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Abstract.
BACKGROUND: To explore an effective predictive model based on PET/CT radiomics for the prognosis of early-stage uterine
cervical squamous cancer.
METHODS: Preoperative PET/CT data were collected from 201 uterine cervical squamous cancer patients with stage IB-IIA
disease (FIGO 2009) who underwent radical surgery between 2010 and 2015. The tumor regions were manually segmented,
and 1318 radiomic features were extracted. First, model-based univariate analysis was performed to exclude features with small
correlations. Then, the redundant features were further removed by feature collinearity. Finally, the random survival forest (RSF)
was used to assess feature importance for multivariate analysis. The prognostic models were established based on RSF, and their
predictive performances were measured by the C-index and the time-dependent cumulative/dynamics AUC (C/D AUC).
RESULTS: In total, 6 radiomic features (5 for CT and 1 for PET) and 6 clinicopathologic features were selected. The radiomic,
clinicopathologic and combination prognostic models yielded C-indexes of 0.9338, 0.9019 and 0.9527, and the mean values of the
C/D AUC (mC/D AUC) were 0.9146, 0.8645 and 0.9199, respectively.
CONCLUSIONS: PET/CT radiomics could achieve approval power in predicting DFS in early-stage uterine cervical squamous
cancer.
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1. Introduction

Uterine cervical cancer is one of the leading causes
of death among females [1]. In early-stage cervical can-
cer, radical surgery with/without individualized adju-
vant chemoradiotherapy is a guideline-recommended
option for treatment, whereas recurrences still occur in
approximately 25% of cases [2,3]. Some postoperative
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pathologic risk factors, such as large tumor diameter,
deep stromal invasion, lymphovascular space invasion
(LVSI), parametrial involvement, positive surgery mar-
gin, and lymph node metastasis, could increase the in-
cidence of recurrence [4,5]. However, in the clinic, pa-
tients without risk factors or patients who underwent
adjuvant chemoradiotherapy due to pathologic risks
could still have poor survival. Thus, these factors cannot
always predict patient survival. Therefore, it is neces-
sary to develop an accurate and comprehensive tool for
prognostic prediction that could supplement the existing
guidelines.

18F-2-fluoro-2-deoxy-D-glucose positron emission
tomography/computed tomography (18F-FDG PET/CT)
is a molecular and functional imaging modality that has
been widely used for diagnosis, initial staging, response
assessment, recurrence detection, and survival analysis
of uterine cervical cancer [6]. Conventional PET/CT
parameters, such as the maximum standardized uptake
value (SUVmax), the mean standardized uptake value
(SUVmean), metabolic tumor volume (MTV), and to-
tal lesion glucolysis (TLG), were used to reflect the
relationship with clinical outcome but failed to make
consistent conclusions [7–10].

Radiomics is an emerging field where features are
extracted from quantitative medical imaging using var-
ious techniques. Radiomic features can quantify tumor
intensity, shape and heterogeneity and have been ap-
plied to oncologic detection, diagnosis, therapeutic re-
sponse and prognosis [11–16]. Lucia et al. successfully
reported a radiomic model based on PET/CT and MR
for predicting recurrence in advanced uterine cervical
cancer, and further external validation was performed.
The predictive accuracy was as high as 90% in this
radiomic model compared to 56–60% using standard
clinical variables [15,16]. Most likely due to the shorter
follow-up time, few prognostic studies have been at-
tempted in early-stage uterine cervical cancer using
PET/CT radiomic features.

Moreover, since the most common pathological type
of cervical cancer is squamous cell carcinoma, our study
was performed in this homologous group of patients
with the same histology, which increases the general-
izability of our findings. Thus, we intended to develop
a PET/CT radiomic model to predict prognosis accu-
rately in early-stage uterine cervical squamous cancer
patients.

2. Material and methods

2.1. Patient

This study was approved by the ethics committee of
Fudan University Shanghai Cancer Center. We retro-
spectively enrolled 201 uterine cervical squamous can-
cer patients who underwent PET/CT scans 1 week prior
to radical surgery between January 2010 and June 2015.
Patients were excluded if they received neoadjuvant
chemo- or radiotherapy or had other malignancies or
other histologic types of uterine cervical cancer. All pa-
tients were diagnosed with IB-IIA stage (FIGO 2009).
Postoperative adjuvant radiochemotherapy was deter-
mined by pathologic risk factors according to NCCN
and FIGO guidelines [4,5].

Postoperative pathologic features included tumor
size, histologic type, stromal invasion depth, LVSI,
parametria involvement, positive surgery margin, and
lymph node metastasis in our study. According to guide-
lines [4,5], parametrial involvement, positive surgery
margin, or pelvic lymph node metastasis mentioned by
postoperative pathology were high-risk factors. Cer-
vical tumor diameter > 4 cm, stromal invasion depth
> 1/2, or lymphovascular space invasion (LVSI) were
intermediate-risk factors. Patients with at least one
high-risk factor were defined as patients with high-
risk disease. Patients with at least one factor of in-
termediate risk were defined as having intermediate-
risk disease. Patients with none of these risks were de-
fined as having low-risk disease. All pathological slides
were independently reviewed by two experienced gy-
necologic pathologists according to the WHO crite-
ria [17]. Immunohistochemical staining was performed
for Ki67 (Roche 30-9) using a Ventana Benchmark XT
autostainer (Ventana Medical Systems Inc., Tucson,
AZ, USA).

The surveillance is based on the patient’s risk for re-
currence and personal preferences by the recommenda-
tion of NCCN guidelines: clinicoradiological and phys-
ical examinations were routinely recommended every
3–6 months for the first 2 years, every 6–12 months
for another 3 to 5 years, and then annually. Patients
with pathologic high-risk disease can be assessed more
frequently (for example, every 3 months for the first
2 years) than patients with low-risk disease (e.g., every
6 months). All patients were followed up until June 30,
2019. Disease-free survival (DFS) was defined as the
time interval from the date of surgery to the date of
recurrence or metastasis.

Squamous cell carcinoma antigen (SCCA) is a very
specific tumor marker that exists in the cytoplasm of
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Table 1
Clinicopathologic characteristics

Variables Training cohort (n = 140) Testing cohort (n = 61) p value
Age (year), median (range) 47 (19–73) 48 (25–74) 0.641
2009 FIGO stage 0.668

IB1-IB2 57 (40.7%) 27 (44.3%)
IIA1IIA2 83 (59.3%) 34 (55.7%)

SCCA (ng/ml), median (range) 2.2 (0.3–70.0) 3.4 (0.3–70.0) 0.648
Ki67, median (range) 75% (20%–95%) 80% (20%–95%) 0.742
Tumor diameter, median(range) 3.5 (0.2–10.0) 4.0 (0.6–9.0) 0.238

< 4 cm 77 (55.7%) 23 (37.7%)
> 4 cm 62 (44.3%) 38 (62.3%)

Stromal invasion depth 0.788
< 1/2 35 (25%) 14 (23.0%)
> 1/2 102 (72.9%) 45 (73.8%)
NA 3 (2.1%) 2 (3.3%)

LVSI 0.595
No 81 (57.9%) 38 (62.3%)
Yes 58 (41.4%) 23 (37.7%)
NA 1 (0.7%) –

Parametria invasion 0.504
No 133 (95.0%) 57 (93.4%)
Yes 6 (4.3%) 4 (6.6%)
NA 1 (0.7%) –

Surgery margin 0.915
Negative 137 (97.9%) 60 (98.4%)
Positive 2 (1.4%) 1 (1.6%)
NA 1 (0.7%) –

Lymph node metastasis 0.669
No 93 (66.4%) 42 (68.9%)
Yes 46 (32.9%) 18 (29.5%)
NA 1 (0.7%) 1 (1.6%)

Postoperative adjuvant therapy 0.434
No 54 (38.6%) 20 (32.8%)
Yes 86 (61.4%) 41 (67.2%)

Recurrence/Metastasis 0.934
No 96 (68.6%) 42 (68.9%)
Yes 19 (13.6%) 8 (13.1%)
NA 25 (17.9%) 11 (18.0%)

DFS (month), median(range) 56 (1–111) 52 (3–113) 0.634
SUVmax, median(range) 12.58 (2.65–37.41) 12.82 (2.50–71.84) 0.598
SUVmean, median(range) 5.17 (2.57–12.77) 5.38 (2.72–20.56) 0.176
MTV, median(range) 26.43 (0.41–235.56) 37.00 (0.28–263.37) 0.233
TLG, median(range) 143.70 (1.05–1806.75) 230.27 (0.76–2183.34) 0.233

Abbreviation: SCCCA, squamous cell carcinoma associated antigen; SUVmax, maximum of standard-
ized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis LVSI, lymphovascular
space invasion; NA, not available.

cancer, such as uterine, cervix, lung, head and neck
squamous cell carcinoma. SCCA is not only an early
indicator of response during cervical squamous can-
cer therapy but also a prognostic biomarker after ther-
apy. High pretreatment SCCA is associated with recur-
rence [18–20]. Ki67 is a nuclear protein, and its ex-
pression level is strongly associated with tumor cell
proliferation and growth and is widely used in routine
pathological investigations as a proliferation marker.
Clinically, Ki67 expression is significantly higher in
malignant tissues with poorly differentiated tumor cells
than in normal tissue [21,22]. In cervical cancer, the
expression of Ki67 is closely related to the occurrence

and development of cervical carcinoma [22]. There-
fore, the expression of SCCA and Ki67 levels were
evaluated in our study for prognostic research. Finally,
16 clinicopathological data types, including age, pre-
operative SCCA level, FIGO stage, Ki67 level, above
pathologic features, recurrence/metastasis status, DFS,
and conventional PET/CT parameters, were collected
from medical records, cancer registries, and pathology
reports. In total, 201 patients were included in the study
and were randomly divided into a training cohort (n =

140) and a testing cohort (n = 61). The clinicopatho-
logic characteristics of all patients are shown in Table 1.
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Fig. 1. Outline of the workflow from data input, feature extraction, selection, and model construction.

2.2. 18F-FDG PET/CT image acquisition and
interpretation

2-Deoxy-2-(18F)fluoro-D-glucose (18F-FDG) was
produced automatically by cyclotron (Siemens CTI
RDS Eclipse ST, Knoxville, Tennessee, USA) using the
Explora FDG4 module in our center, and the radiochem-
ical purity was over 95%. All patients fasted for at least
4–6 h before 7.4 MBq/kg (0.2 mCi/kg) 18F-FDG injec-
tion and were quiet for approximately 1 h before scan-
ning. Venous blood glucose levels were maintained un-
der 10 mmol/L in our center. Images were obtained on
a Siemens biograph 16HR PET/CT scanner (Knoxville,
Tennessee, USA). The transaxial intrinsic spatial reso-
lution was 4.1 mm (full-width at half-maximum) in the
center of the view. CT scanning (120 kV, 80–250 mA,
pitch 3.6, rotation time 0.5) from the proximal thighs
to the head was first performed for data acquisition,
followed by a PET emission scan. The acquisition time
was 2–3 min/bed. PET image data sets were iteratively
reconstructed using the attenuation correction of CT
data, and the infused images were displayed on a work-
station.

All PET/CT images were evaluated by two experi-
enced nuclear medicine physicians independently. Con-
sensus was reached in case of discrepancy. A multi-
modality computer platform (Syngo; Siemens) was used
to analyze the 18F-FDG PET/CT images. The recon-
structed images were then converted to a semiquan-
titative image corrected by the injection dose and the

participant’s body weight (SUV), which was calculated
as [decay-corrected activity (kBq) per milliliter of tis-
sue volume]/[injected 18F-FDG activity (kBq) per gram
of body mass]. SUVmax was calculated by placing a
spheroid-shaped volume of interest (ROI) within the
primary cervical tumor. MTV and SUVmean were mea-
sured by drawing contours large enough to encase the
tumor in the axial, coronal, and sagittal PET images. A
common threshold value of SUV of 2.5 was used to de-
fine the margins around the target. The voxels present-
ing an SUV intensity of greater than 2.5 within the con-
touring margin were incorporated to define the MTV,
and the mean voxels within this contouring were mea-
sured as the SUVmean. Ureters and bladder were man-
ually subtracted to ensure correct voxels. The TLG was
calculated according to the following formula: TLG =
SUVmean × MTV. Conventional PET/CT parameters,
such as SUVmax, SUVmean, MTV, and TLG, were not
obtained from radiomic feature extraction, so we incor-
porated these indicators into clinical characteristics.

2.3. PET/CT image segmentation and feature
extraction

The workflow is illustrated in Fig. 1. The ROI of im-
ages was delineated independently by two experienced
nuclear medicine physicians using ITK-SNAP software
(Version 3.6, United States). After manual segmenta-
tion, the PyRadiomics package [23] was adopted to au-
tomatically calculate the radiomic features from tumor



S. Liu et al. / Radiomics model of 18F-FDG PET/CT imaging for predicting disease-free survival 253

ROIs, including shape, intensity and texture [24]. Shape
features could reflect the geometric properties of tumors
and were only calculated on original images. Intensity
features, which describe the voxel intensity distribu-
tion, were calculated using first-order statistics. Tex-
ture features were calculated based on different texture
matrixes to quantify tumor heterogeneity.

For CT images, in addition to the original images, a
wavelet filter and a Laplacian of Gaussian (LoG) filter
were applied to obtain derived images for richer feature
extraction [25]. The wavelet features were extracted
based on wavelet decomposition and reflected multi-
scale information of intensity and texture. LoG filters
were used to enhance edge information and emphasize
tumor textures of different coarseness levels. In total,
1218 radiomic features were extracted from CT images.

For PET images, feature calculation was only per-
formed based on original images considering the low-
resolution characteristics of PET images, and the per-
sonal dose and weight were used for normalization. A
total of 100 PET features were extracted.

Finally, we obtained a total of 1318 radiomic features
from CT and PET images.

2.4. Feature selection

Radiomic feature selection was performed in the
training set in the following three steps. First, the con-
cordance index (C-index) was used to evaluate the uni-
variate prognostic ability of each feature, and a low
C-index indicated poor predictive ability for prognosis.
Features with a low C-index were removed. Second,
the variance inflation factor (VIF) was applied to quan-
tify the collinearity between features and remove re-
dundancy from high-dimensional features [26]. In each
iteration, the feature with the highest VIF value was re-
moved. This procedure was performed iteratively until
the VIF values of all remaining features were below
a certain threshold. Third, the random survival forest
(RSF) [27] model was used for multivariate analysis.
RSF is an ensemble of tree-based learners that can eval-
uate the importance of input features. For each feature,
an importance score was calculated by RSF based on
evaluations of relevance and prognosis between all fea-
tures. Then, features with important scores below a pre-
set threshold were removed, and the radiomic signa-
ture was generated using the remaining features. For a
total of 16 clinicopathologic features, considering the
small number of features, only the last two steps were
performed. The model parameters and thresholds were
determined by grid search, and all procedures were im-
plemented using stats-models [28], scikit-learn [29] and
scikit-survival packages [30–32].

2.5. Prognostic model establishment

Based on the selected features, the popular ensemble
RSF method was used to build the prognostic model.
The radiomic signature and clinicopathologic features
were first enrolled in the RSF model independently and
then fused into a comprehensive model. For all of the
above models, 4-fold cross-validation was performed
in the training set to determine the model parameters.

2.6. Statistical analysis

Continuous variables were described as medians with
ranges, and categorical variables were described as
frequencies with percentages. Training and testing set
characteristics were compared using the descriptive sta-
tistical analysis method for continuous variables and
χ2 or Fisher’s exact tests for categorical data. Kaplan-
Meier analysis was performed to evaluate the predictive
capacity of the model. The performance of the prognos-
tic model was evaluated on the independent testing set
with the C-index, which is most frequently used in sur-
vival analysis and can assess the overall prognostic abil-
ity of the model. To further evaluate the performance of
the model in a specific time range, the time-dependent
cumulative/dynamic AUC (C/D AUC) was calculated,
which is an extension of the area under the receiver op-
erating characteristic (ROC) curve in survival analysis
with censored data [33–35]. The mean value of the C/D
AUC (m C/D AUC) was used as an indicator to measure
the performance of the preoperative predictive model.
All statistical tests were two-sided, and p < 0.05 was
considered statistically significant.

3. Results

3.1. Clinicopathologic characteristics

As shown in Table 1, the clinicopathologic charac-
teristics of the training and testing cohorts were similar.
A total of 201 patients were divided into two groups: a
training cohort with a median age (range) of 47 (19–73)
years and a testing cohort with a median age (range) of
48 (25–74) years. The FIGO stage ranged from IB1-
IIA2.

In the training cohort, the median (range) DFS was
56 (1–111) months. A total of 19 (13.6%) patients re-
lapsed or metastasized during the follow-up period.
The median (range) preoperative SCCA was 2.2 (0.3–
70.0) ng/ml. Over half of the patients had postopera-
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Table 2
Description of selected radiomics feature in predictive model

Index Feature name Description
f1 CT_wavelet-HLH_gldm_SmallDependenceHighGrayLevelEmphasis A Measure of the joint distribution of small depen-

dence with higher gray-level values
f2 CT_log-sigma-4-0-mm-3D_glrlm_RunVariance A measure of the variance in runs for the run lengths
f3 CT_log-sigma-4-0-mm-3D_gldm_LowGrayLevelEmphasis A measure of the distribution of low gray-level values
f4 CT_log-sigma-5-0-mm-3D_glrlm_LongRunHighGrayLevelEmphasis A measure of the joint distribution of long run lengths

with higher gray-level values
f5 CT_log-sigma-5-0-mm-3D_gldm_DependenceNonUniformity A measure of the similarity of dependence throughout

the image
f6 PET_original_glcm_SumSquares A measure in the distribution of neigboring intensity

level pairs about the mean intensity level in the GLCM

Fig. 2. Selected radiomic features in predicting DFS. Feature importance of radiomic (A) and clinicopathologic features (B). f1, CT_wavelet-
HLH_gldm_SmallDependenceHighGrayLevelEmphasis; f2, CT_log-sigma-4-0-mm-3D_glrlm_RunVariance; f3, CT_log-sigma-4-0-mm-3D_
gldm_LowGrayLevelEmphasis; f4, CT_log-sigma-5-0-mm-3D_glrlm_LongRunHighGrayLevelEmphasis; f5, CT_log-sigma-5-0-mm-3D_gldm_
DependenceNonUniformity; f6, PET_original_glcm_SumSquares; f7, TLG; f8, LVSI; f9, lymph node metastasis; f10, deep stromal invasion; f11,
preoperative SCCA level; f12, FIGO stage.

tive pathologic risks, including 62 (44.3%) with tumor
size > 4 cm, 102 (72.9%) with stromal invasion depth
> 1/2, 58 (41.4%) with LVSI, 6 (4.3%) with parame-
trial invasion, 2 (1.4%) with positive surgery margins,
and 46 (32.9%) with lymph node metastasis. Eighty-
six (61.4%) patients underwent postoperative adjuvant
therapy. The immunohistochemical Ki67 value was
recorded with a median of 75% (range 20%–95%). For
PET/CT scans, the median (range) routine PET/CT clin-
ical parameters were as follows: SUVmax, 12.58 (2.65–
37.41); SUVmean, 5.17 (2.57–12.77); MTV, 26.43
(0.41–235.56); and TLG, 143.70 (1.05–1806.75).

In the testing cohort of 61 patients, 8 (13.1%) pa-
tients relapsed or metastasized with a median DFS of
52 months (range 3–113 months). The median (range)
SCCA level and Ki67 value were 3.4 (0.3–70.0) ng/ml
and 80% (20%–95%), respectively. The tumor size was
larger than 4 cm in 38 (62.3%) patients. In total, 45
(73.8%) patients were pathologically proven to have
a stromal invasion depth > 1/2, 23 (37.7%) to have
LVSI, 4 (6.6%) to have parametrial invasion, 1 (1.6%)

to have a positive surgery margin, and 18 (29.5%) to
have lymph node metastasis. For PET/CT parameters,
the median (range) SUVmax, SUVmean, MTV and
TLG were 12.82 (2.50–71.84), 5.38 (2.72–20.56), 37.00
(0.28–263.37) and 230.27 (0.76–2183.34), respectively.

3.2. Feature selection

The important radiomic features were selected from
a total of 1318 radiomic features, including 1218 CT
features and 100 PET features. First, univariate analysis
was performed, and the results showed that 178 CT fea-
tures and 22 PET features were considered to be predic-
tive and were selected. Then, the collinearities of the re-
maining features were analyzed. Twenty-five indepen-
dent features (21 CT features and 4 PET features) were
selected when the redundant features with VIF values
larger than 10 were removed. Finally, with the multi-
variate analysis based on RSF, 6 important radiomic fea-
tures were selected, including 5 CT features and 1 PET
feature. As shown in Fig. 2A, CT-wavelet-HLH_gldm_
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Fig. 3. The K-M curve of radiomic, clinicopathologic, and combined model in training and testing dataset.

SmallDependence HighGrayLevelEmphasis and CT-
log-sigma-4-0-mm-3D_glrlm_RunVariance were the
most important features compared with others. The def-
initions of 6 selected radiomic features are presented in
Table 2, which were in compliance with the Imaging
Biomarker Standardization Initiative (IBSI) [36].

For 16 clinicopathologic features, 5 redundant fea-
tures were first removed by VIF. Then, the features with
a nonpositive important score in RSF-based multivariate
analysis were further removed, resulting in 6 prognostic
clinicopathologic features (Fig. 2B), including TLG,
LVSI, lymph node metastasis, deep stromal invasion,
preoperative SCCA level, and FIGO stage.

3.3. Performance of the prognostic model

After feature selection, the RSF model was estab-
lished to predict the risk scores for each patient. For
each model, patients in the training and testing sets
were stratified into high- and low-risk groups by the
optimal cutoff value obtained from the log-rank test
on the training set. The cutoff values of the radiomic,
clinicopathologic and combined models were 4.9, 3.9
and 4.0, respectively. The Kaplan-Meier curves of DFS
revealed a significant difference between the high- and
low-risk groups (Fig. 3).

The overall performances of the models were evalu-
ated with the C-index value. As illustrated in Table 3,

the PET/CT radiomic model yielded robust discrimina-
tion, with C-index values of 0.9557 for the training set
and 0.9338 for the testing set, which was better than the
clinicopathologic model (0.9125 for the training set and
0.9019 for the testing set). By merging the radiomic and
clinicopathologic features, a comprehensive model was
further built and achieved C-index values of 0.9717 and
0.9527 for the training and testing sets, respectively.

The cumulative/dynamic AUC (C/D AUC) curve was
used to evaluate the model performance in a specific
time range. The curve showed that the combined model
achieved the most robust performance during the re-
search period (Fig. 4). The mC/D AUC, which is likely
to be the C-index, was calculated to measure the pre-
dictive efficiency of the model over all time ranges in
Table 3. Compared to single PET/CT radiomic (mC/D
AUC = 0.9146) and clinicopathologic models (mC/D
AUC = 0.8645), the combined model outperformed a
better prognostic prediction (mC/D AUC = 0.9199) in
the testing set. Furthermore, a higher C/D AUC value
at a specific time t indicates that the model could better
distinguish patients who suffer relapse/metastasis be-
fore time t from those after time t. We found that the
preoperative combined model showed a high predictive
value, with a C/D AUC value (C/D AUC60) of 0.9703
at the time point of 60 months after surgery, compared
to 0.9248 in the clinicopathologic model and 0.8923
in the radiomic model (shown in Table 3 and Fig. 4).
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Table 3
The performance of the predictive model

Models Dataset C-index mC/D AUC C/D AUC60

Radiomic model Training 0.9557
Testing 0.9338 0.9146 0.8923

Clinicopathologic model Training 0.9125
Testing 0.9019 0.8645 0.9248

Combined mode Training 0.9717
Testing 0.9527 0.9199 0.9703

Abbreviation: mC/D AUC, the mean value of cumulative/dynamics area under the
curve. C/D AUC60, a C/D AUC value at 60 months after surge.

Fig. 4. The C/D AUC curve of the radiomic, clinicopathologic, and combined models in the testing dataset. As an indicator to measure the
preoperative predictive efficiency of the model in addition to the C-index, the mC/D AUC was further calculated over all time ranges. The curve
showed that the combined model achieved the best performance during the research period, and the mC/D AUCs of the radiomic, clinicopathologic
and combined models were 0.9146, 0.8645, and 0.9199, respectively. At 60 months after surgery, the preoperative combined model showed a
higher predictive value with a C/D AUC60 of 0.9703 compared to 0.9248 in the clinicopathologic model and 0.8923 in the radiomic model (tag
line shown). However, the predictive ability was obviously decreased after 100 months.

The predictive ability was obviously decreased after
100 months.

4. Discussion

Radiomics of PET/CT combined with clinicopatho-
logic features was successfully developed using the
RSF method for predicting DFS in early-stage uterine
cervical squamous cancer. This predictive model in-
corporated 6 radiomic (5 for CT and 1 for PET) and 6
clinicopathologic features, which showed better perfor-
mance and more accurate prediction in the training and
testing sets.

18F-FDG PET/CT has emerged as a prognostic tool
in uterine cervical cancer, but parameters such as SU-
Vmax, SUVmean, MTV and TLG have been incon-

sistently correlated with outcome [7–10]. In our study,
TLG showed a close predictive correlation with DFS
and was selected for the RSF model, but SUVmax, SU-
Vmean, and MTV did not. Our results were partially
similar to Zhang’s [7]. However, some studies demon-
strated that none of the SUVmax, SUVmean, MTV,
or TLG of primary cervical tumors were predictors of
recurrence [8,9]. In another study, Yun et al. found that
SUVmax had prognostic value in patients with surgi-
cally resected cervical cancer [10]. These controversies
resulted in conventional 18F-FDG uptake parameters
failing to reflect survival dependably.

Recently, radiomics has emerged as an interdisci-
plinary medical engineering platform that exhibits po-
tential clinical application prospects and has been ap-
plied to oncologic detection, diagnosis, therapeutic re-
sponse and prognosis [11–16]. Its essence is to extract
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high-throughput, quantitative medical imaging to de-
scribe the characteristics of tumors to improve the accu-
racy of diagnosis [37]. Compared to other carcinomas,
radiomics analysis applied to the prognosis of uterine
cervical cancer was less common, and most were ad-
vantageous for cervical cancer. Lucia et al. success-
fully developed a combined radiomic model based on
PET/CT and MR for predicting recurrence in advanced
uterine cervical cancer, and the predictive accuracy was
as high as 90% using this radiomic model compared
to 56–60% using standard clinical variables in exter-
nal validation [15,16]. Most likely due to the shorter
follow-up time, few prognostic studies have attempted
to compare early-stage uterine cervical cancer using
PET/CT radiomic features. Our study intended to cover
the shortage of the prognostic application of PET/CT
to early-stage uterine cervical cancer.

Many studies have shown that radiomics combined
with clinicopathologic features could enhance the pre-
dictive efficiency in prognosis and the therapeutic effect
of malignances [38–41], which was consistent with our
results. We successfully extracted 6 radiomic features,
including 5 for CT and 1 for PET, and established a
model using the popular ensemble RSF method. The
radiomic model achieved better predictive performance
for the training and testing datasets than the 6 selected
clinicopathologic models, which consisted of TLG,
SCCA level, FIGO stage, LVSI, lymph node metas-
tasis, and deep stromal invasion. In combination with
these above clinicopathologic features, the compound
radiomic predictors performed better than the single
radiomic model. It is worth noting that the number of
selected radiomic features derived from PET images
was less than that derived from CT images in our study.
The reason may be that features from PET images were
more likely to be affected by the scanning protocols and
reconstruction parameters than CT features [14].

There are some advantages in our study. Cox regres-
sion analysis, the most commonly used method for tu-
mor prognosis in the clinic, reflects the linear relation-
ships between variables and targets. However, not all
conformed with linear correlations. Therefore, we used
a machine learning approach for survival analysis based
on the decision-tree ensemble RSF method for multi-
variate analysis, which has demonstrated robustness to
censored data and noisy variables. It is able to detect
not only a shift in nonlinear relationships (between vari-
ables and predicted target values) but also variable inter-
actions. Moreover, RSF is suitable for high-dimensional
and multimodal input data and naturally avoids over-
fitting [27,42,43]. Zhou et al. [42] showed that sur-

vival forest leads to better predictions than Cox regres-
sion, particularly for cases dealing simultaneously with
a small sample size and a high number of variables.
Furthermore, we used an extension of the ROC curve
in survival analysis – the C/D AUC curve – to further
evaluate the predictive performance of the model. It
could evaluate prognostic efficiency in a specific time
range and appears more clinically relevant and intuitive
than the common ROC curve [33–35]. In our study, we
found that the preoperative combined model showed
the best overall performance during the follow-up pe-
riod and had a high predictive efficiency with a C/D
AUC of 0.9703 at 5 years since radical surgery. How-
ever, the predictive ability was obviously decreased af-
ter 100 months. A large number of patients lost during
the long follow-up time might mainly contribute to this
situation. Moreover, cervical cancer is a group of het-
erogeneous tumors based on distinctive histopathologic
features. Because the majority pathological type of cer-
vical cancer is squamous cell carcinoma, our study was
performed in this homologous group of patients with
the same histology to increase the generalizability of
our findings.

Of course, our study had some limitations. This was
a retrospective study with potential recall bias. In addi-
tion, although this model was well fitted in training and
testing cohorts, prospective studies are still needed to
confirm the predictive value of this model in external
validation.

5. Conclusions

In conclusion, we successfully developed a com-
pound radiomic model based on preoperative PET/CT
images combined with clinicopathologic features,
which achieved approval power in predicting DFS in
early-stage uterine cervical squamous cancer patients.
This individual model could provide more accurate
relapse/metastasis-related information and could be
helpful in individual decision-making.
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