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Abstract.

BACKGROUND: Post-transcriptional regulation of mRNA induced by microRNA is known crucial in tumor occurrence,
progression, and metastasis. This study aims at identifying significant miRNA-mRNA axes for stomach adenocarcinomas (STAD).
METHOD: RNA expression profiles were collected from The Cancer Genome Atlas (TCGA) and GEO database for screening
differently expressed RNAs and miRNAs (DE-miRNAs/DE-mRNAs). Functional enrichment analysis was conducted with Hiplot
and DAVID-mirPath. Connectivity MAP was applied in compounds prediction. MiRNA-mRNA axes were forecasted by TarBase
and MiRTarBase. Real-time reverse transcription polymerase chain reaction (RT-qPCR) of stomach specimen verified these
miRNA-mRNA pairs. Diagnosis efficacy of miRNA-mRNA interactions was measured by Receiver operation characteristic curve
and Decision Curve Analysis. Clinical and survival analysis were also carried out. CIBERSORT and ESTIMATE was employed
for immune microenvironment measurement.

RESULT: Totally 228 DE-mRNAs (105 upregulated and 123 downregulated) and 38 DE-miRNAs (22 upregulated and 16
downregulated) were considered significant. TarBase and MiRTarBase identified 18 miRNA-mRNA pairs, 12 of which were
verified in RT-qPCR. The network of miR-301a-3p/ELL2 and miR-1-3p/ANXA2 were established and verified in external
validation. The model containing all 4 signatures showed better diagnosis ability. Via interacting with MO macrophage and resting
mast cell, these miRNA-mRNA axes may influence tumor microenvironment.

CONCLUSION: This study established a miRNA-mRNA network via bioinformatic analysis and experiment validation for
STAD.
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1. Introduction

Gastric cancer (GC) is the fourth common malig-
nancy and is becoming one of the leading causes
of tumor-related death, bringing about approximately
1.1 million new cases and 768 thousand deaths in 2020
globally [1]. More than half of the newly diagnosed
cases were observed in developing countries [2]. He-
licobacter pylori infection, excessive salt intake, to-
bacco smoking, alcohol exposure, familial predisposi-
tion and lack of fruits and vegetables in daily diets are
the main risk factors for gastric cancer [3]. Despite the
progression in early diagnosis and therapies of gastric
cancer, the overall 5-year survival rate remained low,
ranging from 18-58% in different races [4]. Stomach
adenocarcinomas (STAD) accounted for almost 95%
of gastric cancer [5]. So, it is of great value to dig in
candidate therapeutic targets and novel biomarkers with
prognostic efficacy for STAD.

MicroRNAs (MiRNAs) are a family of ~22 nu-
cleotide short noncoding RNAs known to play an es-
sential role in tumor onset, development, immune es-
cape and metastasis [6]. MiRNA deregulation in tumor
cells has been verified in tumor cells [7]. By binding
with the 3’-untranslated regions (3’-UTR) of mRNA,
miRNAs affect the post-transcriptional regulation of
messenger RNA (mRNA) [8]. Numerous studies have
confirmed the significance of miRNA-mRNA axes in
digestive system neoplasm. For instance, miRNA-223
targeting at EPB41L3 promotes invasion and metas-
tasis of gastric cancer [9]; miR-221-3p and miR-15b-
Sp targeting at Axin2 modulate cell proliferation and
invasion of liver cancer [10]. Thus, investigating the
negatively regulated miRNA-mRNA pairs helps to con-
jecture molecular mechanism of STAD. Besides, miR-
NAs and their target mRNA can serve as biomarkers in
diagnosis, prognosis measurement and speculation of
sensitivity to treatment for STAD [11]. Pang et al. sug-
gested that miR-15a-5p targeting at PHLPP2 promotes
platinum resistance and that lower serum miR-15a-5p
level usually indicates better response to oxaliplatin
in gastric cancer [12]. Therefore, miRNAs function-
ing as potential biomarkers for STAD deserve further
research.

Nowadays, databases based on high-throughput se-
quencing and microarrays provide opportunities for ob-
taining more global views of miRNAs and mRNAs in
tumor. Some studies have employed some Gene Ex-
pression Omnibus (GEO) datasets to identify differently
expressed miRNAs (DE-miRNAs) and differently ex-
pressed mRNAs (DE-mRNAs) [13,14]. Researches of

Zhijie Dong et al. and Yong-jun Guan revealed several
key miRNA-mRNA pairs in gastric cancer by analysis
of databases and PubMed publications [15,16]. How-
ever, most of these previous researches only absorbed
few GEO datasets. In present study, totally 23 mRNA
and 8 miRNA GEO datasets concentrating on STAD
tissue and normal stomach tissue were incorporated.
TarBase and MiRTarBase, databases collecting experi-
ment verified miRNA-mRNA networks, were applied in
screening miRNA-mRNA axes. Next, we conducted re-
verse transcription quantitative polymerase chain reac-
tion (RT-gPCR) in 30 paired STAD tissue and adjacent
normal tissue to measure the expression level of these
miRNA-mRNA pairs. The receiver operation character-
istic (ROC) curve and Decision Curve Analysis (DCA)
based on binary logistic regression helped to evalu-
ate the diagnosis efficiency. Clinical subgroup analysis
and survival analysis were promoted for prognosis esti-
mation. Correlation analyzes between miRNA-mRNA
axes expression and tumor immune microenvironment,
immune cell infiltration, tumor mutation burden was
carried out to measure their effects on phenotypic fea-
tures. This study combining bioinformatic analysis and
RT-qPCR may throw new a light on the pathogenesis
and potential drug target for STAD.

2. Methods
2.1. Data collection from GEO and TCGA databases

To acquire candidate miRNA and mRNA datasets,
we searched in the Gene Expression Omnibus (GEO)
database with ‘(gastric OR stomach) AND (tumor
OR cancer OR adenocarcinoma OR carcinoma) NOT
(cell line)’ as the key word. Only microarray datasets
measuring miRNA or mRNA expression levels in
homo sapiens between normal tissue and tumor tis-
sue were included. Under these constrains, totally 23
mRNA datasets and 8 miRNA datasets (GSE26595;
GSE23739; GSE28700; GSE63121; GSE77380;
GSE2564; GSE93415; GSE54397; GSE103236;
GSE118897; GSE130823; GSE13861; GSE13911;
GSE19826; GSE2685; GSE26899; GSE27342;
GSE29272; GSE29998; GSE33335; GSE33651;
GSE49051; GSES1575; GSES55696; GSES6807;
GSE63089; GSE65801; GSE66229; GSE78523;
GSE79973; GSE96668) listed in Table 1 were intro-
duced for further analysis. RNA-sequencing profile
and clinical information of gastric cancer collected in
TCGA database were downloaded from the GDC data
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Table 1
Information pertaining to the GEO datasets based on STAD tissues
GEQ Number of  Number of Total Country Platform PMID
accession tumors non-tumors  number
miRNA array ~ GSE26595 60 8 68 South Korea ~ GPL8179 24222951
GSE23739 40 40 80 Switzerland ~ GPL7731 21415212
GSE28700 22 22 44 China GPL9081 21703006
GSE63121 15 15 30 China GPL8786 25646628
GSE77380 7 3 10 Japan GPL16770 28208131
GSE2564 1 6 7 USA GPL1986 15944708
GSE93415 20 20 40 Poland GPL19071 28641313
GSES54397 16 17 33 South Korea  GPL15159 25167801
mRNA array GSE103236 10 9 19 Romania GPL4133 32587446
GSE118897 10 10 20 China GPL16686 30404039
GSE130823 47 47 94 China GPL17077 32207854
GSE13861 65 19 84 USA GPL6884 21447720
GSEI13911 38 31 69 Italy GPL570 19081245
GSE19826 15 12 27 China GPL570 21132402
GSE2685 22 8 30 Japan GPLS80 11782383
GSE26899 96 12 108 USA GPL6947 29725014
GSE27342 80 80 160 USA GPL5175 20965966
GSE29272 134 134 268 USA GPL96 24867265
GSE29998 50 50 100 Singapore GPL6947 21781349
GSE33335 25 25 50 China GPL5175 23722107
GSE33651 40 12 52 South Korea  GPL2895 22133303
GSE49051 3 3 6 China GPL10332 24987055
GSE51575 27 27 54 South Korea  GPL13607 25254613
GSES55696 58 19 77 China GPL6480 25548486
GSE56807 5 5 10 China GPL5175 24927122
GSE63089 45 45 90 China GPL5175 25646628
GSE65801 32 32 64 China GPL14550 25928635
GSE66229 300 100 400 USA GPL570 29725014
GSE78523 14 15 29 Spain GPL18990 28441455
GSE79973 10 10 20 China GPL570 29113266
GSE96668 49 11 60 the UK GPL10558 31050820

portal in the National Cancer Institute (https://portal.
gdc.cancer.gov/). Besides, the overlapped differently
expressed miRNAs involved in public databases includ-
ing Human MicroRNA Disease Database (HMDD),
Database of Differentially Expressed MiRNAs in hu-
man Cancers (d(bDEMC) and miRCancer were also ab-
sorbed. The flowchart of the whole research is exhibited
in Fig. 1.

2.2. Data processing of RNA expression profile

GEO2R, an R-based online application using the
GEOquery and limma R packages, was employed in
differential analysis of GEO datasets. We performed
Wilcoxon rank-sun test on sequencing data obtained
from TCGA database with an R-based package called
psych. Fold change (FC) and P-value were calculated
in the two methods mentioned above. P-value < 0.05
and [logoFC| > 0.58 were considered cut-off crite-
rion for identifying differently expressed miRNAs (DE-
miRNA) and mRNAs (DE-mRNA). Then, the intersec-
tion was taken to obtain the list of DE-miRNAs and

DE-mRNAs in the GEO database and TCGA database.
By summarizing GEO, TCGA, HMDD, dbDEMC, and
miRCancer database, the list of DE-miRNAs and DE-
mRNAs was ultimately identified.

2.3. Functional enrichment analysis and speculation
of agents

Gene oncology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment
analyses of DE-miRNAs were performed by DAVID-
mirPath GO/KEGG analysis of DE-mRNAs were con-
ducted on Hiplot (https://hiplot.com.cn) and presented
in bubble plot P-value < 0.05 and counts > 2 were
considered statistically significant. Connectivity MAP
established connection between mRNA expression sig-
natures and approximately 5,000 small molecule com-
pounds, which helps to offer potential agents for gas-
tric cancer treatment. Negative log10 transformed FDR
g-values (fdr_qg_nlog10) > 2 and normalized connec-
tivity score (norm_cs) < —1 were set as the screening
criterion.
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Fig. 1. The Flow chart displayed the procedures of identifying miRNA-mRNA axes and extensive analysis for gastric cancer in this study.

2.4. Predicting target mRNAs of DE-miRNAs

TarBase and MiRTarBase, databases collecting ex-
perimentally verified miRNA-mRNA interactions, were
applied in assessing target mRNAs. Only miRNA-
mRNA axes recorded in both databases were taken into
consideration. To make sure that these negatively regu-
latory relationship between miRNA and mRNA can be
observed in gastric tissue, we searched each miRNA-
mRNA pair in PubMed. MiRNA-mRNA networks were
plotted with Cytoscape v3.8.2.

2.5. Sample collection, RNA isolation and reverse
transcription quantitative PCR

We collected 30 paired Formalin-Fixed and Paraffin-
Embedded (FFPE) samples of STAD tissue and adja-

cent normal stomach tissue. All patients had their stom-
ach surgery in the First Affiliated Hospital of Nanjing
Medical University None of the patients underwent pre-
operative treatment. Patients with stage IV gastric can-
cer do not have indications for surgery, so the samples
collected in this study did not include stage IV patients.
All patients signed written consent after fully under-
standing this research. This study was approved by the
Institutional Review Boards of the First Affiliated Hos-
pital of Nanjing Medical University (ID: 2016-SRFA-
148). The clinical features of patients were disclosed in
Table 2.

All stomach FFPE specimen were stored at 20°C. We
isolated total RNA from FFPR stomach samples with
RNAprep Pure FFPE Kit (TTANGEN Biotech, Beijing,
China, DP439) according to the manual. Poly (A) Poly-
merase Kit (Takara) was applied in adding a poly (A)
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Table 2
Clinicopathological and molecular features of stomach cancer patients

Stomach cancer (n = 30)  Rate (%)

Age (year)
Mean (SD) 66.37 (10.14)
Median [min, max] 68 [48, 86]
Gender
Female 24 80
Male 6 20
Tumor location
Cardia 11 36.67
Fundus of stomach 3 10
Corpus of stomach 8 26.67
Antrum of stomach 6 20
Pylorus 2 6.67
Grade
Gl 1 3.33
G2 13 43.33
G3 16 53.33
TNM stage
1 11 36.67
11 4 13.33
it 15 50

tail to each RNA. Reverse transcription was performed
with PrimeScript RT reagent Kit (Takara, Tokyo, Japan,
RRO37A) at 37°C for 15 minutes, then 85°C for 5 sec-
onds. Complementary DNA (cDNA) were stored at 4°C
before conducting polymerase chain reaction (PCR).
Quantitative PCR was carried out with SYBR Premix
Ex Taq IT (Takara, Tokyo, Japan, RR820A). We per-
formed gPCR in a volume of 10 uL on the gTOWER384
(Analytik Jena) plate with the temperature set as 95°C
for 20 s, followed by 40 cycles composed of 10 s
at 95°C and 20 s at 60°C. The mRNA results were
normalized with GAPDH and 185 [17]. RNU6B was
set as reference for miRNA [18]. We queried Primer
Bank (https://pga.mgh.harvard.edu/primerbank/) for the
primer sequence listed in Table 3.

2.6. Diagnostic efficiency assessment of
MiRNA-mRNA axes and Survival analysis for
STAD

We conducted binary logistic regression on miRNA
and mRNA expression data with SPSS Statistics 26.0
(IBM, New York, USA). The receiver operation char-
acteristic (ROC) curve and Decision Curve Analysis
(DCA) were performed for comparing diagnostic ef-
ficiency between multiple models. ROC curves were
plotted with data downloaded from TCGA database.
According to survival data downloaded from TCGA
database, we drew Kaplan-Meier survival curve with
Hiplot. The average follow-up time was 577 days (1.58
years) with the maximal follow-up time equal to 3720
days (10.19 years). The medium divided all patients
into low expression group and high expression group.

2.7. Clinical subgroup analysis for STAD

Clinical information of stomach adenocarcinoma pa-
tients was downloaded from GDC data portal. Accord-
ing to their age (at first diagnosis), gender, tumor grade
and tumor stage, cases were divided into several sub-
groups. Expression levels of miRNA-mRNA axes were
compared between these subgroups by Wilcoxon rank-
sum test. P-value < 0.05 was regarded as significant
cut-off.

2.8. Correlation analysis between miRNA-mRNA axes
and tumor phenotypes

Wilcoxon Rank-sum test was applied in compar-
ing the percentage of 22 immune cells between tu-
mor samples and normal samples according to CIBER-
SORT (https://cibersort.stanford.edu/index.php/). Cor-
relation analysis between proportion of discrepant im-
mune cells and miRNA/mRNA expression level was
exhibited in correlation heatmap plotted by Hiplot with
Spearman’s correlation. ESTIMATE provided the Stro-
mal Score, immune Score, estimate Score and tumor
purity with mRNA expression signatures recorded in
TCGA database. Tumor mutational burden (TMB) was
measured by Masked Somatic Mutation data obtained
with the ‘maftools’, an R-based package. We carried
out Spearman’s correlation analysis between miRNA-
mRNA axes and the tumor features mentioned above.

2.9. Statistically analysis

MiRNA and mRNA expression data obtained from
RT-gPCR was managed with 2~22€T method (ACT =
CtmirNA or mRNA — Cthormatizer; Ct: the threshold cycle).
The correlations between miRNA and mRNA expres-
sion data were calculated by Spearman’s correlation via
psych package. GraphPad prism v8.0.1 was employed
in ROC curves plotting and the area under the ROC
curves (AUC) calculating. DCA curves were drawn
with an R-based package named ‘rmda’. P-value <
0.05 was considered statically significant. Hiplot, Cy-
toscape, GraphPad prism and R language were applied
in figure construction.

3. Results

3.1. Screening DE-miRNAs and DE-mRNAs in TCGA
and GEO for STAD

Differential analysis of TCGA database provided ba-
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Table 3

The sequences of primers for candidate miRNAs and targeted mRNAs

Name Forword primer sequences (5’ —3’) Reverse primer sequences (5°—3")
mRNA KIT CGTTCTGCTCCTACTGCTTCG CCCACGCGGACTATTAAGTCT
LIFR TGGAACGACAGGGGTTCAGT GAGTTGTGTTGTGGGTCACTAA
ELL2 ACGACTCGTATCAGATGACACG CTTGAGGTGCTTTCCGAATTTG
LDHA TTGACCTACGTGGCTTGGAAG GGTAACGGAATCGGGCTGAAT
CKS2 TTCGACGAACACTACGAGTACC GGACACCAAGTCTCCTCCAC
COL1Al GAGGGCCAAGACGAAGACATC CAGATCACGTCATCGCACAAC
SERPINH1 TCAGTGAGCTTCGCTGATGAC CATGGCGTTGACTAGCAGGG
ANXA2 TGCCTTCGCCTACCAGAGAA GCCCAAAATCACCGTCTCC
TGFBI CTTCGCCCCTAGCAACGAG TGAGGGTCATGCCGTGTTTC
miRNA miR-378a-3p ACTGGACTTGGAGTCAGAA Universal reverse primer
miR-26a-5p TTCAAGTAATCCAGGATA Universal reverse primer
miR-143-3p TGAGATGAAGCACTGTAGCT Universal reverse primer
miR-29¢-3p TAGCACCATTTGAAATCGGT Universal reverse primer
miR-1-3p TGGAATGTAAAGAAGTATGT Universal reverse primer
miR-30a-5p TGTAAACATCCTCGACTGGAA Universal reverse primer
miR-19a-3p TGTGCAAATCTATGCAAAACT Universal reverse primer
miR-21-5p TAGCTTATCAGACTGATGTT Universal reverse primer
miR-20a-5p TAAAGTGCTTATAGTGCAGGT Universal reverse primer
miR-221-3p AGCTACATTGTCTGCTGGGTTT Universal reverse primer
miR-301a-3p CAGTGCAATAGTATTGTCAAA Universal reverse primer
Reference mRNA ~ GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
18sRNA CGCAGCTAGGAATAATGGAATAGG  GCCTCAGTTCCGAAAACCAA
18[9 CGATAAAATTGGAACGATACAGA ATTTGGACCATTTCTCGATTTGT
hsa-miR-19a-3p
hsa-miRL\l43-3p hsa-miR-221-3p
| \ -
AL .¥///h/sa—miR—20a»5p
KIT
COL B
ELL2 hsa-miR-301a-3p
SERPIN
//}7ER3
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hsa-miR-378a-3p

COL1A2
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PDGFD

LIFR

Upregulated mRNA
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. Downregualted mRNA
Upregulated miRNA
A Downregualted miRNA

Fig. 2. TarBase and MiRTarBase screened totally 18 negatively regulated miRNA-mRNA axes between 38 DE-miRNAs and 228 DE-mRNAs,
which were plotted via Cytoscape. Orange nodes represent the upregulated miRNAs/mRNAs in STADs versus NCs, while blue nodes represent the

downregulated miRNAs/mRNAs in STADs versus NCs.

sic DE-mRNAs and DE-miRNAs for STAD. As is pre-
sented in Table 1, a total of 23 mRNA GEO datasets
and 8 miRNA GEO datasets met our inclusion criterion.
Table 1 displayed the GEO accession, number of sam-

ples, researchers’ nationality, platform, and PMID of
these datasets. 105 upregulated mRNAs and 123 down-
regulated mRNAs showed statistical significance in af-
ter calculating with GEO2R. Compared with miRNA
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Table 4
Pearson’s correlation analysis of miRNA-mRNA pairs in paired FFPE STAD samples
. FC FC Spearman’s
miRNA (up) p-value (2—-AACT) mRNA (down) p-value (2—-AACTy correlation
p-value r-value
hsa-miR-21-5p < 0.0001 5.2087 LIFR 0.0007 0.615 0.1060 0.2107
hsa-miR-19a-3p 0.0691 3.4478 KIT < 0.0001 0.6152 0.4354  —0.1026
hsa-miR-20a-5p 0.0175 3.5172 KIT < 0.0001 0.6152 0.2331  —0.1563
hsa-miR-221-3p 0.0467 2.751 KIT < 0.0001 0.6152 0.2619  —0.1472
hsa-miR-301a-3p 0.0324 3.603 ELL2 0.0004 0.7291 0.0120 —0.3210
miRNA (down) mRNA (up) p-value r-value
hsa-miR-378a-3p 0.5838 1.4801 LDHA 0.2037 1.804 0.5924 0.0705
hsa-miR-26a-5p 0.0005 0.5768 CKS2 0.3061 1.7258 < 0.0001 0.6633
hsa-miR-143-3p 0.0629 1.6175 COL1Al 0.5208 1.5572 0.5153 0.0856
hsa-miR-29¢-3p 0.029 0.7771 COL1Al1 0.5208 1.5572 0.5526 0.0782
hsa-miR-29¢-3p 0.029 0.7771 SERPINH1 0.1386 4.1756 0.0055 0.3962
hsa-miR-1-3p 0.0137 0.7874 ANXA2 0.0002 1.6947 < 0.0001 —0.5775
hsa-miR-30a-5p 0.9311 1.1117 TGFBI 0.7611 1.4706 < 0.0001 0.6036
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2 74 s £
<'N — HE Normal Controls <I(\l Bl Normal Controls
- = 6=
= 6 Cancer E . . Cancer
2 5 - ‘? 5 D3 — _
7] 3 -
g g [ -
- =
Sl
qm) n 2 3 I
- S -
<Z: 3 _ E s wR% g E - ns
R W £ P
< 0- T 0=
E=
& & O > S D D KRR SRR R RN
& \){c ‘{»\’\) \)QQS’ \@2‘ C@ S \)@* %4_3' < 6(37 I\Q{b.@r\'\ :&‘b :\?\ ¥ a;\%w »@ ”o,o RS pe 7‘)@
C D
13009, P=0012 007 P <0.0001
1000 r =-0.321 300 * r =-0.578
S 0 =~ 2004,"
g &
o L, N
Q
'% 150 :100 "
L @
& 100 =
EI O E
504",
*
0 - T T T 1 T T 1
0.0 0.2 0.4 0.6 0.8 0.10 0.15 0.20

ELL2 (2°3CY

ANXA2 (273¢Y

Fig. 3. (A) The expression levels of KIT, LIFR, and ELL2 declined in STAD tissues. ANXA?2 was overexpressed in tumor samples. (B) The
miRNA expression level of miR-21-5p, miR-20a-5p, miR-221-3p, and miR-301a-3p were increased in STAD specimen. MiR-26a-5p, miR-29¢-3p,
and miR-1-3p were down regulated in STAD tissues. Data were presented as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p <
0.0001 (Wilcoxon rank sum test). (C and D) The networks of miR-1-3p (down)/ANXA2 (up) and miR-301a-3p (up)/ELL2 (down) were the
negatively regulated pairs verified via RT-qPCR.
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Fig. 4. Receiver operating characteristic (ROC) curves of TCGA database and internal validation were separately presented in Fig. 4A and B.
(A) The AUC of the complex model containing both miR-1-3p/ANXA2 and miR-301a-3p/ELL2 axes were 0.9208, the maximum among all 15
diagnosis models. (B) DCA presented great diagnostic performance of miRNA-mRNA axes in TCGA database and internal validation.

expression profile of normal tissue, 22 upregulated and
16 downregulated miRNAs were considered significant.
Combining with dbDEMC, HMDD and miRCancer,
22 upregulated and 16 downregulated miRNAs were
selected ultimately.

3.2. GO/KEGG analysis and potential compounds
prediction

Outcome of function annotation and pathway enrich-
ment analysis based on DE-mRNAs were presented
in Fig. STA and S1B. Mitotic cell cycle phase tran-
sition, extracellular matrix structural constituent and
collagen-containing extracellular matrix were the GO
terms of upregulated mRNAs with the most counts.
Muscle system process and oxidoreductase activity act-
ing on CH-OH group of donors were the most notable
GO term of downregulated mRNAs. KEGG enrich-
ment analysis suggested human papillomavirus infec-
tion crucial for upregulated mRNAs and gastric acid

secretion remarkable for down regulated mRNAs. Out-
comes of GO/KEGG analysis based on downregulated
and upregulated miRNAs were separately revealed in
Fig. S1C and S1D. Cellular amino acid metabolic pro-
cess and transcription coactivator activity had smallest
P-value for downregulated miRNAs enrichment analy-
sis. KEGG analysis revealed that downregulated miR-
NAs were enriched in ErbB signaling pathway.

Following the DE-mRNAs signature query, small
molecule agents including ixazomib, gemcitabine and
tipifarnib were determined as potential therapeutic. The
15 compounds with the smallest connectivity scores
were displayed in Fig. S2A. Agents’ mechanism of
actions and their relative gene counts were exhibited in
Fig. S2B.

3.3. Identification of miRNA-mRNA networks for
STAD

To predict the role of DE-miRNAs in STAD, we col-
lected their potential target mRNAs from TarBase and
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Fig. 5. Patients were divided into different groups according to their clinical features, such as gender, age, tumor grade, and tumor stage. Subgroup
analysis based on TCGA database suggested that ANXA2 expression was differed between patients older than 65 year and patients younger than

65. ELL2 was overexpressed in tissue with higher grade and stage.

MiRTarBase. Figure 2 showed the miRNA-mRNA net-
work. After searching in PubMed, totally 12 miRNA-
mRNA axes were tested in gastric FFPE tissue via RT-
qPCR.

3.4. Corroboration of the DE-mRNAs and DE-miRNAs
with RT-qgPCR

Specific fold change and p-value of all miRNAs and
mRNAs calculated via 2~24C method was listed in
Table 4. MiRNA and mRNA expression data were ex-
hibited in Fig. 3A and B separately. KIT (p < 0.0001),
LIFR (p = 0.0007) and ELL2 (p = 0.0004) showed
significant downregulated trend in gastric cancer tissue.
Only ANXA?2 (p = 0.0002) was upregulated in tumor
tissue. Hsa-miR-26a-5p (p = 0.0005), hsa-miR-29¢-3p
(p = 0.029) and hsa-miR-1-3p (p = 0.0164) were ob-
served downregulated in STAD compared with normal
controls. Hsa-miR-21-5p (p < 0.0001), hsa-miR-20a-
5p (p = 0.0175), hsa-miR-221-3p (p = 0.0467) and

hsa-miR-301a-3p (p = 0.0324) expression level of gas-
tric tumor tissue were remarkably higher than that of
adjacent normal tissue. Spearman’s correlation analysis
confirmed two reverse regulatory miRNA-mRNA axes.
As is shown in Fig. 3C, hsa-miR-301a-3p was nega-
tively regulated with ELL2 (p = 0.0123, » = —0.3212).
Hsa-miR-1-3p expression was significantly correlated
with ANXA2 (p < 0.0001, r = —0.5722) (Fig. 3D).

3.5. Evaluating the diagnosis value of miRNA-mRNA
axes in STAD

None of the GEO datasets contained both miRNA
and mRNA expression profile of the same specimen. As
a result, only expression patterns gained from TCGA
data and RT-qPCR were applied in measuring predic-
tive value. MiR-1-3p, ANXA2, MiR-301a-3p and ELL2
were combined as a panel with binary logistic regres-
sion ROC curves of 14 models and the AUC of each
curve calculated with TCGA data were presented in
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Table 5
Infiltration of 22 types of immune cells in STAD versus controls
ID of immune cells Proportion in STAD  Proportion in normal P-value FC
B cells naive 0.0544 0.0471 0.5404 1.1548
B cells memory 0.0127 0.0143 0.7623 0.8881
Plasma cells 0.0504 0.1751 0.0000 0.2879
T cells CD8 0.1069 0.1086 0.4816 0.9838
T cells CD4 naive 0.0003 0.0001 0.7772 2.5264
T cells CD4 memory resting 0.1917 0.2232 0.0962 0.8589
T cells CD4 memory activated 0.0404 0.0086 0.0001 47134
T cells follicular helper 0.0243 0.0115 0.0009 2.1160
T cells regulatory (Tregs) 0.0626 0.0365 0.0001 1.7167
T cells gamma delta 0.0027 0.0022 0.6904 1.2177
NK cells resting 0.0143 0.0067 0.1761 2.1243
NK cells activated 0.0213 0.0259 0.1271 0.8252
Monocytes 0.0063 0.0222 < 0.0001 0.2819
Macrophages MO 0.1273 0.0078 < 0.0001  16.3585
Macrophages M1 0.0675 0.0223 < 0.0001 3.0288
Macrophages M2 0.1121 0.1233 0.5083 0.9097
Dendritic cells resting 0.0194 0.0338 0.2537 0.5741
Dendritic cells activated 0.0127 0.0079 0.8009 1.5948
Mast cells resting 0.0303 0.0978 < 0.0001 0.3099
Mast cells activated 0.0252 0.0076 0.2094 3.3190
Eosinophils 0.0038 0.0033 0.2587 1.1643
Neutrophils 0.0156 0.0165 0.0737 0.9488

Fig. 4A. The panel containing 4 signatures showed the
best diagnosis value (AUC = 0.9208, 95% CI: 0.8804 to
0.9612). The DCA shown in Fig. 4B suggested satisfied
diagnosis efficiency of the complex model in TCGA
and RT-qPCR validation.

3.6. Clinical subgroup analysis and survival analysis
based on TCGA clinical information

GDC data portal provided clinical features and
follow-up time of all clinical cases recorded in TCGA-
STAD database. Patients were divided by age at first di-
agnosis, gender, tumor grade, and tumor stage. ANXA2
expression level was higher in patients with older first
diagnosis age (p = 0.0269) (Fig. 5A). No significant
difference of the miRNA-mRNA axes expression was
observed between male and female patients (Fig. 5B).
ELL?2 expression was higher in patients with higher
grade number (p = 0.0122) (Fig. 5C). ELL2 expression
had a significant between early-stage (I + II) group
and late-stage (III + IV) group (p = 0.0049) (Fig. 5D).
Overall survival (OS) was employed to estimate tumor
prognosis. As is demonstrated in Fig. S3, high ELL2
expression may suggest poor survival time (p = 0.041).

3.7. Correlation analysis between miRNA-mRNA axes
expression and tumor-related phenotypes

Among 22 types of immune cells, proportion of 8
immune cells showed significant difference between

normal tissue and gastric tumor (Fig. 6A and Table 5).
Results of Spearman’s correlation between immune cell
proportion and miRNA/mRNA expression were pre-
sented in Fig. 6B. Percentages of M1 macrophages,
monocytes, and activated memory CD4 T cells were
correlated with miR-1-3p/ANXA?2 axes. Regulatory T
cells (Tregs) and follicular T helper cells were corre-
lated with miR-301a-3p/ELL2 axes. Resting mast cells
and MO macrophages were significantly correlated with
these 2 miRNA-mRNA axes mentioned above. ESTI-
MATE was applied to estimate the samples’ stroma and
immunity levels. As is exhibited in Fig. 6C, the net-
work of miR-1-3p and ANXA?2 interacted with tumor
mutational burden and tumor immune microenviron-
ment. The p-value for Fig. 6B and C is presented in the
supplementary table.

4. Discussion

Dysregulation of miRNA in cancers have raised wide
concern in the past few decades [19]. In current study,
we identified 228 DE-mRNAs (105 up and 123 down)
and 67 DE-miRNAs (22 up and 16 down) via bioin-
formatic method based on GEO datasets and TCGA
database. Via binding to 3’UTR of mRNA, miRNA
posttranscriptionally suppress target mRNA expres-
sion [20]. TarBase and MiRTarBase helped to define
negatively regulated miRNA-mRNA axes. Previous
studies on miRNA-mRNA interactions have empha-
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sized their essential role in occurrence, invasion, im-
mune escape, and metastasis of gastric cancer [21].
However, these researches based on bioinformatic
methods did not verify the inverse regulatory relation-
ship of DE-miRNAs and DE-mRNAs in human speci-
men. In present study, we measured the expression level
of key miRNAs and mRNA by conducting RT-qPCR
in STAD tissue and adjacent normal tissue. Finally, we
considered miR-1-3p/ANXA?2 and miR-301a-3p/ELL2
as specific miRNA/mRNA signatures for STAD.

Pathway enrichment analysis based on dysregulated
mRNAs indicated that gastric acid secretion, mitotic
cell cycle phase transition, Human papillomavirus in-
fection, and alcohol dehydrogenase (NAD (P) +) ac-
tivity may have profound effect on gastric tumor. Sev-
eral well-known signaling pathways, including ErbB
signaling pathway, Wnt signaling pathway, MAPK sig-
naling pathway, and PI3K-Akt signaling pathway, were
associated with STAD, which correspond with previ-
ous studies [22,23]. Several well-known cancer sup-
pressor drugs such as ixazomib, gemcitabine and tip-
ifarnib were revealed in the outcome of Connectivity
map. Among all these compounds, gemcitabine, dor-
somorphin, glibenclamide, and tipifarnib have been re-
ported to exert negative effects on development of gas-
tric cancer in cell experiments, animal experiments or
clinical trials [24,25,26,27].

Ultimately, the networks of miR-1-3p (down)/
ANXA?2 (up) and miR-301a-3p (up)/ELL2 (down)
were recognized as essential miRNA-mRNA signa-
tures. Downregulations of MiR-1-3p in gastric cancer
tissue and cell lines were observed in previous stud-
ies [28,29]. MiR-1-3p was reported to function as a
suppressor in cell proliferation, apoptosis, and migra-
tion of STAD [30,31]. ANXAZ2, short for annexin A2,
is a member of the calcium-dependent phospholipid-
binding protein family annexins [32]. By interacting
with several tumor-related signal pathways, including
mTOR, p38MAPK and AKT pathways, ANXA?2 plays
a promoting role in drug resistance and tumor growth
of STAD [33,34]. It is reported that circulating ANXA2
level may serve as a candidate biomarker for diagno-
sis and chemotherapy sensitivity assessment in gastric
cancer [35]. Overexpression of miR-301a-3p was veri-
fied in esophageal carcinoma [36], lung cancer [37] and
gastric cancer [38]. In HER2-positive gastric cancer,
miR-301a-3p mediate the trastuzumab resistance [39].
Elongation Factor for RNA Polymerase II 2 (ELL2)
was reported to interact with the retinoblastoma path-
way and thus influence cell proliferation, invasion, and
migration of prostate cancer [40]. To sum up, miR-1-3p,

miR-301a-3p, ANXA2 and ELL2 are of significance
in pathogenesis and progress of STAD. ROC based on
these two miRNA-mRNA networks indicated that the
complex model containing all 4 signatures showed best
diagnostic value comparing to other 14 modes, the AUC
of which equals to 0.9208 (95% CI: 0.8804 to 0.9612).
DCA conducted with TCGA-STAD database also af-
firmed the diagnostic efficacy of these 2 miRNA-mRNA
axes.

Survival analysis based on overall survival (OS) sug-
gested that low ELL?2 expression tend to indicate bet-
ter prognosis in gastric cancer (p = 0.041 in K-M sur-
vival curve), which has not been reported ever before,
while overexpression of ELL2 indicates poor prognosis
in glioblastoma multiforme [41]. According to the re-
search of Xiaodong Xu et al., high miR-301a-3p expres-
sion levels in gastric tumor tissue may suggest worse
prognosis [42]. Although K-M curve did not support the
correlation between increased miR-301a-3p expression
and poor prognosis in present study, it is unreasonable
to totally deny the prognostic efficacy of miR-301a-3p
for STAD. Likewise, the miR-1-3p/ANXA2 axes did
not show significant relevancy with OS in this research.
ANXAZ2 was included in a prognostic model containing
10 genes for gastric cancer [43]. MiR-1-3p were also
absorbed in a model containing six miRNAs for bone
metastasis prediction of gastric cancer [44]. Since de-
tailed survival analyzes are often restricted by insuf-
ficient information collected in follow-up studies, the
prognosis efficacy of the miRNA-mRNA axes needs to
be further measured.

Correlation between miRNA/mRNA axes and im-
mune cells proportion emphasized the crucial role of
resting mast cells and MO macrophages in gastric ade-
nocarcinomas. Proportion of resting mast cell declined
in STAD tissue, while percentage of MO macrophage
increased in tumor tissue. Mast cells activated by in-
terleukin (IL)-33 accelerate macrophage infiltration
and thus promote gastric tumor growth [45]. Enriched
mast cells capable of interacting with TNF-a-PD-
L1 pathway are independent risk factor of poor sur-
vival for STAD patients [46]. As for macrophages
numerous studies has revealed the significant role of
macrophage M2 in development, metastasis, and re-
sponse to chemotherapy of gastric cancer [47,48,49].
Although some scholars noticed the differences in pro-
portion of MO macrophages between STAD and nor-
mal tissue, few studies focused on the specific role of
MO-macrophage in tumor microenvironment, which de-
serves further research [50]. So, it is reasonable to con-
sider that miR-301a-3p/ELL2 and miR-1-3p/ANXA2
may have effect on tumor immune microenvironment.
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Current study gave an overview of miRNA-mRNA
regulatory network for STAD. However, there are still
some shortcomings such as insufficient sample size
and lack of follow-up data in this study. Besides, pa-
tients with lymph node metastasis, distant metastasis,
or vascular invasion have no surgical opportunity, so
the samples collected in this study did not include pa-
tients with advanced tumors. Therefore, studies based
on more clinical samples and long-term follow-up data
are needed.

5. Conclusion

In summary, we carried out comprehensive bioin-
formatic analysis and experimental verification for
miRNA-mRNA network related in STAD. These
miRNA-mRNA axes may function as biomarkers for
early diagnosis, long-term prognosis, and drug resis-
tance assessment of gastric cancer. Our findings may
provide new ideas for STAD treatment.
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