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Abstract. NASA’s Jet Propulsion Laboratory (JPL) is advancing research capabilities for data science with two of the National
Cancer Institute’s major research programs, the Early Detection Research Network (EDRN) and the Molecular and Cellular
Characterization of Screen-Detected Lesions (MCL), by enabling data-driven discovery for cancer biomarker research. The
research team pioneered a national data science ecosystem for cancer biomarker research to capture, process, manage, share, and
analyze data across multiple research centers. By collaborating on software and data-driven methods developed for space and earth
science research, the biomarker research community is heavily leveraging similar capabilities to support the data and computational
demands to analyze research data. This includes linking diverse data from clinical phenotypes to imaging to genomics. The data
science infrastructure captures and links data from over 1600 annotations of cancer biomarkers to terabytes of analysis results on
the cloud in a biomarker data commons known as “LabCAS”. As the data increases in size, it is critical that automated approaches
be developed to “plug” laboratories and instruments into a data science infrastructure to systematically capture and analyze data
directly. This includes the application of artificial intelligence and machine learning to automate annotation and scale science
analysis.
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1. Introduction

Space and biomedicine share many common charac-
teristics as a science discipline. Both heavily focus on
observational data acquired from a mission or science
experiment in order to validate a hypothesis. As the ca-
pabilities of instruments that generate scientific obser-
vations have substantially increased in resolution and fi-
delity, the approach to using data – and the opportunity
to analyze the data using data-driven analysis methods –
has significantly raised the importance of data science
as a discipline. High resolution imaging and other in-
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struments routinely generate data on the terabyte scale,
and an experiment or a mission can last years, there-
fore it is not unusual to see a collection of instruments
that generate petabyte data results. The NASA Indian
Synthetic Aperture Radar Mission (NISAR) [1] which
is launching in 2021 is anticipated to generate approxi-
mately 85 terabytes of science data per day. As a space-
borne mission, it can downlink massive data through
ground stations that can now sustain accelerating data
rates. Robotic space science missions typically generate
smaller raw datasets because of the limited bandwidth
from instruments in deep space, but have a larger va-
riety of objects being observed from missions orbiting
planets, surface missions such as Mars Perseverance,
and flyby missions observing planets and other objects
in the solar system and beyond. As data collected is
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returned to Earth, raw telemetry is processed through
a series of scientific data pipelines, generating massive
data collections – whether from instruments observing
Earth or space – that are archived and made available
for higher order data analysis.

Biomedicine, in particular cancer research, shares
many of the same data-intensive computational patterns
that are exhibited in space and earth missions. Instru-
ments generate massive data. Data must be transferred,
processed, stored, discovered, accessed, and analyzed.
Combining and linking data offers opportunities that
provide a more holistic view over single dataset anal-
ysis. Linking clinical data with data observations ac-
quired from instruments provides opportunities for ex-
ploring cohorts where data-driven methods from arti-
ficial intelligence, machine learning, and biostatistics
can be applied to classify, find features in the data, and
apply computational methods for scientific inference.
In the end, the discovery and validation of a cancer
biomarker – as an indicator or potential indicator of dis-
ease – is leveraging a massive data and computational
infrastructure that must be in place to make scientific
progress.

Cloud computing provides a significant advancement
as a computing “as-a-service” infrastructure to enable
data science for scientific analysis [2]. In addition to
providing an on-demand compute infrastructure to en-
able storage, computation and hosting of software ser-
vices, it provides capabilities to increase scientific col-
laboration by providing a central hub that brings data
and computation together. As data increases, keeping
data centrally located, as well as moving computation
for analysis to where the data is stored, can help sci-
ence analysis scale in the petabyte data era. Using a
cloud-based “open science” approach will continue to
unlock new opportunities for collaboration, gaining in-
sight from data, and creating and validating scientific
models (e.g., physics, biological, and machine learn-
ing) from the data. Increasing access to data, sharing
tools and services, and creating new paradigms for col-
laboration will provide unprecedented opportunities to
leverage artificial intelligence and machine learning,
providing the computational power and massive data
collections necessary to fully realize the potential of
these data-driven approaches.

NASA’s Jet Propulsion Laboratory (JPL) leads the
data science program for the Cancer Biomarkers Re-
search Group (CBRG) at the National Cancer Insti-
tute (NCI), developing and transferring data science
methods between NASA and the NIH, and construct-
ing a national data science ecosystem connecting aca-

demic centers to support the increased sharing and use
of data – all coupled with advancing capabilities in Arti-
ficial Intelligence (AI) and Machine Learning (ML) [3].
A few key programs that are being supported through
this partnership include the Early Detection Research
Network (EDRN) [4] and the Consortium for Molec-
ular and Cellular Characterization of Screen-Detected
Lesions (MCL) [5]. These programs have seen a sub-
stantial increase of data to the terabyte scale, as can-
cer biomarkers have become a data-intensive science.
Cancer imaging and sequencing drives this mushroom-
ing of data volumes. However, the greater challenge is
ensuring that multi-omic analysis approaches can be
applied to link the data together and support analysis
of different types of cohorts as part of the analysis of
varied biomarker validation studies.

2. Data generation and sharing in early detection
of cancer biomarkers

Through the collaboration with JPL, programs such
as the EDRN have developed informatics tools and
databases to support biomarker development and val-
idation by creating an infrastructure that captures and
links data from across the EDRN using nearly 1,600
annotations of cancer biomarkers, to terabytes of analy-
sis results in the EDRN data commons, known as Lab-
CAS (Laboratory Catalog and Archive Service) [6].
The entire knowledge environment is integrated with
the EDRN web-based portal, providing secure, multi-
layer access to data for EDRN, NCI, research and pub-
lic communities [7]. Several tools employed are open
source and are developed through collaborations with
NCI’s Information Technology for Cancer Research
(ITCR) program. These tools support processing, cap-
ture, curation and sharing of data before publication;
a national biomarker knowledge system. The system
currently consists of approximately:

– 1,600 biomarkers
– 200 protocols
– 2,500 publications
– 100 terabytes of cancer research data and images
These tools and databases are accessible online and

provide a wealth of support for driving collaborative
science for cancer biomarker research.

Data standardization is vital, not just as data volumes
increase, but also due to the need for machine-readable
and automated approaches to data analysis and data-
driven discovery. Biomarker data programs, including
the EDRN and MCL, have developed standards for data
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Fig. 1. Biomarkers Knowledge System: On the left, collaborating research institutions use research questions and use-cases to feed into instruments
and thence to a laboratory biorepository; that is informed by common data models and workflows to engender the data commons. The data
commons itself is aggregated with research portals and biomarkers. This then enables research tools including crowdsourcing, visualization (via
virtual reality), and artificial intelligence machine learning – all of which are leveraged by analysis teams towards discovery.

collection and annotation, in concert with NCI’s initia-
tives in data standardization and harmonization [8,9].
Common data elements (CDEs) have been established
identifying standard data structures and values to sup-
port consistency in building biomarker data collections.
The data science teams on these programs have de-
veloped information models that describe the data to
ensure that CDEs can be used to link different types
of data together. CDEs provide the foundation for data
management, search, and analytics, by standardizing
the labeling required for training AI models [11].

The overall knowledge system is depicted in Fig. 1.
This includes the common data elements, workflows,
research portals, tools for crowdsourcing, visualization,
and AI/ML to enable collaborative analysis by the re-
search community. These will be further described in
the subsequent sections.

3. Enabling a data-hub for cancer biomarker
analysis on the cloud

NASA JPL has developed a “data commons” or “data
hub” called LabCAS (“Laboratory Catalog and Archive
Service”) based on similar capabilities required for
earth and space science. LabCAS is a web-enabled
environment that provides a cloud-based infrastruc-
ture to capture, organize, and enable centralized ac-

cess and data analysis for consortium-based biomarker
programs at the National Cancer Institute (NCI) based
on a metadata-driven data science architecture [11]. It
provides a comprehensive suite of services for man-
aging scientific data captured in biomedical research
throughout its full lifecycle, supporting both limited and
restricted access to pre-publication data as well as open
access to post-publication data. It also supports a set of
microservices that can be run as workflows implement-
ing various science data pipelines as well as other di-
rected computing tasks (e.g., metadata validation, data
transformation, etc.).

The LabCAS architecture is composed of a front-end
web portal, where users can login to browse, inspect,
visualize and download data; and a back-end software
infrastructure in the cloud that exposes a rich set of
data and metadata APIs for programmatic access to
integrate data directly into analytical tools. The data
infrastructure sits on a highly scalable, open source
search engine (Apache Solr) which allows for rapid
searching of metadata. Data is stored in large computing
buckets, currently Amazon’s Simple Storage Service
(S3). Orchestrated computation can be run as a set of
jobs that can take full advantage of scaling in the cloud.
These are elaborated on in Section 4.

LabCAS stores data as collections, datasets, and files
as shown in Fig. 2. Datasets can be nested allowing a
flexible topology of data as required by different studies
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Table 1
A sample of biomarker data captured in LabCAS from EDRN

Collection title Organ Discipline Institution Principal investigator
Benign breast disease pathology slide

images
Breast Pathology imaging University of Kansas Andrew Godwin

Ductal carcinoma in situ (DCIS)
pathology slide images

Breast Pathology imaging University of Kansas Andrew Godwin

Combined imaging and blood biomarkers
for breast cancer diagnosis

Breast Radiology Duke University and H.
Lee Moffitt Cancer Center
and Research Institute Inc.

Jeffery Mark and John Heine

Lung team project 2 Images Lung Radiology Boston University Marc Lenburg
Prostate MRI Prostate Radiology University of Michigan John Wei

Fig. 2. Organization of Data in the LabCAS Data Commons: collec-
tions comprise datasets which themselves comprise files; although
not depicted, datasets themselves may contain nested datasets (which
may contain nested datasets and so on), allowing for deep hierarchies
as needed for scientific use cases.

for capturing and organizing data. Files represent dif-
ferent types of measurements and analysis from images
to time series to clinical data. Common data elements
(CDEs) are used to standardize the metadata for collec-
tions, datasets, and files and to describe the study and/or
data itself. Specific data dictionaries can be put in place
to extend the metadata for any one of these constructs.
For example, an imaging data dictionary can be used to
annotate image files. Likewise, a data dictionary for the
Precancer Atlas can be used to add additional metadata
around collections or datasets which can be useful for
fully capturing the data for that project. The metadata
provided to LabCAS can be indexed by the integrated
search engine to allow rapid searching and classification
of the data holdings.

Data in LabCAS is captured as a set of files. These
can be versioned to support re-processing along with
corrections to data. Files can be accessed and down-
loaded as a set of data or individually through either
the portal or a set of APIs. The APIs can be embedded
into data analysis software – such as Jupyter Notebooks
and R routines – to pull data from the data commons
and support analysis, including directly in the cloud or
locally to a scientist user. Access to all data is controlled
through a security service which grants access based
on a user’s role and permission to access the data. All

access points, including the portal, go through the API
which leverages the security service.

A large number of biomarker data collections have
been captured for EDRN. These include collections
that span multiple organ types and a variety of data
including images from validation studies and specimen
reference sets that link to data from laboratory tracking
tools at EDRN’s Data Management and Coordinating
Center (DMCC). A few of these data collections are
identified in Table 1.

In addition, data captured in LabCAS can be exter-
nally cited in publications. LabCAS provides a map-
ping to DataCite metadata [12] which allows it to serve
as a publisher of data on behalf of the biomarker pro-
grams it is supporting. Publications are provided with
an external digital object identifier (DOI) [13] which
is used in publications to link the paper to the scien-
tific data following a publication model for data itself.
This allows LabCAS to be used to capture both raw and
processed data, including any version-specific results,
supporting requirements around access to data and for
reproducibility purposes.

The front-end web portal provides a rich set of tools
for navigating, searching, viewing and downloading
data and metadata on the cloud. The data dashboard
shown in Fig. 3 is an interactive data visualization of all
data captured that provides views of data categorized
by standard metadata expressed by the CDEs – such
as, title, study, discipline, organ, and other data-specific
features. Users can drill down or search data by clicking
on a specific category in a visualization. A free text
search and advanced faceted search allows users to seek
collections, datasets, and files leveraging the powerful
capabilities of Solr to execute complex queries. The ad-
vanced faceted search is built using the standard meta-
data (CDEs) and can be customized based on different
metadata. Customized searches can be captured and
saved by users. A table view of all data in LabCAS,
based on user credentials and permissions, allows users
to view all data by collection, organ, discipline, insti-
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Fig. 3. Data Dashboard in LabCAS; this screenshot shows the LabCAS user interface that runs in any modern web browser.

Fig. 4. Annotated H&E Image in LabCAS; this screenshot depicts the high-resolution slide imagery capabilities of LabCAS offered through a web
browser.

tution, and PI. Data used frequently by a users can be
“starred” and added to a favorites list for easy access.

LabCAS also provides the ability for viewing images
as both thumbnails and originals as shown in Fig. 4.
Open source software viewers are integrated into Lab-
CAS and allow for navigation, as well as viewing an-
notations. Image files such as DICOM, SVS, SCN, and
TIFF can be viewed providing seamless visualization,

interactivity, and collaboration. For studies supporting
image analysis, external science publications can link
directly to annotated images providing interactive dis-
play modes using the DOI citation approach described
earlier.

LabCAS also provides the ability to link assay data
and clinical data. This allows for the ability to classify
data into cohorts and to link clinical data to biospec-
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Fig. 5. LabCAS Clinical Viewer; this screenshot demonstrates a companion application to LabCAS that enables refined search and discovery of
clinical biospecimen data by demographic, organ, and other parameters; like LabCAS, it also runs in any modern web browser.

imen, imaging, and genomics information. Figure 5
shows an example of the clinical viewer.

Security, including user and group authentication and
authorization, is tightly integrated with all data collected
in LabCAS. Metadata at the collection, dataset, and
file levels are annotated with groups that identify the
permissions, including read and write, to ensure that
data can only be accessed and/or modified by those
users who belong to privileged groups. This allows
specific research laboratories to be set up as groups with
users assigned to those groups. Principal investigators
that lead groups can then authorize who has access to
any data they publish to LabCAS. Data can also be set
to larger group permissions at the consortium level or
for public access. This allows a number of combinations
for laboratories to perform collaborative analysis and
for the consortium to organize biomarker research.

LabCAS is also leveraged for the the Pre-Cancer At-
las (PCA) Pilot project, an effort of MCL, that com-
prises data for the characterization of molecular alter-
ations in precancerous lesions and the corresponding
microenvironment in four major organ sites in order
to uncover the molecular and cellular determinants of
premalignancy and establish standardized sequencing
and immunohistochemistry protocols on FFPE precan-
cerous tissue. This includes evaluation of the techni-
cal feasibility of a single nuclei sequencing of small
FFPE pre-cancer lesions. Successful completion of the
proposed pilot study will set the stage for expansion
and development of a comprehensive Pre-Cancer Atlas
(PCA) as part of the NCI’s Cancer Moonshot Program.

Table 2

DNA exome sequencing FASTQ files
Smart-3Seq sequencing FASTQ files
H&E images and annotations
Multiplex IHC (mIHC) images
Clinical and biospecimen metadata

To support the MCL PCA pilot, we have captured
data as shown in Table 2 related to breast cancer from
the University of California, San Diego and the Univer-
sity of Vermont. This data is annotated with the com-
mon data elements from MCL. The H&E images are
publicly released and linked to publications for direct
access [16].

Finally, LabCAS can be used to execute data inten-
sive processing pipelines as structured workflows with
scalable computation on the cloud. It also provides cus-
tomizable user input, automatic publication of output
with controlled access and allows for repeatable and re-
producible results for everything from simple microser-
vices to complex deep learning algorithms. This will be
further expanded on in Section 4.

4. Centralizing data analysis pipelines on the cloud

One of the core capabilities of the LabCAS infras-
tructure is the ability to execute arbitrarily complex
workflows on massive datasets in the cloud. This data
processing architecture has been developed at JPL in
strict synergy with other data processing efforts for
space and earth missions, such as for some of the in-
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Fig. 6. Similarities between the SDS used for the “Sherloc” and “Pixl” instruments aboard the NASA Mars2020 Perseverance rover, and as
deployed in LabCAS to support the EDRN and MCL consortia. Input data (from Mars and LabCAS, respectively) enter workflow engines (CWS
and Airflow) which both serve as input to computing clusters. These then generate output data (Martian rock spectral signatures and tumor
identification and image co-registration, respectively).

struments carried by the Mars2020 Perseverance rover
(currently on the surface of Mars), or for the Mission
Data System of the upcoming Europa Clipper mission
(scheduled for launch in 2024).

At a high level, the Science Data System (SDS) used
by LabCAS or by some space and earth missions to
process data is comprised of two main software com-
ponents (see Fig. 6):

– A Workflow Execution Engine: a service capable
of interpreting, submitting and monitoring com-
plex data processing workflows, i.e. structured se-
quences of tasks that define how to access input
data from collecting instruments, which data pro-
cessing or machine learning algorithms to exe-
cute, and where to store the output data. In Lab-
CAS, this role is fulfilled by Airflow [14], a pop-
ular open source workflow engine initially de-
veloped by Airbnb, and later transitioned to the
Apache Software Foundation. Some of Airflow’s
most valuable characteristics include a fully fea-
tured user interface to submit and monitor work-
flows, a modular design that lets it interact with
several database backends and computing clusters,
and the flexibility to author workflows as Python
functions and classes. In LabCAS, Airflow is de-
ployed in the AWS cloud as a set of interacting
Docker containers.

– A computing cluster: a service capable of provi-
sioning and managing the necessary hardware and
network resources, and of executing the tasks and
algorithms scheduled by the Workflow Execution
Engine. LabCAS uses Kubernetes to execute con-
tainerized data processing algorithms on a scalable
set of worker nodes, and to monitor jobs to com-
pletion. Kubernetes [15] is the most popular con-
tainer orchestration engine, originally developed
at Google, and now adopted by all major cloud
providers, and supported by a large open source
community.

A centralized analysis pipeline can be used to
standardize analysis across centers for collaborative
biomarker studies. This can include genomics, imaging,
and processing of other datasets which are submitted to
LabCAS. Derived or processed results along with the
raw data can be captured in LabCAS and referenced in
papers, as identified in Section 3. Algorithms developed
by the investigator can be packed and deployed in the
cloud as “containers” allowing them to be integrated
into the processing infrastructure of LabCAS. Compu-
tationally expensive algorithms can be scaled on dif-
ferent hardware in the cloud to provide sufficient CPU
and memory capacity required for executing those jobs.
Specialized hardware, such as GPU machines, can be
used by those algorithms (e.g., neural networks) that
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reap such benefits. The integration of the data, algo-
rithms, and computational infrastructure exploits the
elastic capabilities provided through on-demand, cloud
computing services.

Most recently, the LabCAS SDS has been used to
execute data processing workflows for registering very
large, multiplexed tissue scans for the University of Ne-
braska Medical Center. Multiplexed images consist of
up to 45 individual image frames, each of which have
billions of pixels staining nuclei and cell components
with different antigens to identify cell behavior in the
tumor microenvironment. (Left: whole tissue scans su-
perimposed out of alignment, right: whole tissue scans
superimposed after alignment).

The full analysis workflow has additional steps, in-
cluding nuclei detection, tumor identification based on
antigen expression, and quantification of antigen behav-
ior which could help identify new cancer biomarkers.
Nuclei and tumor identification steps use convolutional
neural networks to segment nuclei and identify tumor
regions. These workflow components are candidates to
be integrated into LabCAS SDS.

For executing a machine learning algorithm for the
identification of tumor candidates in a standard set of
mammograms collected by the H. Lee Moffitt Cancer
Center and Duke University, we incorporated in Lab-
CAS a pipeline put together by Joseph Lo et al. that
identifies malignancies in 2D Full-Frame Digital Mam-
mography mass detection images. It uses a variant of the
RetinaNet (a YOLO model with multi-head attention).
It marks boxes on the images and provides probabilities
for lesions, malignancies, lymph nodes, architectural
distortions, asymmetry, etc. The pretrained weights are
provided and can be applied to newer images for infer-
encing, and also have the potential for leveraging with
somewhat different datasets through transfer learning.

5. Moving towards interactive, data-driven
methods

With the progress in improved computing power, and
potent machine learning libraries, the desire to use such
tools everywhere is self-evident. Applying machine
learning generally requires clean, homogeneous, and
large datasets. These are often hard to put together in
the medical realm due to a number of reasons including
privacy issues, different progression levels, and a vari-
ety of non-uniform datasets. We are starting to generate
large datasets aided by domain experts that can then
be bootstrapped for machine learning on even larger
datasets. We use tools like Zooniverse, the precursor
of which was used for classification of galaxies and
then further generalized for myriad tasks. Zooniverse
is primarily for citizen science where non-experts can
provide annotations with the help of tutorials and field
guides. Such a tool can be used in a restricted fashion
just for the domain experts, but clearly has the potential
for being opened up more widely for simpler tasks. We
have put together a workflow involving Zooniverse and
3D Slicer to label tumors in lungs. The datasets will be
used with deep learning techniques like convolutional
neural networks that are data hungry. They could also
be used to quantify cross-reader bias. This is general-
izable to other organs and is a step towards the Image
Atlas.

There is large untapped potential to explore method-
ologies developed in different fields. For example, un-
derstanding large scale structure on cosmological scales
involves studying the filaments that connect galaxy
clusters. Using an analogous technique for quantify-
ing the neo-vascularization in breast tissue along with
dynamic and morphologic characteristics of small en-
hancing lesions (e.g. washout dynamics) we are us-
ing morphology maps to compare vessel densities in
longitudinal data [17]. Using a training set of known
cases and capitalizing on 2D and 3D convolutional
neural networks (CNNs) it is possible to identify neo-
vascularization as well as progress. The quantification
is being extended to additional datasets and can be po-
tentially useful for other cancers as well.

Similarly we are using another technique from as-
tronomy to identify prostate cancers. Detecting tumors
early is important to reduce mortality rates and to treat
patients least intrusively. But early diagnosis should
not lead to over-treatment either, especially for benign
tumors, or those that do not affect the patient’s well-
being. We use longitudinal prostate cancer mpMRI data
for patients enrolled in an active surveillance (AS) trial
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Fig. 7. Virtual reality (VR) application demonstration depicting ex-
ploration of volumetric scientific data in a three-dimensional space.

at University of Miami. Patients are surveilled yearly
with mpMRI and MRI-Ultrasound fused biopsy up to
3 years after enrollment. The Apparent Diffusion Coef-
ficient (ADC), high b-value (BVAL) images from the
Diffusion Weighted Imaging (DWI), the early enhanc-
ing Dynamic Contrast Enhanced (DCE) series, and T2-
weighted MRIs are combined using a technique from
the pages of basic astronomy. Images in varying filters
are composed into Hertzsprung-Russel diagrams that
inform about stellar properties, dividing the stars into
main sequence, dwarfs, and giants of different types.
We trained a Faster R-CNN model to identify tumors
using IBM’s Maximo Visual Inspector. By varying the
minimum confidence in the identification on the com-
bined channels, we are able to capture a much larger
set of smaller tumors. While only a biopsy is the final
confirmation, by studying the tumors in patients that
progressed to treatment (PR) and those under active
surveillance (AS) we can attach a certain amount of
trust to our findings. The technique could be generalized
to other cancers.

Virtual Reality is increasingly used to understand
complex structures that are not evident in two dimen-
sions. We have created a viable work space in Virtual

Fig. 8. Qualifying vascularity in breast tissue; eigenvalues demon-
strate the detection of vessels and features in breast image samples.

Reality for direct interaction with intrinsically three di-
mensional data, where a user can easily pick up, ma-
nipulate, and annotate 3D models. We have created an
efficient mechanism to create a training dataset for a
machine-learning based classification tool by marking
candidate nodules from actual 3D CT-Scans by inspect-
ing the data through slicing tools and density isocon-
tours/isosurfaces [18] (Fig. 7). This ability allows for
a wider collaboration, and the creation of a viable and
clean training data set ultimately leading to better un-
derstanding of tumors at all levels of progression. We
are in the process of extending the use of this tool to
other organs, for example, the breasts (see Fig. 8).

6. Conclusion

Capabilities to support big data and data science are
increasingly being used to empower data-intensive ac-
tivities. This includes areas such as cloud computing
and artificial intelligence. We have found significant
opportunities to transfer capabilities between space sci-
ence and cancer biomarkers that have helped to ad-
vance cancer biomarker research with a number of tools
and capabilities that set the stage for collaborative data
science with large-scale biomarker research consor-
tia. This includes the Early Detection Research Net-
work and the Molecular and Cellular Characterization
of Screen-Detection Lesions.

Cloud computing has transformed the biomarker sci-
ence community as collaborative analysis of massive
datasets, the need for shared access to data, and the
opportunity to apply data-driven methods are being re-
alized. Cancer biomarker research is at the forefront
of this change as the NCI has constructed consortia
charged with bringing together multiple disciplines in
order to have the skills needed to support the discov-
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ery and validation of biomarkers through collaborative
analysis approaches. Data science is now a central skill
and cloud computing provides an essential capability
to enable increased collaboration. This is essential to
support science activities as the data and computing
demands increase.

JPL and NCI have developed a “data hub” in the
cloud, which provides a backbone for data analysis and
artificial intelligence capabilities to make possible in-
creased data sharing, training of AI models, and linking
of data and publications for reproducibility. As data
sizes increase, there is a growing need to push as much
computation to the “edge” as possible. The centraliza-
tion of data, computation, and algorithms with LabCAS,
the data commons infrastructure for cancer biomarkers,
is providing a path forward for many cancer biomarker
consortia, enabling a shift towards greater numbers of
data-intensive approaches.

Moving forward, data science – including cloud com-
puting and artificial intelligence – is going to play a piv-
otal role in enabling collaborative research. Increased
use of data commons infrastructures and data hubs;
sharing of data, methods, and models for artificial intel-
ligence; and the use of cloud computing for large-scale
storage and computation is going to become critical
as the size of cancer biomarker data collections con-
tinues to skyrocket. At the same time, these capabil-
ities will help accelerate discovery by harnessing au-
tomated methods and the power of big data to drive
insight through the consortia that the NCI is leading in
early detection of cancer.
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