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Abstract.
BACKGROUND: Artificial intelligence (AI), including machine learning (ML) and deep learning, has the potential to revolu-
tionize biomedical research. Defined as the ability to “mimic” human intelligence by machines executing trained algorithms, AI
methods are deployed for biomarker discovery.
OBJECTIVE: We detail the advancements and challenges in the use of AI for biomarker discovery in ovarian and pancreatic
cancer. We also provide an overview of associated regulatory and ethical considerations.
METHODS: We conducted a literature review using PubMed and Google Scholar to survey the published findings on the use of
AI in ovarian cancer, pancreatic cancer, and cancer biomarkers.
RESULTS: Most AI models associated with ovarian and pancreatic cancer have yet to be applied in clinical settings, and imaging
data in many studies are not publicly available. Low disease prevalence and asymptomatic disease limits data availability required
for AI models. The FDA has yet to qualify imaging biomarkers as effective diagnostic tools for these cancers.
CONCLUSIONS: Challenges associated with data availability, quality, bias, as well as AI transparency and explainability, will
likely persist. Explainable and trustworthy AI efforts will need to continue so that the research community can better understand
and construct effective models for biomarker discovery in rare cancers.
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1. Introduction

Artificial intelligence (AI) has the potential to revolu-
tionize healthcare [1], and in fact, is already being taken
from theoretical development to clinical application,
particularly with imaging analysis [2,3]. As the global
population ages, pressures will mount on healthcare
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systems and increase the burden on practitioners. New
digital technologies (often AI enabled) have the poten-
tial to disrupt current practices, largely by enhancing,
rather than replacing the abilities of practitioners [4,5].
AI is widely defined as a computer’s ability to “mimic”
human intelligence by executing code contained in var-
ious algorithms [6]. Machine learning (ML) is a subset
of AI, where statistical methods are used to develop
and refine algorithms. Deep learning, in turn, is a subset
of ML based on layers of neural networks that permit
a computer to train itself on a particular task. While
AI has garnered excitement across life sciences and

ISSN 1574-0153/$35.00 c© 2022 – IOS Press. All rights reserved.



174 D. Mikdadi et al. / Applications of AI in ovarian cancer, pancreatic cancer, and image biomarker discovery

healthcare, core challenges pertaining to data availabil-
ity, quality, model training, and bias persist. Address-
ing these issues, and other limitations, will be crucial
to reap the benefits of such technology for healthcare
advancement. One important application of AI will be
in the field of cancer biomarker discovery.

In this review, we define AI as activity or code that
encompasses both machine learning and deep learning
through a variety of neural networks. We define data
availability as relevant, diverse, AI-ready data that is
accessible for researchers and bias refers to AI model
bias that occurs when data used in the machine learning
process is not adequately representative, therefore pro-
ducing prejudiced outputs. We also highlight advance-
ments and challenges in the use of AI for biomarker
discovery in two rare, but very lethal (i.e. high case-
fatality) cancers – ovarian and pancreatic. These ‘silent
killer’ cancers are especially aggressive in part due to
the lack of early symptoms and early detection. The
successful application of AI technologies and ML meth-
ods will have a significant impact in reducing cancer-
associated mortality and morbidity, specifically in ovar-
ian and pancreatic cancers given the current difficulty
in diagnosing these malignant tumors early. We con-
ducted a literature review by searching both PubMed
and Google Scholar to survey the published medical
research on the use of AI in ovarian cancer, pancreatic
cancer, and cancer biomarkers. Here we summarize an
overview of the landscape, including the regulatory and
ethical considerations, and we identify future directions
for the application of AI in rare cancers and biomarker
discovery.

2. Ovarian cancer

2.1. Background

Ovarian cancer is relatively rare, accounting for fewer
than 4% of cancers among women worldwide [7]. How-
ever, it is a leading cause of cancer-attributable deaths
and is the most fatal gynecological cancer [8,9] due
to late stage diagnosis and a high (70%) rate of recur-
rence [10,11]. According to the International Federa-
tion of Obstetrics and Gynecology (FIGO) staging [12],
5-year survival rates range between 70% and 90% when
disease is limited to the ovaries (stage I) or pelvis (stage
II) [13,14] but dramatically decrease to less than 30%
once the disease metastasizes (stage III or IV) [14,15].
Incidence rates of ovarian cancer are greatest in devel-
oped countries but vary by age and race [7,13]. The

epidemiological diversity of ovarian cancer through-
out the world is due in part to the multifactorial etiol-
ogy of the disease [10] as well as differences in clini-
cal management and disparities in access to diagnos-
tic services [16]. The majority (80%) of ovarian tu-
mors are benign [17], although differentiating benign
tumors from malignant disease remains a clinical chal-
lenge. Among the different pathologies, ovarian epithe-
lial cancer (OEC) accounts for nearly 90% of malig-
nant ovarian tumors [12]. OEC is a heterogeneous dis-
ease of distinct histologic subtypes with varying eti-
ologies, morphologies, clinical presentations, and prog-
noses [14,15]. The primary risk factor of poor clinical
outcomes in OEC is late-stage detection, and currently
there is no standard screening test. Unfortunately due to
the asymptomatic nature of the disease, fewer than 25%
of women with OEC are diagnosed early (i.e. stage I
or II) when the disease can be easily managed [11]. In-
creasing the rate of early detection has been suggested
to lower the mortality rate by as much as 30% [18].
Given the low prevalence of ovarian cancers, including
OEC, epidemiological rules require that for a screen-
ing test to be effective it must have a high sensitivity
(> 75%) and specificity (> 99%) [19]. The emerg-
ing use of AI in the discovery of biomarkers can pro-
vide significant clinical benefits for early detection, new
treatments, and improved prognosis.

2.2. Ovarian cancer biomarkers overview

Biomarkers play a critical role in personalized
medicine and are urgently needed for early detection
of ovarian cancers, especially OEC, due to the lack of
a standard screening evaluation [20] and the high rate
of recurrence. Imaging technologies such as transvagi-
nal ultrasonography (TVS), positron emission to-
mography/computed tomography with fluorodeoxyglu-
cose (FDG-PET/CT), and magnetic resonance imaging
(MRI) can be utilized for detecting early-stage OEC.
However, on their own, these techniques have poor
sensitivity and specificity [21–24] which leads to false
positives [25]. Additionally, PET/CT and MRI are not
widely used for detection due to the radiation expo-
sure and the high cost, respectively [26,27]. In addi-
tion to imaging techniques, a wide range of biochem-
ical markers have been evaluated for early detection,
screening, treatment response, and prognosis [28–30].
These include protein tumor biomarkers such as serum
cancer antigen 125 (CA125) [31–35] and human epi-
didymis protein (HE4) [36–38], genetic markers such
as germline mutations in BRCA1/BRCA2 [39], and epi-
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genetic biomarkers such as DNA methylation [30,40]
and microRNA expression [41]. None of these mark-
ers provide sufficient sensitivity or specificity to de-
tect early-stage OEC [30,41], and there is a lack of
evidence showing statistically significant decreases in
mortality rates when using these markers as screening
tools [42,43]. Currently, no single biomarker meets the
required threshold for both sensitivity and specificity
to be effective in detecting ovarian cancer early. Mul-
tivariate assays that combine biomarkers and clinical
factors are being developed and evaluated for diagnos-
tic accuracy [28,44,45]. The Risk of Malignancy Index
(RMI) enhances the robustness of using CA125 alone
by factoring in ultrasound imaging and menopausal sta-
tus for the prediction of ovarian cancer in women with a
pelvic mass [46]. Similarly, the Risk of Ovarian Malig-
nancy Algorithm (ROMA) combines HE4 and CA125
to predict the likelihood of OEC in women with a pelvic
mass [47]. There are two FDA-approved multivariate
biomarker assays, Ova1 [48,49] and Overa [50,51], with
relatively high sensitivity (96% and 91%, respectively)
but low specificity (54% and 69%, respectively) [49,52].
Notably, these are not preferred screening tests for early
detection, but rather prediction algorithms to determine
the probability of a malignant tumor and the need for
referral to a gynecologic oncologist.

2.3. Application of AI in ovarian cancer (diagnosis)

As medical research is beginning to focus on the
clinical application of AI methods in oncology, more
studies are needed to develop diagnostic tools for the
early detection of ovarian cancer. Two-dimensional
light scattering technology was employed by Chen and
Zhang [53] for the early detection of single ovarian can-
cer cells. Results of 10-fold cross-validation by sup-
port vector machine algorithms show high sensitivity
(95.9%) and moderately high specificity (87.5%) in de-
tecting malignant ovarian cells. Computer-aided diag-
nosis (CADx) can be utilized to improve diagnostic ac-
curacy of histologic subtypes of ovarian cancer (serous,
mucous, endometrioid, and clear cell carcinomas). Us-
ing deep convolutional neural networks (DCNN) on 85
tissue specimens (24 serous carcinoma, 22 mucinous
carcinoma, 21 endometrioid, and 18 clear cell carci-
noma) from patients at Xinjiang Medical University
between 2003 and 2016, Wu et al. [54] leveraged cyto-
logical images to automatically classify ovarian cancer
subtypes with 72.8% accuracy. This increased to 78.2%
accuracy only after image augmentation, which shows
the correlation between model performance and the

quantity and quality of the images for training DCNN.
The application of AI also appears promising in di-
agnostic prediction of OEC prior to intervention with
predictive algorithms benefiting personalized treatment
options [55]. Machine learning models, compared to
conventional regression-based analyses, may yield su-
perior results in predicting clinical factors associated
with OEC [55,56]. In 2019, Kawakami et al. [57] ran-
domly assigned patients with OEC (n = 334) and those
with benign ovarian tumors (n = 101) into a training
group and a test group to establish a specific predictive
framework for pretreatment of OEC patients. Machine
learning classifiers, including random forest (RF), ob-
tained diagnostic and prognostic information from 32
biomarkers and clinical factors commonly used in pre-
treatment peripheral blood tests. This method showed
a statistically significant ability to discriminate OEC
from benign ovarian tumors (accuracy = 92.4%; AUC
with RF = 0.968) with lower confidence at predicting
clinical stage of OEC (accuracy = 69.0%; AUC with
RF = 0.760). These classifiers also underperformed
in predicting histologic types of EOC (range of AUC:
0.597–0.785); however, this is likely due to the level of
serum biomarkers not distinguishing the characteristics
of these different tumor types.

2.4. Application of AI in ovarian cancer (prognosis)

Current literature evaluating the use of medical imag-
ing data suggests that employing deep learning methods
can improve the prediction of ovarian cancer patient
prognosis. Enshaei et al. [58] developed an artificial
neural network (ANN) algorithm using clinical and sur-
vival data on 668 OEC cases over a 10-year period to
predict the overall five-year survival rate of OEC pa-
tients (accuracy = 93%; AUC = 0.74). This AI model
was also able to adequately predict surgical outcomes of
complete, optimal, or suboptimal cytoreduction among
the cases (accuracy = 77.7%; AUC = 0.73). Wang et
al. [59] developed a novel approach by combining a
deep learning feature with conventional Cox propor-
tional hazard regression (DL-CPH) to extract prognos-
tic data from 8,917 CT images from 245 patients with
high-grade serous ovarian cancer (HGSOC) across two
different hospitals (feature-learning cohort, n = 102;
primary cohort, n = 49; two independent validation
cohorts, n = 49 and n = 45). To ensure minimal tumor
selection bias influencing the robustness of the deep
learning features, Wang et al. estimated the intraclass
correlation coefficient (ICCC) using data from 40 pa-
tients corresponding to two radiologists selected at ran-
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dom. All deep learning features were consistent (range
of ICCC = 0.83–0.98) between the two radiologists.
The DL-CPH model successfully identified two patient
groups at high-risk (p = 0.004, AUC = 0.77) and low-
risk (p = 0.016, AUC = 0.83) of recurrence at three
years. If validated in future studies, this approach would
allow for the prediction of HGSOC recurrence from CT
images without the need for follow-up. Lu et al. [60]
utilized machine learning models with 657 quantitative
descriptors from preoperative CT images of 364 OEC
patients to establish and validate a novel mathemati-
cal description of tumor phenotype and prognosis. This
non-invasive measurement of the primary ovarian tu-
mor consistently identified patients with median overall
survival under 2 years and is significantly associated
with progression-free survival (p < 0.01).

2.5. Future directions of AI for the early detection and
prognosis of ovarian cancer

Conventional statistical methods are limited in their
ability to analyze large, complex medical data. AI pre-
dictive algorithms seem to improve ovarian cancer di-
agnostic and prognostic accuracy prior to interven-
tion [61,62], while outperforming most existing con-
ventional methods [59,63], and performing near the
same level as some gynecologic oncologists [64,65].
However, the AI algorithm that yields the greatest pre-
dictive power for a given set of variables is not yet
understood. Future studies looking to improve diag-
nostic and prognostic accuracy in ovarian cancer need
to ensure proper validation of the models to estimate
unbiased generalization performance. It is not simply
enough to select the approach with the strongest per-
formance on trained data, but it also needs to perform
well on data not yet seen by the model. More studies
are needed, across different populations, that report on
this generalization performance. One of the primary
challenges of applying AI methods, especially neural
networks, in ovarian cancer is the need for data col-
lection on sufficiently large samples (n > 1,000) [66]
to let the machines learn. Future studies will need to
determine ways to increase sample size, possibly from
large cohorts or by combining multi-site data, given the
prevalence of ovarian cancer is low. One way to over-
come the difficulty of increasing sample size in clinical
studies is to employ novel technology such as genera-
tive adversarial networks [67] to augment existing data.
Future studies should apply this in an ovarian cancer
population comparable to a previous application in a
breast cancer setting by Guan et al. [68] where synthetic

data were generated using mammographic images from
a digital mammography database. With continued im-
provements in AI, along with the use of big data and
increased efficiency in computational resources, there
is great potential for earlier detection of ovarian cancer
and improved prognosis.

3. Pancreatic cancer

3.1. Background

Pancreatic ductal adenocarcinoma (PDAC) is the
third leading cancer killer in the United States, [69] and
ranks seventh globally [70]. The five-year survival for
all diagnosed patients is below 10% and is only 3%
for metastatic disease [71,72]. This high rate of mor-
tality is in part due to chemotherapy resistance and a
lack of targeted treatments [69]. This cancer is often
diagnosed at a late stage when resection is not possi-
ble [73], and at the time of diagnosis 50% of patients
have signs of metastatic disease [74]. Identification of
tumors less than 2 cm via CT scan greatly improves
the probability of survival [73,75]. However, invasive
removal of non-cancerous lesions can increase the risk
of morbidity and mortality for healthy patients. To date,
few biomarkers have been identified and evaluated for
PDAC, further hindering treatment [72,76]. Recently,
several studies have successfully applied AI models
to the detection and classification of pancreatic cancer
from CT images [77].

3.2. Pancreatic cancer biomarkers overview

PDAC is very rare [7], thus screening the general
population is neither feasible nor advisable because the
rate of false-positives would be high [78], potentially
leading to unnecessary interventions [72]. Generally,
the age-standardized incidence of PDAC is higher in
higher-income countries [79], although prognosis does
not differ between high, middle and low income coun-
tries [80]. Prevalence increases with age [81], and is
correlated with comorbidities such as smoking, diabetes
and obesity [82]. In particular, screening of populations
identified as high risk for developing PDAC, such as
family with an inherited risk, which accounts for about
10% of cases [79], people with pancreatic cystic lesions,
and people older than 50 years who are newly diagnosed
with type 2 diabetes [83,84] could help to identify pre-
cursor lesions while they are still treatable. Nonetheless,
early stage tumors can be easily overlooked when using
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CT and MRI, and it is possible that CNN models could
help fill the gap as a ‘second reader.’ Further, some
studies have suggested that CNN models have higher
predictions when integrating image data with health,
social media, or other data sources [84]. Although no
studies have yet identified imaging biomarkers that are
ready for clinical trial [72,76] this integrative approach
will likely still greatly improve patient outcomes over
current practices.

3.3. Application of AI in pancreatic cancer (diagnosis)

Most AI studies thus far have developed models fo-
cused around classification of cancerous lesions and
healthy pancreas images using CT images, which
are the standard diagnostic procedure for identifying
PDAC [85]. Here we detail studies using AI for PDAC
diagnosis, data for these studies is usually publically
available unless specified herein. Chu et al., [86] used
unsupervised clustering to extract 40 relevant features
of pancreatic lesions from 190 cancerous and 190
healthy pancreas images. They classified cancerous
and normal images using a random forest classifica-
tion model that had 99.2% accuracy, 100% sensitivity,
98.5% specificity, and 99.9% AUC, correctly identify-
ing all cases of PDAC. Kuwahara et al., [87] used 3,970
images from 50 patients to build a deep learning classi-
fication model (convolutional neural network) based on
the original algorithm from ResNet50. Their aim was
to diagnose intraductal papillary mucinous neoplasms
(IPMNs) which are precursor lesions of PDAC. They
evaluated their model using an AI prediction value de-
fined as the predictive value of malignant probability
averaged across all images for each patient. Their model
achieved a mean AI value of 0.808 (probability between
0 and 1), 0.98 (P < 0.001) AUC, 95.7% sensitivity,
92.6% specificity, 94% accuracy, which was higher than
the human diagnosis (source of statistic not defined).
Sekaran et al., [88] used 19,000 publicly available im-
ages from 82 patients accessed from The Cancer Im-
age Archive (TCIA). They developed a model that used
lump feature detection, which allows for the extraction
of a single feature from a noisy background, but they
failed to specify how their model performed or make
their model publicly available.

3.4. Application of AI in pancreatic cancer (prognosis)

Due to the dismal survival of PDAC patients in later
stages, much focus in the field has been trained on build-
ing models that can detect cancer at earlier stages while

the cancer is still treatable [83]. Thus, models built to
identify precursor lesions can increase the likelihood
of patient survival, but high-grade precursor lesions
can be difficult to differentiate from low-grade lesions
that never advance to carcinoma, leading to unneces-
sary interventions that increase patient morbidity and
mortality [72]. As such, developing accurate detection
models for high-grade precursor lesions as well as early
tumors will significantly improve patient outcomes. To
this end, Liu et al., [89] built a model focused on the de-
tection of small tumors called Faster R-CNN that used
VGG16. Their model was trained on 4000 images from
238 patients and validated on 1699 images from 100
patients, yielding a model with an AUC (trapezoidal
rule) = 96% and 77% precision. Their model required
only 0.2 seconds to process on CT image and highlight
the advantages of this acceleration compared with clini-
cians. Likewise, Liu et al., [90] developed a CNN model
modified from the Visual Geometry Group (VGG) to
detect tumors less than 2 cm, of which 40% evade nor-
mal detection. They trained their model on images of
295 cancerous and 250 control patients from East Asian
study participants. They validated their model on three
datasets, including two East Asian datasets (75 cancer-
ous and 64 controls, and 101 cancerous and 88 con-
trols), and the TCIA dataset of North American samples
(281 cancerous and 82 controls), demonstrating one of
the first studies on PDAC imaging to include patient im-
ages from both East Asian and North American patient
populations. Their model performed well when vali-
dated on the first East Asian dataset with 97% sensitiv-
ity, 100% specificity, 99% accuracy, and 99% AUC. On
the second East Asian dataset, the model achieved 99%
sensitivity, 99% specificity, 99% accuracy, and 100%
AUC. On the North American validation dataset, the
model performed less well, with 79% sensitivity, 98%
specificity, 83% accuracy, and 92% AUC. Nonethe-
less, on the combined images of the two East Asian
datasets the CNN yielded higher sensitivity than radiol-
ogists (98% vs. 93%), and perhaps more importantly,
the model identified 11 of the 12 small tumors that were
missed by the radiologists, while only missing 3/176
tumors (all less than 1.3 cm), yielding a small-tumor
(< 2 cm) sensitivity value of 92.1% for the East Asian
dataset and 63.1% for the North American dataset.

3.5. Future directions of AI for PDAC detection and
prognosis

In the future, cancer screening may be done on whole
regions of the body rather than organ by organ [77],
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and a suite of models may be employed specific to each
organ. To this aim, Wang et al., [59] developed a multi-
organ segmentation model that would identify each or-
gan of interest from abdominal CT images. Their model
used statistical fusion of multiple layers and images to
segregate organs from one with higher precision (based
on Sørensen similarity coefficients and mean surface
distances) than existing 2D and 3D batch-based meth-
ods. Zhu et al., [91] expanded on Wang et al. [59],
to identify regions of interest for radiologists called a
multiscale segmentation for classification model. The
deep learning model iterates through three input vol-
umes (training on each) of decreasing size to increase
the probability of identifying small tumors. They com-
pared their model to both the UNet and VNet algo-
rithms, and trained and validated their model on 439
patients, with 136 cancerous and 303 control patients
to achieve 94% sensitivity and 99% specificity. Chu
et al., [77] leveraged the model developed by Zhu et
al., [91] using CT images from 750 cancerous and 575
control patients. They first isolated the pancreas using
multi-organ segmentation, achieving 87.8% accuracy,
then classified PDAC cases using CT images from 156
PDAC and 300 control cases, yielding 94.1% sensitiv-
ity and 98.5% specificity. Not surprisingly, the model
performed less well on tumors < 2 cm in diameter, but
accuracy improved somewhat when informed by radi-
ologist input regarding human readable features such as
a dilated pancreatic duct. Future work will likely follow
this system-wide approach, leveraging models trained
on multi-organ-CT images to screen for various can-
cers at once in conjunction with practitioner input. As
PDAC-specific models continue to improve, the early
detection of tumors will lead to better patient outcomes
and hopefully reduce the exceptionally high mortality
rate.

4. Biomarkers and AI

4.1. Regulatory and ethical considerations

Global regulatory authorities continue to track AI
technologies used for biomedical discovery and treat-
ment. In Europe, high risk medical devices are regu-
lated via the Conformité Européenne (European Con-
formity – “CE”) mark that indicates that a device meets
high safety, environmental, and health standards [92].
China’s National Medical Product, similar in function to
the United States’ FDA, began tracking AI-based med-
ical devices for the first time in 2018 prior to releasing

publicly its Technical Review Guidelines on AI-Assisted
Software in 2019. It has been argued that China’s less
restrictive data policies enable the nation to “liberate
data for public health purposes,” expediting their ability
to discover new applications of AI/ML across sectors
particularly in healthcare [93]. In the US, medical de-
vices, including AI/ML based tools, are approved based
on criteria addressing effectiveness and safety. The FDA
has taken additional steps to mitigate bias with the re-
lease of their “AI/ML Software-as-a-Medical Device”
action plan, which calls for greater transparency into the
details of the datasets being used to train these AI/ML
algorithms [94]. This proposed framework seems to
promote detailed demographic breakdowns of datasets
for public review. Encouraging researchers to obtain
diverse datasets will build trust in medical devices and
the algorithms they are built upon [2].

Currently, the FDA has approved several molecular
biomarkers for both ovarian and pancreatic cancers, in-
cluding CA125, HE4, OVA1 test, ROMA test, and hCG
for ovarian, and CEA and CA19-9 for pancreatic [95].
In addition to molecular markers, biomarkers identified
from cystic fluid and pancreatic juices may be suited
for clinical trials soon [76]. Encouragingly, the National
Cancer Institute’s Early Detection Research Network
(EDRN) has identified promising directions for 300+
potential ovarian biomarkers and for 140+ pancreatic
biomarkers [96]. One ongoing clinical trial related to AI
discovery of novel biomarkers will analyze participant
tissue and fluid samples with an AI platform to identify
and validate biomarkers for use in early detection of
several pancreatic diseases including cancer [97].

The FDA has yet to qualify imaging biomarkers for
diagnosis or prognosis of ovarian or pancreatic can-
cers [98]. The biomarker validation process itself is rig-
orous, requiring thousands of samples to address poten-
tial variance within biomarker expression [99], and the
high level of subjectivity inherent to imaging analysis
may contribute to slower developments in the approval
process for imaging biomarkers. Interpretation of im-
ages related to pancreatic cancer specifically presents
challenges due to the difficulty in distinguishing condi-
tions within images [100]. Magnetic resonance elastog-
raphy (MRE) has shown promise in potentially serving
as a valid image biomarker for pancreatic cancer, as
this method has been used to diagnose lesions of other
cancers including liver, breast, and kidney [101].

The use of AI in biomarker discovery is still rel-
atively nascent, and currently FDA-cleared AI algo-
rithms only exist for breast and lung cancer [102]. This
is likely due to the much higher prevalence of breast
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and lung cancer and subsequent data availability, allow-
ing for robust image training and validation. For refer-
ence, TCIA has 32 collections related to lung cancer,
18 collections related to breast cancer, and only two
collections related to either ovarian or pancreatic can-
cer [103]. In the Cancer Genome Atlas, there are 12,027
cases of lung cancer, 9,115 cases of breast cancer, and
only 3,401 cases of ovarian cancer and 2,723 cases of
pancreatic cancer [104]. However, pancreatic cancer
is rapidly growing in prevalence and regular screening
may be conducted for high risk patients [84], leading to
additional data availability for AI models.

4.2. Bias in AI-driven biomarker discovery and
implications for practice

Data availability and bias remains a concern across
all cancer types and can render AI models ineffective
regardless of application. Algorithms develop biases
and produce prejudiced responses when the data that
they are trained on are non-representative or incom-
plete. There are several ways in which bias can manifest
in AI algorithms. For example, outputs can underesti-
mate risk if a model is trained on a non-diverse dataset,
or measurement bias existing in the data can lead to a
discrepancy between what the algorithm should pre-
dict and what it actually predicts. Without correction,
bias can inhibit models from making confident con-
clusions. These types of biases lead to inaccurate or
unfair algorithms that can have unintentionally harmful
consequences to underrepresented or unaccounted for
populations.

Racial and ethnic minority groups may be more sus-
ceptible to pancreatic cancer due to associated comor-
bidities [105], but these groups are consistently under-
represented in clinical data [106]. The prevalence of
pancreatic cancer is higher in men than women, natu-
rally causing data to exhibit a gender skew [107]; this
unequal representation in clinical training data could
introduce bias into algorithms [108]. For example, a
recent study trained a model to detect skin cancer with a
dataset where 65% of the images were from Google Im-
ages, and only 5% of photographs were of dark-skinned
individuals [109].

The lack of a diverse geographical sample also has
significant implications for AI modelling. For example,
ImageNet is a repository of millions of annotated im-
ages used for image classification, but ∼ 45% of data
originates from the United States, while only ∼ 3%
of images come from China or India [109]. A recent
analysis also found that a majority of medical data used

to train medical AI systems came from a small number
of states in the United States, while a majority of states
had no representation [110]. This has implications on
model performance; Zech et al., [74] showed that their
model performed significantly worse when deployed in
differing locations from which the data were trained.
Poorly trained models of this nature are not rare [111]
and can pose significant risk to patients should their
care be informed by such models.

4.3. Best practice in AI-driven biomarker discovery

Despite these challenges, US policy makers have pri-
oritized AI, with Congress passing the National Arti-
ficial Intelligence Initiative Act, granting over $5B in
funding towards AI research [112]. Likewise, EDRN
has emphasized the importance of data science and AI
to their research [113] which should provide more fund-
ing for AI-driven biomarker discovery research. Re-
searchers continue to call for data collection reform to
include geographically and racially diverse data [111]
as well as rigorous methods testing to facilitate ethical
AI [108]. Explainable and trustworthy AI campaigns
attempt to rectify “black box” methodologies for algo-
rithm development by constructing interfaces that al-
low humans to better understand and interrogate the AI
model. Easier to understand models increase trust when
the user better understands why a certain prediction was
generated. However explainability can come at the ex-
pense of accuracy [114]. Calls for the “democratization
of data” which ties heavily into explainable AI, makes
data easier to access and understand to facilitate inclu-
sion by those most susceptible to descrimination and
bias [108]. These efforts outlined here can be imple-
mented to help mitigate bias and facilitate reproducibil-
ity across the biomedical research enterprise.

5. Conclusion

The use of AI for biomedical research and biomarker
discovery continues to hold great promise and will
likely be the target of several research studies evaluating
AI efficacy. This will be aided by the decreasing cost of
compute resources, proliferation of various open source
tools, and rapidly evolving biotechnology applications
centered around imaging informatics such as pathology
and radiology. Challenges associated with data avail-
ability, quality, bias, as well as AI transparency and ex-
plainability, will likely persist as the field expands fur-
ther. The stakes are even higher for rare conditions such
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as ovarian and pancreatic cancer, where the clinical ap-
plication of AI is only just beginning. In these cancers,
many of the models need to be validated in larger, clini-
cal settings. More importantly, many studies use images
that are not publicly available, limiting the pooling of
resources that would build more representative and ro-
bust models. Larger and more diverse image databases
for rare cancers combined across institutions (federated
model) will both increase the probability of biomarker
discovery and increase model generalizability across
racially/ethnically diverse patient cohorts. Greater im-
age availability will also facilitate model validation and
reduce bias in cancer diagnosis and prognosis. Further,
standardized reporting metrics will allow for quantita-
tive comparisons of models across cohorts, and facil-
itate the evaluation of models for patient cohorts not
used to train the model. Finally, AI based biomarkers
will require explainable models. As funding for AI in-
creases, regulatory agencies, research institutions, and
other stakeholders need to be prepared to address these
challenges in order to make a true impact on biomarker
discovery.
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