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Abstract. There has been a significant increase in the incidence of multiple neurodegenerative and terminal diseases in the
human population with life expectancy increasing in the current times.
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This highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular
diet, may affect neural functioning and consequently cognitive performance as well as in enhancing overall health. Flavonoids,
found in a variety of fruits, vegetables, and derived beverages, provide a new avenue of research that shows a promising
influence on different aspects of brain function. However, despite the promising evidence, most bioactive compounds lack
strong clinical research efficacy. In the current scoping review, we highlight the effects of Flavonoids on cognition and neural
plasticity across vertebrates and invertebrates with special emphasis on the studies conducted in the pond snail, Lymnaea
stagnalis, which has emerged to be a functionally dynamic model for studies on learning and memory. In conclusion, we
suggest future research directions and discuss the social, cultural, and ethnic dependencies of bioactive compounds that
influence how these compounds are used and accepted globally. Bridging the gap between preclinical and clinical studies
about the effects of bioactive natural compounds on brain health will surely lead to lifestyle choices such as dietary Flavonoids
being used complementarily rather than as replacements to classical drugs bringing about a healthier future.
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BACKGROUND26

Dependence on bioactive natural compounds for27

promoting human health28

A report in The Lancet states that individuals diag-29

nosed with cognitive disorders are estimated to grow30

by 115 million by 2050 [1]. As the World’s popu-31
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lation ages, age-related impaired executive functions 32

and learning and memory abilities are becoming an 33

enormous public health, social, and economic burden, 34

representing one of the major causes of hospitaliza- 35

tion, nursing care, and death worldwide [2–4]. 36

Unfortunately, pharmacological interventions 37

based on synthetic drugs only seem to alleviate 38

symptoms of impaired neuroplasticity [5], without 39

effectively targeting the pathophysiology of cogni- 40

tive decline. Thus, determining whether and – if so 41

– how human neuroplasticity can be preserved to 42

match extended life expectancy more closely, is both 43

necessary and urgent. 44
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Table 1
Classes of Flavonoids and their Sources

Class Flavonoids Sources

Flavanols Epigallocatechin
gallate

Cocoa, grapes, green tea,
and red wine

Epigallocatechin Tea, apples, capers,
onions, broccoli,
strawberries, leeks, and
grapefruits

Epicatechin
Catechin
Quercetin
Kaemferol
Morin
Galangin

Flavanones Eridictyol Tomatoes, grapefruits,
and citrus fruitsHesperetin

Naringenin
Naringin

Flavones Luteolin Onions, broccoli, oranges,
cabbage, carrot,
grapefruit, parsley

Wogonin
Diosmin
Apigenin

Isoflavones Equol Soy and derivates
Daidzein
Genistein
Glycerin

Anthocyanins Malvidin Red wine, berry fruits,
and beansHirsutidin

Pelargonidin
Cyanidin

In this complex scenario, growing evidence45

from translational studies confirmed the poten-46

tial of dietary bioactive compounds – including47

polyphenols, terpenoids, polysaccharides, capsaici-48

noids, carotenoids and tocopherols, triterpenes and49

phytosterols, alkaloids, saponins, glucosinolates -50

in preventing and/or improving impaired cognitive51

functions [6]. Indeed, diet, together with genetic52

background, aging, hormonal states, comorbidities53

of chronic disorders, toxin exposures, socioeconomic54

profiles, and lifestyle behaviours act as a key modu-55

lator of neuroplasticity [7, 8].56

This Scoping Review is not intended to be an57

exhaustive review of studies investigating the effects58

of bioactive compounds on neuroplasticity. Owing to59

space limitations, we have restricted our discussion to60

selected bioactive compounds and model organisms.61

In particular, we focused our attention on Flavonoids62

(Table 1), as these phytochemical compounds pro-63

vide a new avenue of research that shows a promising64

influence on different aspects of brain function [9,65

10], including memory, attention, and overall cogni-66

tive function [11, 12].67

Flavonoids are present in many plants, fruits, veg-68

etables, and leaves [13]. Some examples include69

compounds found in green tea, such as epicate-70

chin, which have been found to improve attention 71

and cognitive function [13]. Similarly, compounds 72

found in berries, such as anthocyanins, have been 73

found to improve memory and cognitive function [14, 74

15]. Additionally, compounds like quercetin, have 75

been found to have anti-inflammatory and antioxi- 76

dant effects, which may also contribute to cognitive 77

enhancement and improve overall immunity and 78

health [16–19]. 79

Thus, in the last decade, an expanding body of 80

research highlights enhanced cognitive performance 81

in various age groups [20–22] after both chronic 82

and acute interventions involving high levels of 83

Flavonoids [23, 24]. In particular, the emerging 84

body of evidence indicates the potential benefits of 85

Flavonoids on attention, working memory [20, 25], 86

and psychomotor processing speed [23, 24]. The data 87

also suggests that the impact of Flavonoids is likely 88

dependent on the dose and flavonoid supplementation 89

could yield cognitive improvements within a short 90

timeframe of 0–6 hours [23, 24]. For example, Devore 91

et al., (2012) investigated the relationship between 92

berry and flavonoid consumption and cognitive 93

decline in ≥ 70 years women [20], by administrating 94

food frequency questionnaires to participants every 4 95

years from 1980 and in 1995–2001 started measuring 96

their cognitive functions. The study revealed that a 97

higher intake of blueberries and strawberries (i.e., 98

foods rich in Flavonoids [26]) and total Flavonoids 99

was associated with delayed cognitive aging by up 100

to 2.5 years. Thus, this study revealed that a diet rich 101

in Flavonoids, particularly those from berries, might 102

play a role in mitigating cognitive decline in older 103

adults. Similar results have been obtained in the 104

PAQUID (i.e., Personnes Agées Quid) study, which 105

examined 1640 aged 65 or older dementia-free indi- 106

viduals over a 10-year period and, after accounting 107

for age, sex, and education level, demonstrated that 108

higher Flavonoid intake was linked to improved 109

cognitive performances [27]. Finally, in a recent 110

study, Godos et al., (2020) analysed the relationship 111

between dietary flavonoid intake and cognitive 112

health in 808 adults living in southern Italy [28]. By 113

recutting to food frequency questionnaires, estimat- 114

ing polyphenol content using the Phenol-Explorer 115

database (www.phenol-explorer.eu), and assessing 116

the cognitive status using the Short Portable Mental 117

Status Questionnaire [29], the study revealed a sig- 118

nificant inverse association between higher dietary 119

intake of total flavonoids and impaired cognitive 120

status. Moreover, specific subclasses of flavonoids, 121

including quercetin, flavan-3-ols, catechins, 122
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anthocyanins, and flavonols, were linked to better123

cognitive health. Thus, the study suggests that greater124

consumption of flavonoids through diet might be125

correlated with improved cognitive health in adult126

individuals residing in the Mediterranean area [28].127

Despite the promising results demonstrating the128

cognitive efficacies of Flavonoids, several other stud-129

ies show mixed conclusions [25] and there are130

challenges related to their success in clinical trials131

[30, 31]. In particular, gaps in scientific validation,132

knowledge of pharmacokinetics, toxicity, and mech-133

anism of action, are limiting the recommendation of134

these compounds in clinical studies [32–34]. More-135

over, most Flavonoids go through a rapid metabolism,136

have non-specific targeting, poor solubility, as well as137

lack brain-blood-barrier permeability [35, 36].138

In this complex scenario, translational stud-139

ies are necessary to predict a direct relationship140

between Flavonoid intake, enhanced cognitive func-141

tion, and/or protection against neurodegeneration.142

This may be extremely useful for both clinical treat-143

ment interventions and preventive approaches.144

Thus, in the next sections, we present important145

discoveries on the effects of flavonoid-rich com-146

pounds on cognitive functions in different model147

organisms, highlighting the advantages of inverte-148

brate models in this research field [37]. A special149

focus will be on the pond snail Lymnaea stagnalis,150

as – over the last decade – it has become a valuable151

model organism for studying the memory-enhancing152

effects of different bioactive compounds [37–39].153

Finally, we will provide potential solutions to154

address research gaps and guide future research.155

Specifically, we will focus on the social, cultural,156

and ethnic dependencies on these products, the issues157

related to potential adverse reactions, and challenges158

in monitoring safety, as well as their use to comple-159

ment and not as a substitute to ‘classical drugs’ for160

cognitive decline and memory loss.161

MODEL ORGANISMS FOR PRECLINICAL162

STUDIES163

To promote a better understanding of the mul-164

tifaceted effects of Flavonoids on brain plasticity,165

research on multiple model organisms needs to occur.166

It must always be borne in mind that animal mod-167

els no matter their origin or complexity can never168

fully substitute for a human central nervous system.169

This is especially true when the human nervous sys-170

tem’s functionality is altered by neurodegenerative171

processes that result in neuropsychiatric disorders. 172

With those caveats in mind model organisms are pro- 173

viding essential information on the mechanisms of 174

action of different bioactive compounds [40–42]. 175

The models most often used are rodent models (i.e., 176

rats and mice) [43] as they offer genetic tools that can 177

be useful to validate the function of specific genes, or 178

their role in more complex functions, including neu- 179

roplasticity [44]. In this regard, Singh et al. (2022) 180

recently reviewed the antioxidant and memory- 181

enhancing properties of plant-derived polyphenols 182

such as Flavonoids, phenolic acids, stilbenes, 183

lignans, and non-phenolic compounds like bacoside- 184

A, withaferin-A, ginkgolide-B, withanolide-A, and 185

bilobalide [45]. 186

In that regard, other researchers proposed the use 187

of nano-herb conjugates to improve permeability 188

in the brain to attenuate oxidative stress effectively 189

overcoming the limited ability of many prospective 190

bioactive compounds to cross the blood-brain barrier 191

[46, 47]. 192

Flavonoids, encompassing phytochemical com- 193

pounds and dietary additions, possess substantial 194

nutritional worth and antioxidant characteristics. 195

These components have been applied to address 196

oxidative stress in therapeutic contexts, aiming to 197

alleviate the negative impacts of this stressor on 198

the aging brain. [38–42]. For example, a recent 199

publication [43] reviewed the therapeutic potential 200

of phytoestrogens rich in Flavonoids, like genis- 201

tein, daidzein, and resveratrol, in memory restoration 202

in aging and different neurological disorder. Estro- 203

gen in females plays a major role in health as 204

estrogen possesses antioxidative, anti-apoptotic, and 205

anti-inflammatory actions [44]. There is growing 206

evidence of the ability of estrogen and its recep- 207

tors to epigenetically regulate the expressions of 208

genes involved in memory functions [51–53]. There- 209

fore, a reduction in estrogen signalling as occurs in 210

menopause [54, 55] represents a risk for age-related 211

memory decline and neurodegenerative disorders. 212

However, phytoestrogens show neuroprotective, neu- 213

rogenic, and memory restoration potential in aged 214

estrous female rodents, Alzheimer’s disease models, 215

and human subjects [56]. Previous studies reported 216

that menopause is responsible for multiple metabolic 217

changes such as dyslipidemia and enhanced adi- 218

posity, leading to behavioural alterations including 219

cognitive decline [57–60]. Unfortunately, hormone 220

replacement therapy has not been effective, and it 221

sometimes showed detrimental effects on memory 222

functions [61]. 223
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In this context, Bahndari et al. (2022) reported224

that dietary supplementation using stem powder of225

Tinospora cordifolia (a medicinal plant belonging to226

the family Menispermaceae rich in Flavonoids, tan-227

nins, and steroids [62]) for 12 weeks improved the228

learning and memory behaviour in high-fat diet-fed229

acyclic-aged female rats [63]. Molecular analysis of230

the glial marker GFAP and the microglial protein Iba1231

showed a significant decline in the expressions of232

these proteins, indicating a reduction of neuroinflam-233

mation in the hippocampus and the prefrontal cortex234

of T. cordifolia–supplemented rats, compared with235

high-fat diet-fed acyclic aged female rats [63]. Fur-236

thermore, those authors found a significant increase237

of the anti-apoptotic proteins AP-1 and Bcl-xL lev-238

els and a significant reduction of the pro-apoptotic239

marker p-BAD in both the hippocampus and pre-240

frontal cortex of these animals, suggesting a pro-cell241

survival effect of T. cordifolia supplement of high-242

fat diet-fed acyclic aged female rats [63]. Finally,243

the T. cordifolia supplement restored the expression244

of neurotrophic BDNF and Trk� in the hippocam-245

pus and the prefrontal cortex of the high-fat diet-fed246

acyclic-aged female rats, suggesting T. cordifolia as247

a potential therapeutic agent to prevent the adverse248

effects of obesity and obesity-associated brain dys-249

functions [64].250

Another recent study published by Huang et al.,251

(2021), investigated the neuroprotective effect of the252

natural flavonoid rhoifolin in rats with streptozotocin-253

induced Alzheimer’s-like disease [65] and found254

a significant improvement in memory, cognition,255

and spatial learning in rhoifolin-treated Alzheimer’s-256

like disease animals. Moreover, rhoifolin treatment257

resulted in a significant increase in the hippocampal258

CA1 pyramidal layer of those animals indicating its259

neuroprotective properties [65].260

The increase in the hippocampal CA1 area fur-261

ther validated the reversal of cognitive dysfunctions262

caused by the streptozotocin treatment. Furthermore,263

analysis of oxidative stress markers SOD, CAT, GPX,264

GRX, and MDA showed a significant improvement265

in oxidative stress in the hippocampus and frontal266

cortex.267

Thus, this study provided the first evidence of the268

effect of plant flavonoid, rhoifolin on an Alzheimer269

-like disease in rat models, representing a promising270

therapeutic agent for the management of this terrible271

neurodegenerative disorder [65].272

In this complex scenario, because of the complex-273

ity of mammalian brains, as well as the multimodal274

mechanisms of actions of different bioactive com-275

pounds, contrasting results are not too surprising [41]. 276

Additionally, the high cost involved in mammalian 277

studies and the increasing difficulties in obtaining 278

ethical approvals for certain types of experimenta- 279

tion may result in researchers considering alternative 280

options [66–68]. 281

In this complex scenario, invertebrates that have 282

a simpler nervous system and also show interesting 283

and important variation across wild populations, rep- 284

resent a more ethical, faster, cheaper but still valid 285

model organisms (with few ethical requirements) to 286

test for the effects of bioactive compounds on brain 287

plasticity and functioning [37]. 288

Being simpler model organisms, the pathways that 289

are affected by such natural compounds can be deter- 290

mined relatively easily [38]. However, as most of 291

these pathways are also evolutionarily preserved and 292

thus would show similarity across taxa, over the last 293

decade, worms flies, bees, snails, and fish have proven 294

to be extremely useful to bridge the gap between pre- 295

clinical and clinical studies investigating the effects 296

of bioactive compounds on neuroplasticity (Table 2). 297

Review of some of the literature on the effect of 298

Flavonoids on brain plasticity in different 299

invertebrate species 300

Over the last three decades, invertebrate models 301

(mainly Molluscs, Arthropods, and Nematodes) have 302

been used as screening tools for drug discovery [40, 303

69]. Therefore, by combining genetic amenability, 304

low cost, and breeding conditions, these organisms 305

allowed high-throughput screening in a physiologi- 306

cal context, representing a needed tool to bridge the 307

gap between traditional in vitro and preclinical animal 308

assays. Thanks to the great advances in comparative 309

genomics, it has been demonstrated that there is a high 310

level of conservation of numerous key physiological 311

pathways across taxa [87]. Thus, while maintaining 312

the simple organization of the invertebrate nervous 313

system [71–73], these organisms not only allowed 314

the characterization of the conserved mechanisms 315

through which the central nervous functions and gets 316

sick but also elucidate the mechanisms of actions 317

of many drugs and compounds [37, 39, 40, 74–76]. 318

Invertebrates have been and still are of fundamental 319

importance in understanding basic neuroscience and 320

in accelerating the pace at which mammalian studies 321

can be translated to humans [40]. 322

Recently, these organisms have been used to detect 323

the mechanisms of action of many dietary bioactive 324

compounds. 325
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Table 2
Some of the most relevant studies on the effects of different bioactive compounds on neuroplasticity in invertebrate model organisms

Species Bioactive compound Effects Citation

Drosophila melanogaster Adzuki bean Restoration of the abnormal memory, movement
defects, and shortened lifespan in
A�42-overexpressing flies model of Alzheimer’s
disease

[78]

Drosophila melanogaster Citrus sinensis, Citrus
maxima, and Citrus paradisi

Improved memory index [87]

Drosophila melanogaster Ganoderma lucidum, Panax
notoginseng Panax ginseng

Improvement of memory deficits induced by an
inflammatory status

[88]

Drosophila melanogaster Cyanidin, keracyanin,
Kuromanin

Prevention of A�-induced neurotoxicity and
neurite outgrowth

[89]

Drosophila melanogaster Garcinia binucao Prevention of alcohol-induced neurotoxic effects
on learning, short-term memory, and motor
functions

[83]

Drosophila melanogaster Rhodiola rosea Improved odor-taste reward associative memory [90]
Caenorabditis elegans Acanthopanax senticosus Improved the long-term memory of

radiation-damaged worms
[91]

Caenorabditis elegans Cranberry extract Preventive effects through alleviating A�
toxicity

[92]

Lymnaea stagnalis Quercetin Enhancement of long-term memory formation,
upregulation of the expression levels of CREB1
(a key factor for neuroplasticity), and prevention
of the heat-shock-induced upregulation of HSPs

[93–95]

Lymnaea stagnalis Epicatechin Enhancement of long-term memory formation
and reversion of the memory-impairing effects
of different stressors

[96–98]

Lymnaea stagnalis Green tea Enhancement of long-term memory formation
and reversion of the memory-impairing effects
of different stressors

[98–100]

Danio rerio Quercetin and rutin Prevention of scopolamine-induced memory
impairment

[101]

Danio rerio Silibinin and Naringenin Prevention of Bisphenol A-induced
neurotoxicity

[102]

As reported in Table 2, most of the studies on326

the multifaceted effects of bioactive compounds327

have been performed in the fruit fly Drosophila328

melanogaster, the worm Caenorhabditis elegans, the329

pond snail Lymnaea stagnalis, and zebrafish (Danio330

rerio).331

As previously indicated, this section is not intended332

to be an exhaustive collection of all the studies333

performed in invertebrate models on all bioactive334

compounds currently available. That is, for reasons335

of space, we have selected only recent publications336

in the most used invertebrate models for biomedical337

research.338

Most of the studies using D. melanogaster and C.339

elegans as model organisms have been performed on340

animal models of neurodegenerative diseases and/or341

aging-related disorders [13, 77–84]. In fact, both342

these organisms can undergo easy genetic analysis,343

allowing the discovery of various mutants and the344

identification of the responsible genes for neurode-345

generative diseases.346

Therefore, the administration of dietary bioac- 347

tive compounds and/or food and beverage rich in 348

them in transgenic flies and worms allowed the 349

characterization of the multifaceted effects of bioac- 350

tive compounds on brain plasticity and functionality. 351

That is, over the last decade, a huge number of 352

bioactive compounds that have been analysed show 353

antioxidant, antiapoptotic, neuroprotective, and anti- 354

inflammatory properties. Moreover, studies involving 355

treatments with these compounds on cognitively 356

impaired animal models showed several beneficial 357

effects in enhancing neuroplasticity and/or extending 358

life span (Table 2). 359

On the other hand, most of the studies using 360

zebrafish were focused on the effects of various 361

bioactive compounds on neurotoxicity. Danio rerio 362

represents an excellent in vivo model for studying 363

developmental neurotoxicity [85]. Indeed, thanks to 364

their small sizes and abundance of embryos, these 365

organisms are ideal for high-throughput screening in 366

which the compounds tested can simply add in the 367



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 V. Rivi et al. / Bioactive Compounds and Neuroplasticity

medium of zebrafish, which will passively diffuse368

[86].369

Importantly, comparative neurogenetic and neu-370

roanatomical analyses reveal high degrees of371

conservation between the nervous systems of372

zebrafish and mammals [86]. Therefore, this model373

organism provides a valid tool in which to investi-374

gate the effects of bioactive compounds in preventing375

and/or modulating neurotoxicity and, on the other376

hand, to evaluate the potentially toxic effects of bioac-377

tive compounds themselves.378

Special focus on Lymnaea stagnalis as a model379

system to understand the effects of natural380

compounds on learning and memory381

Among a wide variety of invertebrate models used382

in Neuroscience research [37], the freshwater pond383

snail Lymnaea stagnalis (Linnaeus 1758), has been384

widely recognized as an ideal model system in which385

to investigate the action of various bioactive com-386

pounds on learning and memory formation [38, 39,387

103, 104] (Fig. 1).388

The rich behavioural repertoire that L. stagnalis389

uses to survive and adapt to its natural environment390

makes this organism a remarkable model system391

with which to study not only associative learn-392

ing and the neuronal and molecular mechanisms of 393

memory formation, but also how different stressors, 394

drugs, and bioactive compounds may modulate (i.e., 395

either enhancing or impairing) learning and memory 396

formation [95, 103, 105–115]. L. stagnalis pos- 397

sesses relatively simple but important homeostatic 398

behaviours whose underlying neuronal circuitry has 399

been well elucidated [116–118]. Moreover, many of 400

these behaviours are tractable and relatively easy to 401

train [119, 120]. 402

At the neuronal level, the nervous system of L. stag- 403

nalis consists of about 25000 large (up to 150 �m 404

in diameter) neurons, organized in a ring of inter- 405

connected ganglia, offering a relatively large amount 406

of biological material that can be analysed molec- 407

ularly, physiologically, and morphologically [110, 408

121]. The neurons can be easily removed and placed 409

in culture, where they reform the appropriate synap- 410

tic connections [122, 123]. Thus, single neurons 411

can be identified and analysed as part of defined 412

circuits, allowing electrophysiological dissection of 413

the networks involved in relatively simple rhythmic 414

behaviours, such as aerial respiration and feeding 415

[124]. These rhythmic movements are induced by 416

groups of central pattern-generating neurons (CPGs) 417

[125], whose characterization is critical for under- 418

standing where and how the nervous system controls 419

Fig. 1. Studies that can be performed using Lymnaea stagnalis as a model organism for Translational Neuroscience research, offering an
array of advantages for exploring the conserved mechanisms underlying the effects of bioactive compounds (e.g., Flavonoids), drugs, and
environmental stressors on cognitive functions and aging-related processes.
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these homeostatic behaviours and how the interplay420

between CPGs and external stimuli participates in421

the production of adaptive learned behaviours. These422

CPG circuits can be plastically reconfigured via envi-423

ronmental changes, experiences, and conditioning424

procedures to optimize the output to meet specific425

behavioural demands [125].426

Importantly, L. stagnalis is an aquatic invertebrate427

with an open circulatory system, allowing the use428

of membrane-permeant compounds (including bioac-429

tive compounds like Flavonoids) that can be easily430

absorbed, to unravel the complexity of various sig-431

nalling pathways and provide new insights into how432

drugs and molecules can modulate different neuronal433

functions and behaviours [93–95, 106, 126, 127].434

Furthermore, the neuronal plasticity exhibited in435

the CPG circuits plays an important role in regulat-436

ing the initiation and temporal output of behavioural437

rhythms in response to rewarding/aversive stimuli (as438

occurs in classical conditioning) and action–outcome439

contingencies (as occurs in operant conditioning)440

[128, 129]. Therefore, by utilizing both in vitro and441

semi-intact preparations (which allow monitoring442

of the behaviour and neural activity simulta-443

neously), the CPGs controlling learning-induced444

changes and the effects of different compounds445

(like drugs and bioactive compounds) can be elu-446

cidated at the single-cell level in L. stagnalis447

[123, 130, 131].448

Lymnaea stagnalis serves as an excellent system449

because both quantitative changes in gene expres-450

sion induced by conditioning and the exposure to451

bioactive compounds can be studied at the level of452

single neurons, which may be extremely useful not453

only for elucidating which molecules participate in454

the dialogue between the synapse and the nucleus and455

vice versa during memory and learning but also to456

elucidate the conserved mechanisms through which457

Flavonoids and other bioactive compounds exert neu-458

roplastic effects [37, 38]. Importantly, studies such as459

these cannot easily be performed in most vertebrate460

preparations because their behaviours are more com-461

plex, and the underlying neuronal circuitries are more462

inaccessible to direct cellular and synaptic analyses463

[39, 132, 133].464

In 2012, Fruson et al. demonstrated that the expo-465

sure of Lymnaea to 15 mg l–1 of the flavonoid466

(–)Epicatechin enhanced long-term memory (LTM)467

formation for the operant conditioning of aerial res-468

piration, providing the first test of the effect of469

Flavonoids on invertebrate learning and memory470

[96].471

Indeed, Lymnaea can be operantly conditioned to 472

reduce aerial respiration, the memory of which is 473

altered by environmentally relevant stimuli, so we 474

can reliably assess how different factors alter mem- 475

ory formation [105, 120]. In particular, it has been 476

demonstrated that when snails were operantly condi- 477

tioned in (–)Epicatechin with a single 0.5 h training 478

session, which typically results in memory lasting 479

∼3 h, they formed LTM lasting at least 24 h [96]. 480

Additionally, snails exposed to (–)Epicatechin also 481

showed a significant increase in resistance to extinc- 482

tion, consistent with the hypothesis that this flavonoid 483

may induce the formation of a more persistent 484

and stronger LTM. In other words, (–)Epicatechin- 485

enhanced LTM formed faster, persisted longer, and 486

was more resistant to extinction. Thus, this was the 487

first study that paved the way for a new avenue 488

of research using L. stagnalis as a suitable model 489

with which to elucidate behavioural, neuronal, and 490

molecular mechanisms through which bioactive com- 491

pounds may enhance neuroplasticity. 492

Additional studies demonstrated that 493

(–)Epicatechin is only able to enhance memory 494

if snails are either trained in (–)Epicatechin- 495

containing pond water or exposed to it immediately 496

after training for the operant conditioning of aerial 497

respiration (i.e., during the consolidation period) 498

[97]. 499

In contrast, pre-treating snails with (–)Epicatechin 500

1 h before or delaying exposure to (–)Epicatechin 1 h 501

after training did not result in the enhancement of 502

memory formation. Thus, although (–)Epicatechin is 503

a very powerful memory enhancer in Lymnaea as well 504

as in mammals, it must be experienced either during 505

training or immediately after training to effectively 506

enhance memory [134]. 507

As previously reported, learning and subsequent 508

memory formation are influenced by both envi- 509

ronmental and lifestyle factors, such as stress and 510

diet [135, 136]. Therefore, while Flavonoids like 511

(–)Epicatechin enhance LTM formation in Lym- 512

naea, by contrast, ecologically relevant stressors, like 513

low-calcium (20 mg l–1) pond water and crowding, 514

suppress LTM formation [137–139]. 515

Thus, in 2014, Knezevic and Lukowiak, demon- 516

strated that exposure to (–)Epicatechin was able to 517

overcome the negative effects of a stressor (i.e., 518

low-calcium [137]) that blocks LTM formation in 519

Lymnaea [140, 141]. Specifically, while snails trained 520

in low-calcium pond water exhibited operant condi- 521

tioning learning, they did not show LTM, but when 522

epicatechin was added to the low-calcium pond water 523
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an LTM enhancement was observed [140]. This was524

the first evidence in an invertebrate model organism525

that a naturally occurring bioactive plant compound526

was able to overcome the suppressive effects of an527

ecologically relevant stressor on LTM formation.528

Thus, this study demonstrated that the effects of a529

memory-impairing stressor can be overcome by diet.530

As many foods, like green tea, cocoa powder, and531

Red Delicious apple peels [142–145] contain sub-532

stantial amounts of (–)Epicatechin, Swinton et al.,533

(2018) demonstrated that exposure to food products534

containing (–)Epicatechin in concentrations compa-535

rable to human consumption levels (approximately536

1 g/day) during training for the operant condition-537

ing of aerial respiration, enhanced LTM formation538

[127]. In particular, authors demonstrated that food539

substances containing (–)Epicatechin have a similar540

ability as the ‘pure’ flavonoid in enhancing memory.541

As UVB light inactivates (–)Epicatechin [146], fol-542

lowing the photo-inactivation of foods containing this543

flavonoid, their ability to enhance LTM was blocked544

[127]. Therefore, these data are consistent with the545

hypothesis that dietary sources of (–)Epicatechin may546

exert positive benefits on cognitive ability and be547

able to reverse memory aversive states. L. stagnalis548

exhibits a higher-order associative learning called549

configural learning [147, 148]. That is, when snails550

experience two contrasting stimuli together such as551

predatory effluent [149] and an appetitive taste (i.e.,552

carrot slurry), they learn and associate risk with food553

[112]. Thus, following the configural learning train-554

ing procedure and the establishment of a configural555

learning LTM, the carrot slurry now elicits a fear556

state, sometimes referred to as a landscape of fear557

in the brain, rather than increased feeding [148].558

Typically, configural learning memory persists for559

at least 3 h but not 24 h [150]. However, Batabyal560

and Lukowiak (2020), showed that green tea expo-561

sure (i.e., (–)Epicatechin) following the configural562

learning training enhances memory persistence if563

it occurred during the period when memory under-564

goes the consolidation process [150]. Thus, this study565

demonstrated for the first time that higher-order asso-566

ciative learning can be enhanced using green tea in567

an invertebrate taxon.568

These promising results obtained by exposing569

snails to green tea led the researchers to investigate570

whether Black tea, which is a more popular beverage571

than green tea and which is derived from the same572

tea leaves, also enhances LTM formation [99, 151].573

Interestingly, Zhang et al., (2018) found that black574

tea, unlike green tea, depressed homeostatic aerial575

respiratory behaviour and obstructed LTM formation 576

for the operant conditioning of aerial respiration in L. 577

stagnalis [99]. These differences may be due to the 578

fluoride content in black tea [106, 152]. However, 579

green tea also contains a similar amount of fluoride 580

but it is rich in Flavonoids which are lacking in black 581

tea, and that might lead to the differences observed 582

in terms of cognitive enhancement. Recent studies 583

from this model organism demonstrated the suppres- 584

sive effects of black tea and fluoride on Lymnaea’s 585

feeding behaviour and cognition [94, 152]. In addi- 586

tion, the exposure of snails to fluoride (1.86 mg/L) 587

for 45-min before, during, or after the configural 588

learning training procedure blocked configural learn- 589

ing memory formation [152]. The above-mentioned 590

effects were long-lasting as one week after a fluoride 591

exposure, snails are still unable to form a configu- 592

ral learning memory. Why these differences? Unlike 593

green tea, black tea leaves go through an oxidation 594

process called “fermentation” and this process sub- 595

stantially reduces (6.16 mg/100 g to 0.49 mg/100 g) 596

the (–)Epicatechin content in black tea [153]. Fur- 597

thermore, black tea contains more caffeine than green 598

tea, but substantially more flavan-3-ols like thearubi- 599

gins and theaflavins [153], which – in turn - may alter 600

cognition [153]. These studies suggest that although 601

both green and black teas come from the same plant 602

(Camellia sinensis), the different compositions in 603

bioactive compounds may result in different effects 604

on neuroplasticity. 605

Along with (–)Epicatechin, another flavonoid 606

widely studied in Lymnaea is quercetin. Quercetin 607

(3,3′,4′,5,7-pentahydroxyfavone) is present in fruits 608

and vegetables, such as apples, berries, onions, 609

asparagus, capers, and red leaf lettuce [154]. 610

Numerous studies have demonstrated quercetin’s 611

antioxidant and neuroprotective properties [155] in 612

aged patients and animal models of neurodegener- 613

ative diseases [156]. Thus, studies performed in L. 614

stagnalis may be extremely useful in exploring the 615

effects of these compounds enhancing memory for- 616

mation and recall. Recently Batabyal et al., (2021) 617

demonstrated that the exposure of snails to quercetin 618

for 1 h, either before or after configural learning 619

enhanced LTM up to 48 h [150]. Interestingly, the 620

enhanced LTM phenotype as a result of quercetin 621

exposure in L. stagnalis was most pronounced when 622

quercetin was experienced during the consolidation 623

phase; or when snails were exposed to it during mem- 624

ory reconsolidation. 625

Consistent with these behavioural findings it was 626

also shown that the exposure to quercetin for 1 h 627
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induced a significant upregulation of the orthologous628

of the transcription factor CAMP responsive element629

binding protein 1 (CREB1) in the Lymnaea’s central630

nervous system. Importantly, in snails as in mammals,631

CREB1 plays a key role in neuroplasticity [38]. Sim-632

ilarly, Rivi et al., (2021) provided the first support633

for quercetin-modulated enhancement of cognitive634

function in an invertebrate model after an operant635

conditioning procedure [94]. That is when snails were636

exposed to quercetin for 1 h, 3 h before or after a637

single 0.5 h training session, which typically results638

in memory lasting ∼ 3 h, they formed an LTM last-639

ing for at least 24 h [94]. Additionally, the authors640

assessed the effects of the combined presentation of641

a single reinforcing stimulus (at 24 h post-training or642

24 h before training) and quercetin exposure on both643

LTM formation and reconsolidation.644

These results suggested that, when applied within645

3 h of critical periods of memory, quercetin enhances646

learning acquisition, memory consolidation, memory647

recall, and memory reconsolidation [94].648

Interestingly, when those authors trained a naïve649

cohort of snails in hypoxic pond water and quercetin650

to determine whether this exposure resulted in651

enhanced LTM formation, quite unexpectedly, snails652

entered a sleep-like quiescent state that persisted for653

at least 2 h after ending the exposure [157]. The exper-654

iments suggest that this state might be a survival655

mode for these organisms when they cannot induce a656

physiological stress response of elevated Heat Shock657

Proteins’ (HSPs) expression under a hypoxic envi-658

ronment.659

Indeed, quercetin has proven to be a heat shock660

protein blocker [95, 108, 109, 158, 159]. In Lym-661

naea, the heat stress associated with exposure to 30◦C662

pond water for 1 h led to a rapid (within 30 min)663

upregulation of the mRNA levels of both HSP40 and664

HSP70, reaching a peak of expression within 2–4 h665

of exposure [95, 160]. It was further demonstrated666

that the heat shock stressor-induced enhancement667

of LTM formation for both operant conditioning of668

aerial respiration and the Garcia effect (i.e., a ‘special669

form’ of conditioned taste aversion [95]) occurred670

as a result of the upregulation of HSPs by the heat671

shock stressor in snails [159]. However, the enhanc-672

ing effect of the thermal stimulus on memory was673

obstructed if quercetin was presented before (but not674

after) the heat shock [95, 161]. Thus, studies from675

Lymnaea suggested that the exposure to quercetin676

and the heat shock results in opposite effects on677

LTM formation: when quercetin is applied before the678

heat shock, the upregulation of HSPs is blocked and679

LTM is not observed, whereas experiencing quercetin 680

alone before or after the operant conditioning of aerial 681

respiration or configural learning training, enhances 682

LTM formation, consolidation, and recall. Thus, all 683

these studies highlight the advantages of using L. 684

stagnalis as a very useful model system in gaining 685

an understanding of how bioactive compounds, such 686

as the Flavonoids quercetin and epicatechin, may 687

improve neuroplasticity in healthy organisms. 688

BRIDGING THE GAP BETWEEN 689

PRECLINICAL AND CLINICAL STUDIES 690

Because of the ongoing process of aging experi- 691

enced by modern society, the increasing prevalence 692

of neurodegenerative diseases is becoming a global 693

public health concern. Unfortunately, to date, there 694

are no effective therapies to slow, stop, or reverse the 695

progression of these diseases [162]. However, many 696

studies have suggested that modification of lifestyle 697

factors, such as the introduction of a balanced diet, 698

can delay or prevent the onset of neurodegenerative 699

diseases and psychiatric disorders. Diet is currently 700

considered to be a crucial factor in controlling health 701

and protecting against oxidative stress and chronic 702

inflammation, and thus against chronic degenerative 703

and psychiatric diseases [163]. 704

In this context, natural bioactive compounds 705

enhancing endogenous neuroplasticity raise hope for 706

such therapies and preventive approaches. The pre- 707

clinical studies from both mammals and invertebrates 708

summarized in this paper have demonstrated that 709

the neurorestorative actions of bioactive compounds 710

(especially Flavonoids) are associated with both 711

antioxidant and anti-inflammatory properties and 712

also act through the activation of multiple pathways 713

responsible for synaptogenesis and neurogenesis. 714

Although evolutionarily quite distant from humans, 715

invertebrates show molecular and behavioural prop- 716

erties that make them a wonderful model system to 717

study the effects of dietary supplements and bioac- 718

tive compounds on neuroplasticity paving the way 719

for future studies in humans. The use of inverte- 720

brate models will limit as much as possible the use 721

of mammalian models and allow mammals to be 722

involved only for the validation of the results obtained 723

from invertebrates. This will reduce by several orders 724

of magnitude the costs of numerous studies. Thus, 725

invertebrates as model systems provide a rapid and 726

cost-effective experimental tool for elucidating the 727

causal, neuronal, and molecular changes underly- 728
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ing the effects of different bioactive compounds on729

neuroplasticity. Thus, these organisms may offer a730

translational approach that may help gain important731

knowledge and comprehension in the field of Clinical732

Neuroscience.733

FINAL CONSIDERATIONS AND FUTURE734

PERSPECTIVES735

Inter-ethnic differences in the use of bioactive736

compounds and their metabolism737

Historically the production of medicines and phar-738

macological treatments began with using plant-based739

natural medicines (herbal medicine) and prior to740

the 1800 s and the advent of scientific experimen-741

tation, herbal remedies were culturally omnipresent742

throughout the globe [164–166]. This cultural prefer-743

ence for dietary bioactive compounds or alternative744

medicines stayed prevalent in many parts of the world745

[167]. In some countries, traditional herbal remedies746

which have been used for centuries are still deeply747

ingrained in the culture. In other countries, modern748

Western medicine is more heavily relied upon. In749

many Asian countries, for example, traditional Chi-750

nese medicine and Indian Ayurvedic medicine are751

widely used and accepted [168–170]. These tradi-752

tional systems use natural compounds such as herbs,753

minerals, and some cases animal products in their754

natural medicines [171].755

In contrast, many Western cultures tend to rely756

more heavily on pharmaceutical drugs and place757

less emphasis on alternative therapies although758

Native Americans have always relied upon natural759

plant-based medication for treating ailments [166].760

However, there is a growing interest and acceptance761

of alternative medicine globally as many people are762

now faced with sub-optimal health conditions due763

to lifestyle choices and are turning to natural com-764

pounds and alternative therapies to address their765

health concerns. The continued use and popularity766

of dietary supplements in recent years may be due767

to various factors, including fear of adverse events768

associated with prescription medications, cost of pre-769

scription medications, over-the-counter availability770

of dietary supplements, and perceptions that dietary771

supplements are “natural” or “herbal” and are there-772

fore safer to use [172].773

Although the use of food supplements and bioac-774

tive compounds is increasing worldwide, cultural775

preferences for natural compounds or the so-called776

‘alternative medicines’ vary greatly around the world777

[173]. Although dietary supplement use is a world- 778

wide growing phenomenon, only a few studies 779

examine why consumers choose to take bioactive 780

compounds [174]. Thus, future studies are neces- 781

sary to answer questions like: What factors are 782

primary motivators for the initiation of supplement 783

behaviours as well as the decision-making related 784

to short-term or long-term use? How does the use 785

of bioactive compounds vary across cultures? How 786

do motivations differ across different segments of 787

the population? How do social norms influence 788

and increase their use? Answering these questions 789

is important considering that ethical differences 790

reflect differences in drug and bioactive compound 791

metabolism [175]. Therefore, examining ethnic dif- 792

ferences in metabolic processes across groups is both 793

urgent and important to define and predict the phar- 794

macokinetics of dietary bioactive compounds and 795

their potential interaction with ‘classical drugs’. 796

Issues related to potential adverse reactions and 797

challenges in monitoring safety 798

Although the intake of bioactive compounds has 799

shown promising potential beneficial effects on neu- 800

roplasticity [176], many of them remain untested 801

and their use is poorly monitored [177, 178]. Unfor- 802

tunately, there is still inadequate knowledge of 803

their mode of action, potential adverse reactions, 804

contraindications, and interactions with existing 805

‘orthodox’ drugs to promote both the safe and ratio- 806

nal use of these compounds. Since safety is the 807

major issue with the use of bioactive compounds 808

and dietary supplements, it becomes imperative, that 809

relevant regulatory authorities put in place appropri- 810

ate measures to protect public health by ensuring 811

that all herbal medicines are safe and of suitable 812

quality [179]. Importantly, as by law, dietary supple- 813

ments are not intended to diagnose, treat, prevent, or 814

cure any disease, FDA-approved evidence of safety 815

and efficacy is not needed before their appearance 816

on the market. However, if these compounds are 817

used improperly there could be a risk of adverse 818

effects [180, 181]. However, their potential impor- 819

tance needs to be placed in scientific research to 820

understand the nuances of the action of such com- 821

pounds as most show a multifaceted effect working 822

across different physiological pathways [182, 183]. 823

Moreover, healthcare professionals are often poorly 824

informed on how bioactive compounds may affect 825

(both positively and negatively) the health of their 826

patients and the efficiency and safety of the thera- 827
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pies. Thus, as with other medicines for human use,828

it has become mandatory that bioactive compounds829

are covered in every country of the world by a drug830

regulatory framework to ensure that they conform to831

the required standards of safety, quality, and efficacy.832

This is the only way in which the use of bioactive833

compounds in potential complementary or alterna-834

tive cognitive therapeutics and preventive approaches835

will be possible.836

Complementary Versus Alternative837

The use of bioactive compounds to prevent and/or838

treat disorders is not typically part of conventional839

medical care or training when their origins come840

from outside of usual Western practice. Importantly,841

when describing these approaches, people often use842

“alternative” and “complementary” medicine inter-843

changeably. However, the two terms refer to different844

concepts. If a non-mainstream approach is used845

together with conventional medicine, it’s consid-846

ered “complementary”, whereas if a non-mainstream847

approach is used in place of conventional medicine,848

it’s considered “alternative” [184]. As most people in849

Western countries use bioactive compounds together850

with conventional drugs, the term ‘complementary851

should be preferred.852

To sum up, this Scoping Review emphasizes the853

significance of different model systems that could854

act as valid tools for studying the diverse qualities855

of bioactive compounds like Flavonoids in prevent-856

ing and/or treating cognitive decline. Nevertheless,857

there’s still a lack of enough data regarding their best858

doses, how well the body can absorb them, distinc-859

tions between various chemical forms, and potential860

interactions with other dietary elements and ‘tradi-861

tional’ drugs.862

Although more research in this area is neces-863

sary, results from preclinical studies are promising864

and support the benefits of the intake of food prod-865

ucts rich in these substances. Thus, we hope that in866

the near future, the results from preclinical studies867

(using both invertebrates and vertebrates) may pro-868

vide important information on how to combine longer869

life expectancy with more years free of cognitive870

impairment.871
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