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We have provided additional details of the multivariate fully Bayesian screening algorithm

including model specification, assumed priors and posterior risk calculation utilized in the

decision rule.

1 Biomarker models

Let Yijk be the kth marker level for the ith patient at the jth screening time tijk, where

• i = 1, . . . , N

• j = 1, . . . , Jik

• k = 1, . . . , K.

Di = 0 if the ith patient is cancer-free at the last observation time di and Di = 1 if the

patient is clinically diagnosed at time di.
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For cancer-free patients, with Di = 0, the kth marker level is assumed to randomly

fluctuate around a constant mean θik and follows the model

Yijk = θik + εijk

where εijk ∼ N(0, σ2
k).

For those that develop cancer, with Di = 1, we define an unobserved indicator Iik to

distinguish between the two possible models for the kth marker. If Iik = 0, then we assume

that the kth marker level does not change after cancer onset and follows the same model as

control patients.

If Iik = 1, then we assume the kth marker levels randomly fluctuates around a constant

mean θik until an unobserved changepoint time τik, after which the kth marker level changes

linearly at a rate of γik and follows the model

Yijk = θik + γik(tijk − τik)+ + εijk

where (.)+ indicates the positive part of the expression.

2 Priors for model parameters

The priors assumed in the Bayesian hierarchical model structure are as follows. For param-

eters common to the biomarker models in both those that develop cancer and that remain

cancer free:

• θik ∼ Normal(µθk, σ
2
θk).

We assume uninformative Jeffreys’ priors, 1/σ2
k where k = 1, . . . , K for the variability of

each biomarker since we have large numbers of patients for paramter estimation.

For the changepoint time and slope parameters in the biomarker models assuming a

change in trajectory in those that develop cancer:
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• log(γik) ∼ Normal(µγk, σ
2
γk)

• τik ∼ Truncated Normal[di−τ∗k ,di](di − µτk, σ
2
τk).

Note that the parameter γik is positive reflecting our assumption that biomarker lev-

els increase after cancer onset but appropriate transformations can be accommodated for

biomarkers that decrease. The parameter τ ∗k is fixed based on the known preclinical behav-

ior of the cancer. In the case of hepatocellular cancer, a fast growing cancer, the preclinical

duration is assumed to be at most 2 years (τ ∗k = 2).

The K biomarkers are connected via the Markov Random Field (MRF) prior assumed

for the binary indicators, Ii = (Ii1, . . . , IiK).

P (Ii) ∝ exp

{
µI

(
K∑
k=1

Iik

)
+ ηI

(
ITi RIi

)}
,

where R is a strictly upper triangular matrix (entries above the diagonal are 1, entries in

and below the diagonal are 0) reflecting the assumption that all K markers are correlated.

Not all biomarkers are expected to increase in all the cases and the parameter µI controls

the sparsity of the model while ηI regulates the smoothness of the distribution of Ii. These

properties are clearer upon examination of the conditional distribution of Iik given all other

elements of Ii:

P{Iik|(Iik′ : k′ 6= k)} =
exp {IikF (Iik)}

1 + exp {F (Iik)}
where F (Iik) = µI + ηI

∑
k′ 6=k

Iik′ .

The probability of observing a change-point in the kth marker of the ith patient depends on

both µI and the number of change-points observed in the other K − 1 markers, where ηI

moderates this dependency. The MRF defines a dependence structure helpful for detecting

borderline change-points when there are only a moderate numbers of patinets that develop

cancer.
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3 Screening rule: Posterior risk calculation

The decision rule for a new (N + 1)th patient at screening time tijk is based on the posterior

risk of cancer, given the longitudinal history of each biomarker up to time tijk. Specifically,

P (DN+1 = 1|YN+1)

P (DN+1 = 0|YN+1)
=
P (YN+1|DN+1 = 1)

P (YN+1|DN+1 = 0)
× P (DN+1 = 1)

1− P (DN+1 = 1)
,

where YN+1 = {Y(N+1)j′k, j
′ = 1, . . . , j and k = 1, . . . , K}.
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