ‘obesity paradox’ may be that body mass in-
dex (BMI) cannot distinguish well between individual
muscle and fat tissue distributions [8,9]. Additionally,
a higher BMI can mask low muscle mass, and a lower
BMI can mask excess obesity. Subcutaneous adipose
tissue (SAT) and visceral adipose tissue (VAT) are two
different physical forms of white adipose tissue [10].
The VAT is currently thought of as a metabolic and
endocrine organ that can influence systemic immuno-
logical disorders and body weight homeostasis. SAT, a
metabolic storehouse, is linked to visceral fat deposi-
tion [11]. In a number of tumor types, including breast
cancer, colorectal cancer, hepatocellular carcinoma, and
gastric cancer, elevated VAT has been associated with a
worse overall survival (OS) rate [12,13,14]. Similarly,
the SAT index can be used to predict the outcomes
of several cancers, such as head and neck, breast, and
prostate cancer [15,16,17]. Visceral to subcutaneous fat
area ratio (VSR) is an independent prognostic factor for
poor prognosis in type 1 endometrial cancer and gas-
tric cancer [18,19]. Recent studies have demonstrated
that adipocyte-BC cell interactions are critical for the
development of BC and its related bone metastases [20].

Radiomics involves extracting quantitative charac-
teristics from digital images and converting the data
into high-dimensional information. Its primary objec-
tive is to develop decision-support tools [21,22]. Typi-
cal radiomics includes image segmentation within the
region of interest (ROI), followed by the selection and
extraction of features such as size, shape, and texture.
Statistical methods or machine learning techniques are
then utilized to derive the final clinical outcomes [23].
Deep learning (DL) is widely applied in medical im-

age analysis due to its exceptional performance [24].
DL algorithms can extract features from medical im-
ages that are beyond human recognition capabilities,
enabling automatic quantitative evaluations without in-
troducing additional errors associated with manual fea-
ture extraction. However, many studies only employ a
single set of medical images, lacking comprehensive
clinical information, thus limiting the final predictive
outcomes. Multimodal deep learning models offer the
potential to encompass additional modalities beyond
image data [25,26,27].

Local binary pattern (LBP) serves as an efficient tex-
ture description technique. By comparing the gray value
of each pixel with its neighboring pixels, it charac-
terizes the image’s texture features using a two-level
system [28,29,30]. This method finds extensive use
in face recognition, yielding favorable results [31,32,
33]. Histograms of oriented gradient (HOG), an algo-
rithm for extracting feature histograms from local pixel
blocks [34], have enjoyed significant success in object
detection, particularly within pedestrian detection sce-
narios [35,36,37]. LBP boasts advantages in rotation
and grayscale invariance, effectively capturing image
texture features, while HOG excels in capturing local
shape information, maintaining strong invariance to ge-
ometric and optical variations. Consequently, convo-
lutional neural networks (CNN) can extract a broader
spectrum of features from LBP and HOG features,
which diverge from the original computed tomography
(CT) images.

In this study, we have developed and validated a neu-
ral network-based DL algorithm to assess predictors for
bone metastases in breast cancer patients. Additionally,
regularized Cox regression models were employed to
analyze independent prognostic factors for bone metas-
tases.

2. Materials and methods

2.1. Patients and data sets

This study protocol was approved by the Ethics Com-
mittee of Harbin Medical University Cancer Hospi-
tal. As it was a retrospective study, informed consent
from all participants was exempted. The study com-
prised 431 patients who underwent radical surgical re-
section at Harbin Medical University Cancer Hospi-
tal between January 1, 2015, and December 31, 2016.
The inclusion criteria for this study were as follows:
(1) Patients did not receive neoadjuvant chemotherapy
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or other treatments before surgery. (2) The patients’ age
was at least 18 years. (3) Pathological findings were his-
tologically confirmed. (4) Patients had complete clinical
and follow-up data. (5) Patients had no history of other
malignancies and no metastatic disease at the time of
diagnosis. The patients were assigned to the training
cohort, validation cohort, and test cohort.

All clinical information, including age, menopausal
status, histology type, and body composition, was re-
trieved from the records of breast cancer (BC) patients.
Distant metastasis-free survival (DMFS) was computed
from the surgery date to the occurrence of distant metas-
tasis or the last follow-up date, with assessments con-
ducted every 3 months during the first 2 years post-
operation and subsequently every 6 months for the 3–5
years thereafter. Distant metastasis outcomes were de-
rived from patient imaging conducted during the follow-
up period. Body mass index (BMI, kg/m2) is calculated
by dividing weight (kg) by height squared (m2). The
erector spinae area, visceral adipose tissue area, and
subcutaneous adipose tissue area were obtained with
Image J software version 1.53a (Wayne Rasband Na-
tional Institutes of Health, USA). Different tissues were
differentiated based on CT Hounsfield Units (HU). HU
was set from −29 to +150 for skeletal muscle, −150
to −50 for visceral adipose tissue, and −190 to −30
for subcutaneous adipose tissue. Area (cm2) divided
by height (m2) squared to obtain erector spinae index
(ESMI), visceral fat index (VFI), and subcutaneous fat
index (SFI), as shown in Fig. 1. Because there were no
CT images available on level L3 for BC patients, CT
images on the level of the eleventh thoracic vertebra
(T11) were used as an alternative for the assessment of
muscle and fat. Two independent readers blinded to the
clinical data analyzed the CT images, and the mean of
the two measurements was used.

2.2. Base model selection

Selecting an appropriate CNN for use as a feature
encoder holds notable influence over the classification
outcomes. To identify an apt model for the prediction
of bone metastases, we assessed the performance of
ResNet34, ResNet50, and ResNet101.

2.3. Feature Extraction with HOG and LBP

The HOG and LBP features were respectively ex-
tracted from the CT images, as illustrated in Fig. 2. For
HOG, features were calculated using a unit size of 16
× 16 and a block size of 1 × 1, with 8 bins for the his-

Fig. 1. CT image of T11 level, paraspinal muscles, subcutaneous fat
and visceral fat. Figure (a) is the CT image of the T11 level. The
yellow area in Figure (b) is the visceral fat in the T11 level CT image.
The yellow area in (c) is the subcutaneous fat in the T11 level CT
image. The yellow area in (d) is the paraspinal muscles in the T11
level CT image.

Fig. 2. LBP feature and HOG feature. Figure (a) is the LBP feature
extracted from the T11 layer CT image. Figure (b) is the HOG feature
extracted from the T11 layer CT image.

togram. As for LBP, the range radius parameter was set
to 3, and the domain contained 24 pixels. HOG operates
on the local grid units of the image, ensuring robust ge-
ometric and deformation invariance. Meanwhile, LBP
features offer notable advantages, including grayscale
and rotation invariance. These two features were in-
corporated into the CNN for training and subsequent
feature extraction.

2.4. Deep learning model training and interpretation

The study’s workflow is depicted in Fig. 3. To bolster
model robustness and mitigate overfitting concerns, we
implemented horizontal and vertical flipping, alongside
standardized data augmentation techniques [38]. For a
more focused emphasis on the subcutaneous fat area,
we incorporated a mask-guided attention mechanism,
amplifying the mask area’s responsiveness. The mask-
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Fig. 3. The overall pipeline of the model. The fat area mask, LBP feature, HOG feature, and CT image are combined according to the channel
dimension to form the input. ResNet combines the attention mechanism guided by the fat mask to form an encoder model to extract features from
image data. Lasso-Cox screens clinical information data for features, and then combines them with extracted network features to form multimodal
data. GBDT is a classifier for multimodal data.

guided attention process is detailed in the appendix. All
images were standardized to a size of 500*400 pixels,
ensuring uniform distance scaling. Preprocessing was
facilitated by the Torchvision toolkit (version 0.11.3)
within Python (version 3.8.12). PyTorch 1.10.2 was
employed as the backend for all model training.

The 431 patients were equally divided into three
groups for three-fold cross-validation, with two of them
being used as the training cohort and the other as the
test cohort. Then, 20% of the training cohort was ran-
domly selected as the verification cohort. The train-
ing cohort was employed for updating the CNN model
weights, while the validation cohort assisted in guiding
the selection of model hyperparameters. The network
model’s weights were initialized using the pre-trained
model from ImageNet. ResNet101 was chosen as the
foundational model for feature extraction.

Before training the CNN, each patient’s image was
assigned a label of either 0 or 1, based on the pres-
ence or absence of bone metastases. During the training
phase, the improved image was fed into the CNN, and
the CNN’s parameters were refined through the process
of backpropagation. The model employed the CrossEn-
tropyLoss function as its loss metric, while the Adam
optimizer updated the model’s parameters using a batch
size of 64, a learning rate of 1e-6, and 200 iterations.
Further elaboration on the training outcomes can be
found in the appendix.

2.5. Feature fusion

Deep learning has the capability to extract high-
throughput features via supervised learning, effectively
harnessing the inherent information embedded within
images. The process involves amalgamating the initial
CT image alongside HOG and LBP features, organized
based on the channel dimension, and integrating them
into ResNet101. The ResNet101 linear layer is em-
ployed for feature extraction within the network, which
are then harmoniously merged with clinical data. This
amalgamation of clinical insights and network-derived
features occurs through horizontal concatenation. Sub-
sequently, these fused features are utilized to train a
gradient boosting decision tree (GBDT) model.

2.6. Statistical analysis

The data were presented as percentages or mean ±
standard deviation. The comparison of continuous vari-
ables was assessed using the two-tailed Student t-test,
while categorical variables were analyzed using the
Chi-square test. Most of the parameter screening pro-
cesses relied on univariate and multivariate analyses,
which have inherent limitations in addressing multi-
collinearity among variables. Lasso (Least Absolute
Shrinkage and Selection Operator) regression, employ-
ing L1 regularization norm, was employed to screen
variables. Subsequently, a Cox regression model was
established for analysis, effectively mitigating the issue
of multicollinearity, a method referred to as regularized
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Table 1
Characteristics of study popilation by bone metastasis

Variables Bone metastases
(no)

Bone metastases
(yes) P

Number 379 52
Age in years 0.097

Mean ± SD 50.0 ± 8.4 52.1 ± 8.6
Min–Max 29.0–73.0 35.0–72.0
Media (Q1–Q3) 50.0 (44.0–55.75) 51.5 (45.75–56.0)

BMI (kg/m2) 0.209
Mean ± SD 24.0 ± 3.4 24.7 ± 5.5
Min–Max 9.2–36.3 17.6–56.9
Media (Q1–Q3) 23.7 (21.7–25.9) 23.5 (21.9–26.0)

CEA (ng/ml) < 0.001
Mean ± SD 2.1 ± 2.2 6.5 ± 13.2
Min-Max 0.2–20.3 0.4–72.2
Media (Q1–Q3) 1.5 (1.0–2.4) 2.8 (1.8–3.8)

Tumor size (cm) < 0.001
Mean ± SD 2.4 ± 1.3 3.3 ± 1.8
Min–Max 0.5–11.5 1.0–11.0
Media (Q1–Q3) 2.0 (1.5–3.0) 3.0 (2.1–3.8)

ESMA (cm2) 0.272
Mean ± SD 28.5 ± 9.9 30.1 ± 7.5
Min–Max 8.2–56.9 13.2–44.9
Media (Q1–Q3) 26.8 (20.9–34.9) 30.2 (25.9–33.5)

ESMI (cm2/m2) 0.140
Mean ± SD 11.0 ± 3.8 11.8 ± 3.2
Min–Max 3.1–23.4 5.1–19.5
Media (Q1–Q3) 10.4 (8.0–13.6) 11.8 (10.5–12.9)

SFA (cm2) 0.036
Mean ± SD 159.8 ± 59.0 140.4 ± 82.7
Min–Max 15.3–338.7 27.9–529.1
Media (Q1–Q3) 147 (119.6–201.7) 132.7 (98.5–149.9)

SFI (cm2/m2) < 0.001
Mean ± SD 60.2 ± 23.6 20.9 ± 5.6
Min–Max 6.1–128.2 9.4–34.7
Media (Q1–Q3) 57.3 (44.4–75.8) 20.7 (16.2–23.9)

VFA (cm2) < 0.001
Mean ± SD 71.4 ± 47.0 44.5 ± 38.8
Min–Max 5.1–236.4 1.1–189.3
Media (Q1–Q3) 58.9 (37.3–92.7) 30.2 (19.0–54.6)

VFI (cm2/m2) < 0.001
Mean ± SD 27.6 ± 18.4 17.6 ± 16.2
Min–Max 1.9–97.1 0.4–87.6
Media (Q1–Q3) 23.2 (14.5–35.5) 12.0 (6.9–20.8)

Menopause status 0.894
Post 190 (49.8%) 30 (57.6%)
Pre 189 (50.1%) 22 (42.3%)

N 0.258
N0 176 (46.4%) 17 (32.6%)
N1+ 203 (53.5%) 35 (67.3%)

LVI 0.001
Yes 109 (28.7%) 36 (69.2%)
No 270 (71.2%) 16 (30.7%)

Ki-67 (%) 0.740
> 20% 218 (57.5%) 36 (69.2%)
< 20% 161 (42.4%) 16 (30.7%)

Molecular subtype 0.026
HER2-enriched 121 (31.9%) 29 (55.8%)
TNBC 76 (20.0%) 9 (17.3%)
Luminal-A 139 (36.6%) 8 (15.3%)
Luminal-B 43 (11.3%) 6 (11.5%)

Multifocal disease 0.213
Yes 11 (2.9%) 15 (28.8%)
No 368 (97.0%) 37 (71.1%)

ER 0.890
Positive 234 (61.7%) 29 (55.7%)
Negative 145 (38.2%) 23 (44.2%)

PR 0.753
Positive 219 (42.2%) 30 (57.6%)
Negative 160 (57.7%) 22 (42.3%)

HER2 status 0.095
Positive 142 (37.4%) 29 (55.7%)

Table 1, continued

Variables Bone metastases
(no)

Bone metastases
(yes) P

Negative 237 (62.5%) 23 (44.2%)
Endocrine therapy 0.708

Yes 166 (43.7%) 13 (25.0%)
No 213 (56.2%) 39 (75.0%)

Radiotherapy 0.036
Yes 104 (27.4%) 13 (25.0%)
No 275 (72.5%) 39 (75.0%)

Chemotherapy 0.563
Yes 356 (93.9%) 52 (100.0%)
No 32 (6.0%) 0 (0.0%)

Histologic type 0.005
Ductal 304 (80.2%) 36 (69.2%)
Others 75 (19.7%) 16 (30.7%)

Qualitative variables are represented as n (%) and quantitative variables are
presented as mean ± SD, min–max, and median (Q1–Q3) when appropriate.
BMI body mass index, CEA carcinoembryonic antigen, ESMA erector spinae
muscle area, SFA subcutaneous fat area, VFA visceral fat tissue area, ESMI
erector spinae muscle index, SFI subcutaneous fat index, VFI visceral fat tis-
sue index, N regional lymph node, LVI lymphatic vascular invasion, ER estro-
gen receptor, PR progesterone receptor, HER2 human epidermal growth factor
receptor 2, P was obtained using t-test and chi square test.

Cox analysis. Regularized Cox analysis was conducted
to identify independent prognostic factors for DMFS.
In order to compare the performance of different mod-
els, a receiver operating characteristic (ROC) curve was
constructed, and the areas under the ROC curve (AUCs)
with 95% confidence intervals (CIs) were computed. A
significance level of P < 0.05 was adopted to denote
statistical significance.

3. Results

3.1. Clinical information

The baseline characteristics table, stratified by the
presence of bone metastasis, is presented in Table 1.
Patients with bone metastases displayed elevated levels
of carcinoembryonic antigen (CEA) and larger tumor
sizes. Moreover, significant variations were observed in
terms of lymphatic vascular invasion (LVI), molecular
subtype, radiotherapy and histologic type. Additionally,
pertaining to body composition parameters, noteworthy
distinctions were identified in subcutaneous fat tissue
area (SFA) and SFI, which pertain to subcutaneous fat,
as well as visceral fat tissue area (VFA) and VFI, which
are related to visceral fat.

The results of the regularized Cox analysis are pre-
sented in Table 2. The Lasso regression algorithm em-
ploys the L1 norm for shrinkage penalties and retains
LVI, Ki67 expression, histologic type, CEA, BMI, SFA,
and SFI for the multivariate Cox regression analyses.
The findings revealed that CEA (HR: 1.088, 95% CI:
1.049–1.129, P < 0.001), LVI (HR: 2.544, 95% CI:
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Table 2
The predictors of bone metastases in patients with breast cancer

Characteristics Coefficient Multivariate HR (95% CI) P

Multifocal disease (Yes vs No) –
N (Positive vs Negative) –
LVI (Yes vs No) 0.4006 2.544 [1.370, 4.723] < 0.001
Ki-67 (> 20 vs < 20) 0.1003 2.045 [1.076, 3.887] 0.028
Molecular subtype –
Multifocal disease (Yes vs No) –
ER (Positive vs Negative) –
PR (Positive vs Negative) –
HER2 status (Positive vs Negative) –
Endocrine therapy (Yes vs No) –
Radiotherapy (Yes vs No) –
Chemotherapy (Yes vs No) –
Histologic type (Ductal vs Others) –1.0255 0.216 [0.110, 0.421] < 0.001
Age (years) –
Menopause status (Post vs Pre) –
CEA (ng/ml) 0.0618 1.088 [1.049, 1.129] < 0.001
CA153 (U/ml) –
BMI (kg/m2) 0.0012 0.949 [0.869, 1.036] 0.243
ESMA (cm2) –
SFA (cm2) 0.0002 1.005 [0.999, 1.011] 0.083
VFA (cm2) –
ESMI (cm2/m2) –
SFI (cm2/m2) −0.0740 0.875 [0.845, 0.905] < 0.001
VFI (cm2/m2) –

95% confidence intervals included in brackets. – indicates coefficient < 0.0001. BMI body mass
index, CEA carcinoembryonic antigen, N regional lymph node, LVI lymphatic vascular invasion,
ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor
2, ESMA erector spinae muscle area, ESMI erector spinae muscle index, SFA subcuta neous fat
tissue area, SFI subcutaneous fat index, VFA visceral fat tissue area, VFI: visceral fat index, P
was obtained using Chi-square test. Coefficient was obtained using lasso regression.

1.370–4.723, P < 0.001), Ki-67 (HR: 2.045, 95% CI:
1.076–3.887, P < 0.028), histologic type (HR: 0.216,
95% CI: 0.110–0.421, P < 0.001), and SFI (HR: 0.875,
95% CI: 0.845–0.905, P < 0.001) were independent
prognostic factors for bone metastases.

3.2. Performance of deep learning models

The performance of distinct deep learning mod-
els varies when applied to different datasets. Notably,
ResNet101 emerged as the most effective model for
predicting bone metastases, as evidenced by its su-
perior performance in the three-fold cross-validation,
as depicted in Table 3. In the test cohort, ResNet34
and ResNet50 yielded AUCs of 0.599 (95% CI:
0.476, 0.715, P < 0.01) and 0.581 (95% CI: 0.451,
0.710, P < 0.01) respectively. Meanwhile, ResNet101
achieved an AUC of 0.699 (95% CI: 0.586, 0.803, P <
0.01), surpassing the performance of ResNet34 and
ResNet50. This compelling improvement led us to opt
for ResNet101 as the chosen model for subsequent fea-
ture extraction.

3.3. Performance of multimodal models

We explored various machine learning models to in-
tegrate clinical information with network features ex-
tracted by CNN. The results are presented in Table 4.
Notably, the optimal performance was achieved when
employing the GBDT model to amalgamate differ-
ent feature predictions. Combining clinical information
with features extracted by ResNet101 (utilizing feature
extraction from T11 level CT images, HOG, LBP, and
mask), yielded the most favorable predictive outcomes,
with an AUC of 0.922 (95% CI: 0.843, 0.964, P <
0.01) based on three-fold cross-validation. In assessing
sensitivity and specificity, we experimented with vary-
ing cutoff values on both the training and validation
sets. Eventually, we selected a threshold that yielded a
relatively balanced trade-off and applied it consistently
across the training, validation, and test sets. Considering
the comprehensive AUC metric, this model exhibited
the most superior classification performance. The ROC
curves for different models are illustrated in Fig. 4,
providing a visual representation of their comparative
discriminative abilities.
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Table 3
The performance comparison of different models

Methods AUC ACC (%) SENS (%) SPEC (%)
ResNet34 (only CT) T 0.671 [0.579, 0.755] 65.7 [60.2, 71.1] 66.7 [59.2, 72.5] 65.5 [58.6, 72.3]

V 0.634 [0.526, 0.729] 63.4 [54.6, 72.8] 64.5 [55.6, 73.4] 63.8 [56.4, 69.2]
I-T 0.599 [0.476, 0.715] 58.1 [51.2, 67.4] 60.4 [54.6, 65.4] 57.8 [51.4, 65.2]

ResNet50 (only CT) T 0.632 [0.539, 0.718] 57.8 [51.6, 65.9] 56.3 [50.2, 65.7] 58.0 [53.4, 64.7]
V 0.606 [0.512, 0.689] 54.1 [46.3, 63.8] 55.1 [48.4, 64.3] 56.3 [49.2, 66.3]
I-T 0.581 [0.451, 0.710] 53.0 [44.5, 61.4] 60.4 [54.7, 66.8] 52.1 [45.2, 58.7]

ResNet101 (only CT) T 0.821 [0.713, 0.890] 77.1 [72.9, 84.5] 77.6 [71.4, 83.6] 75.4 [67.6, 81.0]
V 0.712 [0.633, 0.807] 70.4 [61.2, 80.7] 73.3 [64.7, 80.2] 74.7 [65.2, 86.5]
I-T 0.699 [0.586, 0.803] 67.8 [61.4, 76.7] 71.1 [66.2, 77.8] 67.4 [61.2, 74.8]

95% confidence intervals included in brackets. AUC area under the receiver operating characteristic curve, ACC
accuracy, SENS sensitivity, SPEC specificity. T training cohort, V validation cohort, I-T independent test cohort.

Table 4
The prediction of bone metastasis result

Methods AUC ACC (%) SENS (%) SPEC (%)
ResNet101 + GBDT (only CT) T 0.913 [0.855, 0.951] 83.5 [79.8, 87.3] 84.7 [79.8, 89.6] 83.3 [75.6, 86.9]

V 0.711 [0.588, 0.773] 69.2 [58.1, 80.9] 72.5 [61.9, 84.2] 70.8 [67.2, 83.1]
I-T 0.700 [0.594, 0.793] 67.1 [60.7, 75.3] 69.2 [61.8, 77.0] 66.8 [60.1, 76.4]

ResNet101 + GBDT (only clinical information) T 0.935 [0.890, 0.964] 87.2 [81.0, 89.4] 90.9 [83.9, 93.0] 93.4 [90.4, 95.7]
V 0.829 [0.630, 0.956] 77.2 [69.0, 84.4] 73.7 [62.1, 86.7] 77.6 [66.2, 89.1]
I-T 0.783 [0.672, 0.878] 74.5 [64.9, 80.9] 75.0 [67.6, 80, 9] 74.5 [67.9, 80.0]

ResNet101 + GBDT (CT and clinical information) T 0.990 [0.966, 0.998] 96.1 [93.4, 97.8] 96.5 [92.3, 98.6] 96.0 [93.7, 98.1]
V 0.939 [0.800, 0.982] 90.1 [78.3, 97.7] 89.5 [78.6, 95.3] 90.1 [80.3, 97.8]
I-T 0.922 [0.843, 0.964] 83.1 [75.2, 89.5] 82.7 [74.1, 90.2] 83.2 [75.0, 91.0]

ResNet101 + SVM (only CT) T 0.813 [0.746, 0.873] 75.4 [69.8, 79.8] 77.6 [70.2, 81.8] 75.0 [72.6, 84.1]
V 0.645 [0.558, 0.792] 59.6 [50.2, 69.8] 57.9 [46.2, 68.2] 59.9 [50.2, 71.2]
I-T 0.681 [0.570, 0.784] 60.6 [54.6, 67.4] 61.5 [54.5, 66.6] 60.5 [53.2, 70.4]

ResNet101 + SVM (only clinical information) T 0.859 [0.789, 0.917] 79.6 [75.1, 83.6] 77.6 [67.1, 82.2] 79.8 [73.6, 85.1]
V 0.765 [0.621, 0.891] 71.3 [60.1, 83.2] 73.7 [62.9, 85.0] 71.1 [60.7, 83.5]
I-T 0.786 [0.672, 0.881] 75.0 [69.7, 80.2] 76.9 [69.5, 83.2] 74.7 [66.3, 79.8]

ResNet101 + SVM (CT and clinical information) T 0.959 [0.918, 0.983] 88.7 [86.1, 92.0] 90.6 [86.7, 94.2] 88.4 [83.5, 93.1]
V 0.864 [0.688, 0.964] 77.2 [65.7, 89.1] 73.7 [61.1, 86.3] 77.6 [66.9, 87.6]
I-T 0.855 [0.760, 0.928] 76.6 [71.2, 84.3] 78.8 [71.3, 84.4] 76.3 [69.7, 85.4]

ResNet101 + RF (only CT) T 0.980 [0.951, 0.993] 92.6 [90.0, 95.5] 94.1 [89.9, 98.1] 92.4 [86.1, 97.5]
V 0.612 [0.514, 0.763] 55.6 [48.9, 67.2] 58.8 [49.1, 68.6] 52.9 [44.2, 61.4]
I-T 0.638 [0.532, 0.742] 61.8 [57.4, 68.0] 63.5 [58.7, 67.2] 61.6 [55.2, 67.6]

ResNet101 + RF (only clinical information) T 0.991 [0.958, 0.997] 92.8 [89.7, 95.9] 95.3 [90.1, 97.2] 92.4 [85.3, 96.9]
V 0.835 [0.708, 0.921] 80.8 [69.3, 89.7] 75.2 [64.7, 86.0] 79.8 [66.5, 90.2]
I-T 0.785 [0.688, 0.865] 74.3 [68.3, 80.4] 73.1 [67.5, 80.3] 74.5 [68.3, 81.4]

ResNet101 + RF (CT and clinical information) T 0.995 [0.966, 0.997] 93.6 [90.9, 96.7] 96.5 [90.0, 98.4] 93.2 [86.9, 96.2]
V 0.856 [0.670, 0.948] 76.1 [65.6, 87.2] 79.7 [68.5, 89.7] 74.1 [60.2, 87.6]
I-T 0.839 [0.748, 0.913] 77.3 [70.0, 86.1] 78.8 [70.6, 87.6] 77.1 [68.9, 85.2]

95% confidence intervals included in brackets. AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC
specificity. GBDT gradient boosting decision tree, SVM support vector machine, RF random forest. T training cohort, V validation cohort, I-T
independent test cohort.

We calculated the Pearson correlation coefficient be-
tween data of different modalities (clinical informa-
tion and network features) and drew it into a heat map,
as shown in Fig. 5. It can be seen that in addition to
the strong linear relationship between network features
(X1–X16), body composition parameters (BMI-VFI)
also have a certain linear relationship with network fea-
tures, which shows that CNN has extracted features that
are similar to body composition. In addition, network
features are less correlated with other clinical features

except body composition parameters, and feature fusion
can play a complementary role.

3.4. Interpretability of DL model

The gradient-weighted activation mapping method
(Grad-CAM) was employed to accentuate specific re-
gions within an input CT image, illustrating their role in
influencing predictions made by the ResNet model [39].
Figure 6 illustrates the responses of several convolu-
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Fig. 4. Comparison of receiver operating characteristic (ROC) curves between different models for predicting bone metastases. Figure (a) is the
ROC image on the test set when different ResNet models only have CT. Figure (b-c) are ROC images of different machine learning models under
different data conditions.

tional layers within the deep learning architecture when
exposed to CT images from three distinct patients. No-
tably, the outcomes underscore the significance of sub-
cutaneous fat within the CT images as a pivotal element
in the model’s learning process. This finding aligns har-
moniously with the outcomes derived from the Lasso-
Cox regression analysis.

4. Discussion

In this study, we have identified SFI as an indepen-
dent prognostic factor for bone metastases in breast
cancer (BC) patients. Additionally, we have success-
fully developed a multimodal prediction model for bone
metastases in BC patients, employing a combination of
deep learning and GBDT techniques. Our multimodal
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Fig. 5. Correlation coefficient heat map between different modal features. The features from X1 to X16 represent the CNN network features
extracted from the combination of CT, HOG, LBP, and Mask, while the remaining features encompass clinically informative attributes.

model has demonstrated promising predictive perfor-
mance on the test cohort, yielding an AUC of 0.922, a
sensitivity of 82.7%, and a specificity of 83.2%. These
outcomes underscore the viability of employing a mul-
timodal approach in predicting bone metastases in BC
patients. Such a model holds potential to enhance diag-
nostic proficiency, particularly among less-experienced

physicians. To our knowledge, this study represents
the pioneering utilization of a multimodal model for
predicting bone metastases in BC. Table 5 presents a
comparative analysis of our results with other pertinent
studies focused on predicting breast cancer metasta-
sis. Notably, our current AUC and ACC models exhibit
superior performance compared to alternative models
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utilizing diverse datasets [40,41,42,43,44,45,46].
Low SFI is independently associated with increased

mortality and poorer survival in cancer patients, as in-
dicated by prior studies [47]. Dong et al. similarly dis-
covered that reduced subcutaneous fat was linked to
a more adverse prognosis for gastric cancer, encom-
passing overall survival and disease-free survival [48].
Black et al. also reported that diminished subcutaneous
fat has been correlated with reduced survival in operable
colorectal cancer [49]. Furthermore, a recent study sub-
stantiated that lower SFI independently predicted poor
overall survival in hepatocellular carcinoma [50]. An-
other study proposed that patients with bone metastases
exhibiting elevated SFI and VFI demonstrated supe-
rior overall survival [51]. However, Bradshaw et al. ob-
served that, among women with non-metastatic breast
cancer, increased SAT was associated with shorter sur-
vival [16]. These divergent findings might stem from
variances in study populations, inclusion criteria, and
biomarkers of SAT. Consequently, further research is
warranted to elucidate the role of SAT in breast cancer.

Up to the present date, clear identification of poten-
tial explanations for the predictive effect of SAT on
bone metastases remains elusive. SAT stands out as the
primary source of adiponectin and leptin, pivotal play-
ers in the regulation of bone health and bone metasta-
sis in BC [52]. Adiponectin exhibits pro-apoptotic and
anti-proliferative properties within human BC cells [53,
54]. Research has indicated that adiponectin hampers
the metastatic process through its capacity to suppress
the adhesion, invasion, and migration of BC cells, fa-
cilitated by the activation of the AMPK/S6K axis and
the upregulation of live kinase B1 (LKB1) [53]. In sum,
compelling evidence suggests that lower levels of cir-
culating adiponectin forecast heightened BC risk and
a less favorable prognosis [55]. Moreover, the mass of
adipose tissue corresponds directly to leptin synthesis
and plasma levels, enhancing lipid metabolism and in-
sulin sensitivity [56]. Leptin, in turn, exerts a regula-
tory role on bone health by modulating bone density,
growth, and adiposity. Investigations have unveiled di-
minished serum leptin levels in premenopausal BC pa-
tients compared to their healthy counterparts [57]. Fur-
thermore, leptin has also shown promise in correlating
with improved prognosis among patients with colorec-
tal cancer [58]. Hence, it emerges that adipokines orig-
inating from adipose tissue and leptin influence distinct
phases of the bone metastatic cascade. Nonetheless,
further inquiry is warranted to validate the mechanisms
through which SAT potentially safeguards against bone
metastasis in BC.

Within our cohort, we have also demonstrated a no-
table association between CEA, molecular subtype, and
LVI in multivariate analysis. In a retrospective study
by Chen et al., CEA was not observed to indepen-
dently predict bone metastasis in BC; however, a sig-
nificant difference in the distribution of bone metastasis
in breast cancer was noted [59]. Further research and
validation are essential to determine the significance of
CEA in predicting the likelihood of bone metastasis in
breast cancer. A SEER population-based study showed
that histologic type was an independent factor for bone
metastases in breast cancer [60]. The study carried out
by Nishimura et al. demonstrated a strong correlation
between KI-67 expression and bone metastasis in cases
of breast cancer [61]. A separate retrospective study
indicated that ER+HER2− tumors exhibiting a Ki67
score exceeding 13% displayed the highest incidence of
bone metastasis [62]. Recent work by Floyd et al. has
underscored the pivotal role of LVI in prognosticating
overall survival and disease-free survival in breast can-
cer [63]. In summation, the existing body of literature
emphasizes the pivotal significance of KI-67 and LVI
in anticipating bone metastasis among breast cancer
patients, aligning harmoniously with our findings.

Meanwhile, no association between BMI and bone
metastasis was observed in our study. The relationship
between BMI and postoperative outcomes in cancer
patients has been a subject of controversy. A previous
report unveiled the inconsistency of the association be-
tween BMI and cancer survival across diverse cancer
types and stages [56]. Disparities in the prognostic im-
plications of BMI may, in part, arise due to variations
in body composition among individuals with compa-
rable BMI values (e.g., more fat or muscle in one pa-
tient than in another) [64]. In essence, BMI falls short
in discerning between fat and fat-free mass or distin-
guishing diverse fat deposits for an accurate assessment
of body composition [65]. In this study, we opted for
regional measurements of obesity, such as SFI and VFI,
which mitigate the risk of misestimation and enhance
the coherence of our findings.

Our research has unearthed the substantial potential
of the SFI in stratified prognostication of breast cancer
bone metastasis. Drawing from our findings, we have
pinpointed a critical threshold of 27.7 cm2/m2, yielding
a sensitivity of 0.727 (95% confidence interval: 0.694–
0.751) and a specificity of 0.743 (95% confidence in-
terval: 0.701–0.785). The Kaplan-Meier curve for bone
metastasis stratified by this threshold is shown in Fig. 7.
This discovery carries profound clinical implications,
capable of empowering medical practitioners to arrive
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Table 5
Comparison of results from related work

Model Clinical features
Body composition

features
Deep network

features AUC ACC SEN SPE

Ours
√ √ √

0.922 0.831 0.827 0.832
ML [40]

√
0.888 0.803 0.801 0.837

ML [41]
√

0.870 0.830 – –
Multi-feature fusion model [42]

√ √
0.854 0.786 0.746 0.806

Cox regression [43]
√ √

0.715 – 0.957 0.423
Deep Learning Signature [44]

√ √
0.817 0.677 0.825 0.584

Cox regression [45]
√ √

0.820 – – –
Clinical statistical analysis [46]

√
0.821 – 0.592 0.941

ML: machine learning.

Fig. 6. Responses of several convolutional layers in ResNet to CT images of different patients. Grad-CAM results of three CT images. Red areas
represent a greater impact on the prediction, blue areas the opposite.

at more precise diagnoses and therapeutic choices. In
the context of predicting breast cancer bone metastasis,
we propose that an individual’s SFI can be measured to
serve as a pivotal risk assessment marker. Subsequently,
this marker can be judiciously stratified to align with

specific diagnostic requirements. Furthermore, a perti-
nent avenue to explore involves incorporating the SFI
as an adjunctive feature within the artificial intelligence
model’s training phase, thus constituting an integral
facet of “feature engineering.” This strategic inclusion
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Fig. 7. Kaplan-Meier analysis of bone metastases stratified by SFI. Patients were grouped with an SFI of 27.7 as the cutoff value. The difference in
the probability of bone metastasis between the two groups was compared.

empowers the model to harness SFI-derived insights,
culminating in heightened prediction precision.

Studies have demonstrated that CNN can effectively
employ multi-view bone scan images to automatically
diagnose bone metastases [66,67]. For the prediction
of lymph node metastasis, CNN has been utilized to
extract features from ultrasound images and SWE im-
ages [68,69]. In our study, we showcase the efficacy of
a deep learning model based on CNN in conjunction
with the GBDT method for the accurate prediction of
bone metastases. This is achieved by integrating CT
image features with the clinical information of BC pa-
tients. Additionally, we establish that the inclusion of
HOG and LBP features alongside CT image features
leads to further enhancement of predictive performance.
In contrast to traditional qualitative reasoning, quanti-
tative evaluation of imaging data yields more precise
predictive outcomes.

Deep neural networks are often referred to as “black
box” models due to the challenge in discerning the spe-
cific input components linked to predicted labels. Our
goal is to illuminate the areas of focus within CNN that
pertain to CT images and contribute to bone metasta-
sis prediction. To achieve this, we employ the Grad-
Cam method, which generates a visual representation
of CNN’s attention through a heat map.

It is important to acknowledge certain limitations
within our study. Firstly, our data emanates from a sin-

gular center, warranting the need for data from mul-
tiple centers to validate the model comprehensively.
Secondly, the retrospective nature of the study intro-
duces a degree of selection bias. Lastly, our study exclu-
sively comprises Chinese participants, thus precluding
the extrapolation of results to other ethnic groups.

In summation, deep learning emerges as a valuable
technique for extracting pertinent information from CT
images to predict bone metastases. Our approach of
amalgamating clinical data and GBDT further refines
prediction accuracy. Through validation and refinement
in a larger and more diverse population, our multimodal
model holds the potential to evolve into a pivotal auxil-
iary diagnostic tool in clinical practice.
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Appendix

1.1 Mask-guided attention

In the T11 level CT image, in addition to skeletal
muscle, visceral fat, and subcutaneous fat, there are

some other tissues (such as the spine). In order to make
the deep learning model more focused on the subcuta-
neous fat area, we use a mask-guided attention mech-
anism. First, we stitch together the standardized T11
layer ROI and its subcutaneous fat mask (−0.5 and
0.5 represent non-fat and fat regions, respectively) ac-
cording to the dimension of depth and input them into
ResNet. Then, the subcutaneous fat mask is added to
the back ends of the first and second residual blocks.
This mechanism enhances the response of fat regions in
convolutional feature maps by using positive bias in fat
regions while using negative bias to suppress non-fat
regions.

1.2 ResNet

ResNet can handle the problem of vanishing or ex-
ploding gradients during deep neural network training,
especially in computer vision. The core of Resnet is
to build a residual learning module. The mathematical
expression of the residual learning module is:

y = F(x, {Wi}) + x (1)

where x and y represent the input and output vectors
of the residual block respectively, F (x) is the residual
map to be learned, and Wi is the neural network weight
of the i-th layer. ResNet can be built from basic blocks
or “bottlenecks”.

1.3 Loss function

CrossEntropyLoss is used to our model. The formula
of the loss function is expressed as:

L = −[y ∗ log ŷ + (1− y) ∗ log(1− ŷ)] (2)

Where y is the real label value (positive class value
is 1, negative class value is 0), and ŷ is the predicted
probability value. It represents the difference between
the real sample label and the predicted probability.

1.4 Training process

The loss of the training process and verification pro-
cess of different ResNets are shown in supplementary
Fig. 1. We chose the 190th epoch as our training end
point. Compared with ResNet101, the training set loss
and verification set loss of ResNet34 and ResNet50 are
higher during convergence, so the ResNet101 model is
selected as the encoder for image extraction features.


