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Abstract. The birth, maturation, and integration of new neurons in the adult hippocampus regulates specific learning and
memory processes, responses to stress, and antidepressant treatment efficacy. This process of adult hippocampal neurogenesis
is sensitive to environmental stimuli, including peripheral signals from certain cytokines, hormones, and metabolites, which
can promote or hinder the production and survival of new hippocampal neurons. The trillions of microorganisms resident to the
gastrointestinal tract, collectively known as the gut microbiota, also demonstrate the ability to modulate adult hippocampal
neurogenesis. In doing so, the microbiota-gut-brain axis can influence brain functions regulated by adult hippocampal
neurogenesis. Unlike the hippocampus, the gut microbiota is highly accessible to direct interventions, such as prebiotics,
probiotics, and antibiotics, and can be manipulated by lifestyle choices including diet. Therefore, understanding the pathways
by which the gut microbiota shapes hippocampal neurogenesis may reveal novel targets for non-invasive therapeutics to treat
disorders in which alterations in hippocampal neurogenesis have been implicated. This review first outlines the factors which
influence both the gut microbiome and adult hippocampal neurogenesis, with cognizance that these effects might happen
either independently or due to microbiota-driven mechanisms. We then highlight approaches for investigating the regulation of
adult hippocampal neurogenesis by the microbiota-gut-brain axis. Finally, we summarize the current evidence demonstrating
the gut microbiota’s ability to influence adult hippocampal neurogenesis, including mechanisms driven through immune
pathways, microbial metabolites, endocrine signalling, and the nervous system, and postulate implications for these effects
in disease onset and treatment.
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ADULT HIPPOCAMPAL
NEUROGENESIS

Introduction to adult hippocampal
neurogenesis

The hippocampus is one of only two regions of the
mammalian brain where new neurons are produced
throughout life via a process called hippocampal
neurogenesis which occurs in the neurogenic niche
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of the subgranular zone (SGZ) within the dentate
gyrus (DG) of the hippocampus [1]. In 1965, by
using thymidine-H3 tagging, Altman and Das discov-
ered the existence of new-born granule cells in the
adult rat dentate gyrus [2, 3]. Thymidine-H3 tagging
was later combined with neuronal nuclear protein
(NeuN), a marker of mature neurons, to confirm that
neural stem cells proliferate and differentiate into
mature granule neurons in the rat dentate gyrus [4],
igniting interest in the functional relevance of these
adult-born hippocampal neurons, and raising ques-
tions about whether adult hippocampal neurogenesis
is also prevalent in humans.

By using a thymidine analogue called bromod-
eoxyuridine (BrdU), which incorporates into the
DNA of all proliferating cells, and combining this
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with the neuronal markers NeuN, calbindin, and
neuron specific enolase, a landmark paper in 1998
revealed evidence that adult hippocampal neuroge-
nesis also occurs in the human dentate gyrus [1].
However, several publications in recent years have
encouraged debate around the existence and impor-
tance of adult hippocampal neurogenesis in humans,
and how it relates to brain disorders in humans [5–8].

Immunohistochemistry is currently the most
widely used method to directly analyse hippocampal
neurogenesis, as it allows for the identification and
spatial understanding of specific proteins, or antigens,
expressed during specific stages of the neurogenesis
process. Various protein markers have been identified
as being expressed at specific stages of neurogene-
sis such as during proliferation of neural stem cells,
neuronal differentiation, maturation and survival, and
integration into existing neuronal circuitry (Fig. 1) [9,
10].

Factors influencing adult hippocampal
neurogenesis

The process of adult hippocampal neurogenesis
is regulated by multiple endogenous factors. For
instance, GABAergic excitation induces neuroblasts
to develop into immature neurons [11]. Neurotrophic
factors, such as brain-derived neurotrophic factor
(BDNF), glia-derived nerve factor (GDNF), nerve
growth factor (NGF) and insulin-like growth factor
1 (IGF-1) promote adult hippocampal neurogenesis
[12–14]. Microglia, which are innate immune
cells resident to the central nervous system, prune
synapses of maturing neurons and can produce
cytokines which can induce or hinder neuron
development and survival [15].

Multiple exogenous factors also influence adult
hippocampal neurogenesis (Fig. 2), including diet
[16], stress [17–20], antidepressant treatment, exer-
cise, and environmental stimuli [17, 21–23]. While
the role of adult hippocampal neurogenesis in humans
is not entirely clear, adult hippocampal neurogen-
esis has been shown to affect specific processes of
learning and memory including spatial learning and
memory [24–28], trace conditioning memory [29],
pattern separation [30–32], and object recognition
[33], and has been implicated in stress resilience
[21, 34, 35], and antidepressant action [23, 36, 37]
in rodents. While the existence of hippocampal neu-
rogenesis during adulthood remains controversial in
humans due to limitations such as tissue process-
ing and the necessity to obtain brain tissue quickly

post-mortem [38, 39], analysis of adult hippocampal
neurogenesis in post-mortem human tissue has impli-
cated adult hippocampal neurogenesis in Alzheimer’s
Disease (AD) [40]. Due to the importance of adult
hippocampal neurogenesis in regulating cognition,
stress susceptibility, and antidepressant action, it is
increasingly important to understand the factors influ-
encing hippocampal neurogenesis (Fig. 2), and how
they may potentially be utilized to improve current
disease treatment options.

FACTORS THAT INFLUENCE
BOTH ADULT HIPPOCAMPAL
NEUROGENESIS AND THE GUT
MICROBIOME

Fascinatingly, several of the factors that are known
to influence adult hippocampal neurogenesis demon-
strate the parallel ability to influence the composition
or function of the gut microbiome, the trillions of
microorganisms which reside in the gastrointesti-
nal tract (Fig. 3) [42]. The gut microbiota has been
increasingly shown to manipulate cell processes and
biological functions in the brain, including adult hip-
pocampal neurogenesis, through what is known as
the microbiota-gut-brain axis (Fig. 4) [43].

Although it is currently largely unknown whether
lifestyle factors that influence adult hippocampal
neurogenesis and the gut microbiome are driven
by alterations to the gut microbiome or whether
these effects happen independently and in parallel,
increasing evidence through microbiota transplant
studies [44–46], germ-free (GF) rodents completely
devoid of microbes [47, 48], and microbiota-targeted
interventions (such as antibiotics or dietary supple-
mentation) [49, 50] have revealed a clear importance
of the gut microbiota in hippocampal neurogenesis,
as discussed later.

Stress and antidepressants

Adult hippocampal neurogenesis is disrupted dur-
ing stress [46, 52], and has emerged as a target of
antidepressant action [52]; a hallmark of chronic
antidepressant treatments is the ability to increase
adult hippocampal neurogenesis [53–58], which is
required for some of the behavioural effects of some
antidepressants [36, 37, 59]. A direct causal link
between disrupted adult hippocampal neurogene-
sis and depression has not yet been established in
humans. Nonetheless, human post-mortem studies
have reported that antidepressant-treated individu-
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Fig. 1. Common markers for various stages of hippocampal neurogenesis. Schematic representation of hippocampal neurogenesis in the
mouse dentate gyrus (DG). Quiescent neural stem cells in the subgranular zone (SGZ) undergo activation yielding daughter cells that can
self-renew the pool of neural stem cells or differentiate to generate neural progenitor cells and eventually neurons. Neuroblasts that survive
subsequent phases of maturation will migrate into the granule cell layer (GCL) and develop into granule neurons. Finally, these cells will
incorporate into hippocampal circuitry. Various commonly used markers expressed at different stages of hippocampal neurogenesis are
indicated. In addition to these markers, endogenous cellular proliferation markers, such as Ki67, as well as administerable markers, such as
BrdU, have become a widely used method to answer multiple questions around hippocampal neurogenesis. Upon administration via injection,
BrdU incorporates into the DNA during the S-phase of the cell cycle, when cells are undergoing division [250]. Proliferation markers such
as Ki67 and BrdU do not specifically label cells fated to become neurons, and thus must be used with at least one additional neuronal
marker. Marker abbreviations: double cortin (DCX); glial fibrillary acidic protein (GFAP); neuronal nuclear protein (NeuN); neurogenic
differentiation (NeuroD); prospero-related homeobox (Prox1); polysialylated neuronal cell adhesion molecule (PSA-NCAM); SRY-box
transcription factor 2 (Sox2); homologue of the Drosophila tailless gene (TLX), also known as nuclear receptor subfamily 2 group E member
1 (NR2E1). Figure adapted from [10].

als with diagnosed depression had a higher number
of neural progenitor cells in the dentate gyrus com-
pared with those with depression that were not treated
with antidepressants [57, 58]. Moreover, the serum
concentration of BDNF (a protein supporting neu-
rogenesis) is reduced in patients with depression as

well as in stressed rats and is normalized following
antidepressant treatment [60, 61], indicating similar
pathologies between humans and model organisms.

Both stress [62, 63] and antidepressants [64] also
have a noticeable impact on the gut microbiome,
and the gut microbiome has also been found to con-
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Fig. 2. Factors influencing adult hippocampal neurogenesis. Adult hippocampal neurogenesis is increased following exercise, antidepressant
drug consumption, a healthy diet, neurogenic immune signalling, and a healthy gut microbiome. However, other factors can be detrimental
to adult hippocampal neurogenesis, including aging, diets high in fat and sugar, stress, an aberrant immune system, and disruption of the
gut microbiome. These factors can influence the proliferation, maturation and survival of neurons in the adult hippocampus. Figure adapted
from [41].

tribute to the stress response in rodents [65, 66]. Stress
induces volatility in the gut microbiome [63], and dif-
ferent types of stress have varying effects on the com-
position of the gut microbiome. Stress during early
life appears to reduce Lactobacillus abundance in
primates and infants, along with reducing Bifidobac-
terium in infants [67, 68]. Lactobacillus displays
sensitivity to various types of stress, including acute
social stress, chronic unpredictable mild stress, and
restraint stress in rodents [46, 69], and interestingly,
Lactobacillus rhamnosus supplementation reduced
anxiety behavior and the acute stress-induced
elevation in plasma corticosterone in mice [70]. Fur-
thermore, Helicobacter pylori increased in the mouse
stomach following long-term psychosocial stress
[71], while people suffering from post-traumatic
stress disorder appear to have a lower abundance of
Actinobacteria, Lentisphaerae, and Verrucomicrobia
compared with trauma-exposed individuals [72].

Moreover, the antimicrobial effects of some antide-
pressants suggest their action may be, at least
in part, mediated by their ability to restructure
the gut microbiome. For instance, serotonin reup-
take inhibitor antidepressants, such as fluoxetine
and sertraline, can inhibit efflux pumps on bacte-
rial cell walls, and display antimicrobial properties
against some gram-positive bacteria, including Ente-
rococcus and Staphylococcus [73], while fluoxetine

demonstrates the ability to decrease Lactobacillus
rhamnosus, Escherichia coli, Lactobacillus john-
sonii, and Bacteroidales S24-7 in the rodent gut [64,
74]. Moreover, several antidepressants, including flu-
oxetine, escitalopram, duloxetine, and desipramine,
have been shown to decrease the relative abun-
dance of Adlercreutzia and Ruminococcus in mice,
while concomitant administration of Ruminococcus
flavefaciens to mice treated with the antidepressant
duloxetine was sufficient to abolish some antidepres-
sant effects of duloxetine [75], suggesting that not
only can antidepressants affect gut bacteria but that
gut bacteria can also affect antidepressant action,
though adult hippocampal neurogenesis was not
assessed in this study. While this evidence is promis-
ing, there exists a gap in understanding as to whether
the gut microbiota can mediate antidepressant-like
behaviour through altering adult hippocampal neu-
rogenesis. Therefore, mechanistic studies evaluating
the potential of the gut microbiota to mediate adult
hippocampal neurogenesis in the context of stress and
depression should be pursued to explore potential,
novel, microbiota-based treatment options.

Meanwhile, germ-free (GF) mice, devoid of all
microbes, exhibited an exaggerated hypothalamic-
pituitary-adrenal (HPA) stress response compared to
specific pathogen free (SPF) mice, and expressed
less BDNF in the hippocampus compared to SPF
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Fig. 3. Factors infleuncing the gut microbiota and hippocampal neurogenesis. Blue arrows indicate that the factors have been shown to
influence hippocampal neurogenesis, while pink arrows indicate the factors have been shown to influence the gut microbiome. Currently, there
is no evidence that birth mode (vaginal vs caesarean section), geography/culture, nor breastfeeding impact adult hippocampal neurogenesis.
Some evidence indicates that early weaning decreases hippocampal neurogenesis in mice [51], although it is impossible to untangle whether
this response was due to stress caused by premature maternal separation or the temporally altered change in nutrition.

mice [65]. The colonization of GF mice with a
single strain of Bifidobacterium infantis normalized
their divergent stress response [65]. Furthermore,
patients suffering from major depressive disorder
harbour unique signatures in their gut microbiomes,
including decreased microbial diversity and richness,
and when their faecal microbiota was transferred
to healthy, naive rats, the recipient rats displayed
anxiety-like and anhedonia behaviours [66]. Simi-
larly, transferring the microbiota from stressed mice
into naive mice is sufficient to transfer biologi-

cal and behavioural phenotypes induced by stress,
including decreased hippocampal endocannabinoid
signalling, altered serum metabolite levels, and
despair behaviour [46].

Environmental enrichment and exercise

Environmental enrichment, including exercise and
learning tasks, increases adult hippocampal neuroge-
nesis in healthy adult rodents [26, 76–78]. Through
the promotion of hippocampal neurogenesis, envi-
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Fig. 4. Proposed and established mechanisms of microbial regulation of adult hippocampal neurogenesis. Microbe-derived signals can be
transmitted to the brain through neuronal, endocrine, metabolite-driven, and immune pathways. The vagus nerve allows for direct neuronal
transmission of gut signals to the nucleus tractus solitarius in the brain, which can be relayed to the hippocampus via the medial septum.
Through fecal microbiota transplant and probiotic supplementation, microbial signalling from the gut has been shown to alter levels of
hippocampal BDNF and influence adult hippocampal neurogenesis. Immune cells circulating the gut, including monocytes and T cells,
are sensitive to the gut microbiota, reacting to microbial cell wall components, such as lippopolysaccharide, and microbially-produced
metabolites, such as short-chain fatty acids and indoles, that permeate the intestinal epithelium. These immune cells are also primed by the
gut microbiota during early life, shaping their functionality in adulthood. T cells and monocytes can traffic to the brain, where they, along with
resident microglia, can produce pro-inflammatory and anti-inflammatory cytokines, which have been shown to inhibit or promote hippocampal
neurogenesis. Microglia are also sensitive to microbially-produced short-chain fatty acids, which can cross the intestinal epithelium and
blood-brain barrier to directly modulate the functionality of microglia. In addition to cytokine production, microglia are responsible for
pruning neuronal dendrites and supporting neuronal development and survival. The gut microbiota can metabolize tryptophan, a precursor
to serotonin, kynurenine, and indole. Indole produced by the gut microbiota can directly bind to aryl hydrocarbon receptors (AhR) on
neural progenitor cells, promoting neuronal differentiation. Immune cells are also sensitive to indoles through AhR receptors. Intestinal
neurotransmitter and hormone production is mediated by enteroendocrine cells and under partial control by the gut microbiota, but whether
microbial regulation of these metabolites directly influences adult hippocampal neurogenesis in vivo is unconfirmed. Studies involving
germ-free mice and microbiota transplantation have demonstrated the importance of the gut microbiota for regulating the HPA axis, which
contributes to the production of cortisol (or corticosterone in rodents). Glucocorticoids can directly bind to receptors on progenitor cells
and immature neurons and generally have a supressive effect on hippocampal neuron proliferation and survival of newborn neurons. In
addition to adult hippocampal neurogenesis, the gut microbiota contributes to neuroplasticity, long term potentiation, and intestinal barrier
and blood brain barrier permiability, which offers some mechanistic insight into how the gut microbiota may regulate adult hippocampal
neurogenesis and related behaviour. Abbreviations: Adrenocorticotropic hormone (ACTH); brain-derived neurotrophic factor (BDNF);
orticotropin-releasing factor (CRF); enteroendocrine cell (EEC); hypothalamus-pituitary-adrenal (HPA).
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ronmental enrichment has been reported to promote
the extinction of submissive and depressive-like phe-
notypes following social defeat stress and chronic
exposure to an aggressor mouse, which are forms
of psychosocial stressors [79]. Exercise is a form of
environmental enrichment that promotes the produc-
tion and survival of neurons in the adult hippocampus
and has antidepressant-like behavioural effects [80,
81]. Although the mechanisms by which exercise
promotes hippocampal neurogenesis are not fully
established, exercise-induced release of serotonin in
the central nervous system is key for the promotion of
neuronal proliferation [82]. Moreover, exercise has
been reported to increase serum BDNF in humans
[81].

In parallel, it has been reported that exercise also
impacts the gut microbiome [83, 84]. One study com-
paring endurance athletes to individuals with a high
body mass index found that 48 taxa were increased in
elite rugby players including increased Akkermansia
and lower abundance of the taxon Bacteroidetes [83].
Exercise in humans has also been found to increase
genera related to the production of short-chain fatty
acids, including Faecalibacterium prausnitzii [85].
Moreover, the gut microbiota is able influence the
trafficking of Ly6Chi monocytes, a known pathway by
which exercise increases adult hippocampal neuroge-
nesis [49, 86]. Recently, by transferring the microbes
from mice exposed to environmental enrichment into
standard rearing recipient mice, it was shown that the
gut microbiota related to environmental enrichment
can promote neuronal plasticity in the visual cortex,
potentially via modulation of short-chain fatty acids
[87], though whether the gut microbiota drives sim-
ilar pro-plasticity occurrences in the hippocampus is
currently unknown.

Aging

Aging involves the gradual deterioration of home-
ostatic functions coinciding with an increased
incidence of disease [88]. The characteristics of aging
can be seen at a genetic and cellular level, resulting in
immunosenescence, an imbalance of chemical mes-
sengers (including a reduction in growth hormones,
disequilibrium of neurotransmitters) and disrupted
hormonal and nutrient sensing [88]. This whole-body
degeneration is also evident in the physiology and
function of the gastrointestinal tract, with marked
changes in gastric motility, declining gastrointesti-
nal epithelial barrier integrity [89], complications in
digestion (such as hypochlorhydria), and deteriora-

tion of the ENS contributing to striking alterations of
the gut microbiota [90].

Hippocampal neurogenesis is substantially
reduced during physiological aging in rodents, pri-
mates, and humans [4]. Aged rodents (20–24 months)
have a substantial loss in dentate gyrus progenitor
proliferation, leading to a reduction in the production
of new-born granule cells [91, 92]. Furthermore,
senescence of the hippocampal neurogenic niche
reduces the proportion of neural stem cells that are
actively dividing [93, 94], perhaps due to a depletion
in the quantity of neural stem cells [95]. This reduc-
tion in neurogenesis is noticeable in mice as young as
6 months of age and correlates to impaired cognition
in rodents [96] as well as the progression of cognitive
decline in Alzheimer’s Disease in rodent models and
humans [9, 40]. Rejuvenating the aged neurogenic
niche through diet, exercise, or factors in the blood
has been shown to rescue aging-associated declines
in hippocampal neurogenesis and cognitive deficits,
as reviewed extensively elsewhere [97], further
implicating hippocampal neurogenic processes with
age-related cognitive decline. Furthermore, lifestyle
factors such as exercise and cognitive stimulation
promote hippocampal neurogenesis and may be
protective against aging-related neuropathologies
including cognitive decline [78, 98, 99]. This
evidence suggests that targeting the aging-associated
decline in hippocampal neurogenesis may be an
important strategy for developing novel therapeutics
for treating declining cognition in aging.

In addition to declining hippocampal neurogene-
sis, aging triggers an increase in intestinal microbial
diversity which is correlated to frailty, longevity
[100–103], and other markers of health in aging [104,
105]. Studies involving centenarians have implicated
the gut microbiota in longevity and extreme aging,
revealing specific taxa such as Akkermansia that may
contribute to healthy aging [100, 106, 107]. Inter-
estingly, germ-free rodents, void of any microbiota,
have extended lifespans [108]. Moreover, transfer-
ring gut microbiota from young to adult killifish
extended the lifespan of recipient fish, while microbes
from age-matched donors had no such effect [102].
The distinguishable shift in the composition and
diversity of the gut microbiome during mammalian
aging typically leads to an increase in gut micro-
biota diversity as dominant commensal taxa are lost
and replaced by other commensals and pathobionts
[109]. Aging commonly triggers a decrease in the
genera Prevotella, Roseburia, Corpococcus, Faecal-
ibacterium, and Bifidobacterium, the latter of which
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includes several probiotic strains which have been
preclinically shown to increase adult hippocampal
neurogenesis, hippocampal BDNF expression, and
convey anxiolytic effects to their host following stress
[110–112]. Several other taxa begin to emerge in
the aging gut and have been grouped into two cat-
egories; those associated with healthy aging (such as
Akkermansia, Odoribacter, and Christensenellaceae)
and pathobionts associated with worsened health in
aging (such as Bilophila, Desulgovibrio, Fusobac-
terium, and Enterovacteriaceae) [109]. Moreover,
the retention of abundance of Bacteroides or low
microbial uniqueness correlated with increased mor-
tality in elderly people [113]. Notably, the aged
gut microbiota has been shown to promote sys-
temic inflammation and immunosenescence, leading
to T-cell activation and disrupting intestinal barrier
integrity [114]. The capability for aging-associated
gut microbiota to perturb adult hippocampal neuro-
genesis is discussed in section 3.1.3.

Diet

Preclinical dietary manipulations have revealed the
importance of diet in promoting and maintaining
adult hippocampal neurogenesis. Diets high in fat
and sugar decrease hippocampal cell proliferation,
the survival of newly born neurons, and hippocampal-
dependent behaviour in mice and rats [50, 115,
116], potentially by influencing neuronal mitochon-
dria biogenesis [50] and/or the increase in circulating
corticosterone [116]. Meanwhile, long-term running
exercise was able to counteract the blunting conse-
quences of a high fat diet on the survival of newly born
hippocampal neurons and promote spatial learning
and reversal learning performance in the Morris water
maze task in mice [117]. On the other hand, dietary
patterns which can influence the gut microbiome,
including caloric restriction and intermittent fasting,
promote longevity and improve memory [118–127]
potentially through the upregulation of brain-derived
neurotrophic factor [128, 129].

Some dietary compounds have been deemed pre-
biotics since they are selectively utilized by the gut
microbiome, such as fermentable fibres and phenolics
[130]. Diets rich in prebiotics appear to ameliorate
aging-related cognitive and immune deficits [131,
132] and have also been shown to alter hippocampal
neurogenesis. For instance, higher consumption of
certain prebiotic polyphenols can promote hippocam-
pal neuron proliferation and survival [133–135].
Dietary supplementation with specific bacteria can

directly alter adult hippocampal neurogenesis [46, 49,
110, 136, 137], as discussed in section 3.1.4.

THE GUT MICROBIOTA REGULATES
ADULT HIPPOCAMPAL NEUROGENESIS

The parallel between factors that influence both
adult hippocampal neurogenesis and the gut micro-
biome make it less surprising that the gut microbiota
can orchestrate alterations to neurogenesis in the hip-
pocampus. While the factors outlined above could
exert independent effects on gut microbiota and
hippocampal neurogenesis, there is emerging evi-
dence that the gut microbiota can regulate adult
hippocampal neurogenesis. Manipulations of the gut
microbiota, including germ-free rodents, antibiotics,
microbiota transfers, and prebiotic dietary inter-
ventions, as well as studies interrogating potential
mechanisms of action through the vagus nerve,
immune system, and metabolite-driven routes, have
laid solid preclinical evidence that there are multiple
pathways by which the gut microbiota can regu-
late adult hippocampal neurogenesis, summarized in
Fig. 4.

Evidence from gut microbiota manipulation
studies

Germ-free rodents
As discussed previously, GF animals are com-

pletely sterile from all microorganisms, and therefore
act as a clean slate for understanding how the micro-
biota shapes host biology. In addition to having
distinctly aberrant immune profiles, gut abnor-
malities, and behavioural abnormalities including
hyperactivity, cognitive deficits, and altered anxiety-
like and depressive-like behaviour, GF rodents have
unique disruptions within the brain, culminating
in impaired blood-brain barrier function, imma-
ture microglia, increased myelination, and altered
hippocampal neurogenesis [138]. In 2015, Ogbon-
naya and colleagues found that adult GF mice had
increased numbers of BrdU+/NeuN+ cells in the
hippocampus [47]. Moreover, colonizing 3-week-
old GF Swiss Webster mice with microbiota was
unable to rescue these effects [47]. Others have since
observed alterations in hippocampal neurogenesis in
GF mice seems to be sex-, age-, and potentially strain-
sensitive. Specifically, male C57BL/6J GF mice were
shown to have fewer DCX+ maturing neurons in their
hippocampus compared to conventional C57BL/6J



K.E. Guzzetta et al. / Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis 105

mice at 4 weeks old – a transient effect which was
not apparent at 8 or 12 weeks of age in this study
[48], though the reduction in DCX+ cells in the
hippocampus of adult male C57BL/6J GF mice com-
pared to SPF mice was still significantly apparent in
another study [139]. Meanwhile, the density of matur-
ing neurons in 4-week-old female C57BL/6J mice
did not significantly diverge from their conventional
counterparts, and instead had a greater density of hip-
pocampal DCX+ cells at 8 weeks of age, but not at 12
weeks of age [48]. Similar findings were observed in
the proliferation and death of cells in the dentate gyrus
[48]. Moreover, hippocampal serotonergic signalling
[140] and serotonin biosynthesis [141] are disrupted
in GF rodents, both of which are important regulators
of hippocampal neurogenesis.

Antibiotics
While commonly administered to treat infections

clinically, oral antibiotics also act as a useful tool
for perturbing the gut microbiota and can therefore
be useful for understanding the relationship between
the gut microbiota and hippocampal neurogenesis. In
mice, an orally administered cocktail of antibiotics
consisting of ampicillin, vancomycin, ciprofloxacin,
imipenem, and metronidazole for 7 weeks decreased
hippocampal cell proliferation (BrdU), neuron mat-
uration (BrdU/DCX/NeuN) and neuron survival
(BrdU/NeuN), and also impaired novel object recog-
nition [49]. Interestingly, this effect was prevented
when mice were allowed free access to a run-
ning wheel or administered a faecal transplant from
health SPF mice [49]. Moreover, through adop-
tive transfer or elimination of Ly6Chi monocytes,
Möhle and colleagues demonstrated that gut micro-
biota signaling to trafficking Ly6Chi monocytes drive
alterations to adult hippocampal neurogenesis [49].
Antibiotic use has been clinically associated with
neurotoxicity in at-risk patients, including elderly
and juvenile individuals [142], and chronic antibi-
otic use in middle-aged women was associated with
decreased cognitive ability after a roughly 7-year
follow-up [143]. Whether these clinical effects are
mediated by the gut microbiota or are rather off-
target direct consequences of antibiotics has not been
confirmed.

Faecal microbiota transplant
Faecal microbiota transplant (FMT) involves the

transfer of an entire microbiota from one organism
into another organism and is therefore a valuable tech-

nique for interrogating how specific naturally existing
microbial communities influence their host. FMT has
been popularized medically for its 90% success rate
in treating recurrent Clostridioides difficile infection,
a life-threatening infection which is often resistant to
existing antibiotics [144], and is now being trialled for
other gastrointestinal diseases as well as neurological
disorders, including depression [145].

In 2016, FMT from depressed patients into naïve
rats was shown to induce anxiety-like and depressive-
like phenotypes in the recipient rats, a phenomenon
which did not occur when rats were given FMT from
healthy people, however adult hippocampal neuro-
genesis was not investigated in this study [66]. Since
then, FMT from depressed patients, as well as chron-
ically stressed mice, has been shown to decrease the
quantity of DCX+ immature neurons in the dentate
gyrus of recipient naïve mice and to also induce
depressive-like behaviour [46, 137], confirming that
the gut microbiota is an active regulator of hippocam-
pal neurogenesis, and also indicating that the gut
microbiota may play an active role in the progression
of diseases in which disrupted hippocampal neuroge-
nesis has been implicated.

In addition to stress-related conditions, the gut
microbiota has also been shown to play a causative
role in the deficit in cognitive ability that occurs
with aging. For instance, transplanting microbiota
from aged mice into young mice impaired spatial
memory and learning ability and altered synaptic
plasticity-related protein expression [146]. Coun-
terintuitively, despite the decreased hippocampal
neurogenesis occurring in aged mice, when micro-
biota from aged mice where transplanted into young
germ-free mice, the hippocampus of young recip-
ient mice had increased DCX+ immature neurons
in their dentate gyrus compared to their counter-
parts which received microbiota from young mice
[44]. Meanwhile, FMT from 18-month old C57BL/6
mice into old germ-free mice did not induce dif-
ferences in the density of hippocampal DCX+ cells
[44], which indicates that, while the gut microbiota
can confer alterations to hippocampal neurogenesis,
the innate biology of the recipient is also critical for
achieving specific microbiota-driven effects. Sepa-
rately, adult hippocampal neurogenesis and memory
function were impaired in 8-week-old male C57Bl/6
mice who were administered FMT from 9-month
old 5xFAD mice (a mouse model of Alzheimer’s
disease), but not from aged-matched C57BL/6 mice
[147], potentially implicating the gut microbiome in
the pathology of Alzheimer’s disease. There appears
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to be limitations for the ability of the gut microbiota
to restore the aging-related reduction in hippocam-
pal neurogenesis; a study investigating the impacts of
faecal microbiota transfer from young mice to aged
mice on the aging brain did not observe improvements
in the survival of newly born hippocampal neurons,
although some aspects of neurogenesis-linked spa-
tial learning and memory were rescued following this
microbiota transfer [148]. In addition to aging and
stress related disruptions to hippocampal neurogen-
esis, FMT has also been utilized to demonstrate that
the drug-induced restructuring of the gut microbiota
also reshapes its ability to alter hippocampal neu-
rogenesis. Mice that consumed a high-fat diet and
also administered metformin, a drug commonly pre-
scribed to treat diabetes, did not suffer from high-fat
diet-induced deficits to hippocampal neurogenesis
and cognitive ability. Moreover, when microbiota
from these metformin-treated mice were transferred
into mice currently on a high-fat diet but otherwise
drug-naïve, FMT was sufficient to increase the num-
ber of proliferating cells in the hippocampus and
improve novel object recognition [149].

Individual bacteria and consortia
administration

While FMT is a valuable tool for understand-
ing how complex communities of microorganisms
impact their host, it does not allow for the granular-
ity in deciphering whether specific microbes within
the community are driving the observed effects.
Moreover, FMT is an invasive procedure when
conducted clinically, and carries a risk for transfer-
ring pathogenic bacteria. Therefore, administration
of single bacterial strains or consortia of bacte-
ria are useful approaches to tease out mechanistic
details of how the gut microbiota impacts adult hip-
pocampal neurogenesis. The discovery of individual
probiotic strains or consortia of bacteria has histor-
ically been driven by correlative evidence showing
a decreased relative abundance of specific bacteria
in diseased populations and remains largely explo-
rative. Nonetheless, through correlative approaches,
a handful of bacteria have been shown to regulate
hippocampal neurogenesis. For instance, adminis-
tration of Lactobacilli plantarumWJL to chronically
stressed mice for 5 weeks was sufficient to increase
hippocampal cell proliferation and the survival of
newly born neurons in the dentate gyrus [46].
Moreover, a consortium consisting of eight bac-
terial strains, including Lactobacillus acidophilus,
Lactobacillus plantarum, Lactobacillus paracasei,

Lactobacillus delbrueckii subsp. Bulgaricus and also
Streptococcus thermophilus, Bifidobacterium breve,
Bifidobacterium longum, Bifidobacterium infantis
increased hippocampal neurogenesis in mice sub-
jected to unpredictable chronic mild stress, an effect
which FMT from SPF mice was unable to achieve
[49]. A separate multi-strain mixture of bacteria, con-
sisting primarily of Bifidobacterium animalis subsp.
lactis and Streptococcus thermophilus along with
other Lactobacillus and Lactiplantibacillus strains
increased the number of DCX+ cells in the dentate
gyrus and mitigated neuroinflammatory responses in
mice injected with lipopolysaccharide, a component
of the outer membrane of some bacteria [136]. More-
over, 2-week consumption of a dual-strain probiotic
consisting of L. helveticus R0052 and B. longum
R0175 increased the number of DCX+ cells in the
dentate gyrus of male C57Bl/6 mice that had previ-
ously been exposed to water avoidance stress [110],
and has clinically been shown to alleviate the severity
of depression [150, 151].

While some bacteria appear to harness the abil-
ity to increase adult hippocampal neurogenesis, other
strains have been shown to disrupt it. For instance,
one study found that administration of Bacteroides
uniformis or Bacteroides fragilis to naïve, antibi-
otic pre-treated mice reduced the mean number of
DCX+ cells in the dentate gyrus compared to naïve,
antibiotic pre-treated mice that received pasteurized
Bacteroidetes [137].

Prebiotics and diet
Diets including various fruits and vegetables,

which are high in prebiotic polyphenols [152], have
been clinically associated with improvements in
depressive symptomology [153], and yields antide-
pressant and anti-anxiolytic effects in various rodent
models [154–156]. Meanwhile, a Mediterranean-
style diet, which is high in fish oils, was sufficient
to improve mental health scores in individuals with
depression [157] and improve cognitive performance
in aging humans [158]. Omega-3 fatty acids, which
are prevalent in high-fish diets, have been shown to
promote hippocampal neurogenesis in mice [159] and
lobsters [160]. Separately, omega-3 fatty acids were
able to act directly on cultured human hippocampal
progenitor cells, therein preventing cortisol induced
reductions in neurogenesis [161]. Nonetheless, the
mechanisms of action for how specific diets and
dietary compounds, such as polyphenols and fibres,
exert their effects on the brain remains unknown,
though their ability to influence the gut microbiota
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may allow for their potential effects on hippocampal
neuroplasticity-related behaviours [132, 162, 163].

As defined earlier, prebiotics are substrates selec-
tively utilized by the gut microbiome, such as
fermentable fibres and phenolics [130]. Fermentable
fibres can be digested by bacteria into short-chain
fatty acids including acetate, butyrate, and propi-
onate, which have immunomodulatory and histone
deacetylase inhibitory properties, including directly
in the brain [164, 165]. When administered orally
to pigs for 4 weeks, sodium butyrate increased hip-
pocampal neurogenesis and hippocampal granular
cell layer volume [166]. Oral sodium butyrate has
also been shown to ameliorate cognitive deficits and
increase the expression of neurotrophic factors in rats
subjected to early life stress [167], and decrease hip-
pocampal neuroinflammation in aging mice [168].
The soluble dietary fibres fructo-oligosaccharides
(FOS) and galacto-oligosaccharides (GOS) have
been shown to regulate BDNF and synaptic protein
expression in rodents [169, 170], though whether they
can directly alter hippocampal neurogenesis has not
yet been demonstrated.

In addition to fibre, various flavonols exert neu-
rotrophic effects, although it is largely unclear
whether these effects require the gut microbiome or
simply restructure the gut microbiota independently
from their effects in the hippocampus. For example,
the polyphenol quercetin can enhance learning and
memory, alleviate anxiety-like behaviour, increase
neural stem cell and progenitor cell proliferation,
promote neurotrophic factors including BDNF, and
increase the quantity of DCX+ dentate gyrus cells
in rats [162, 171]. Meanwhile, a citrus flavonoid,
3,5,6,7,8,3′,4′-Heptamethoxyflavone, increases adult
hippocampal neurogenesis in mice that were exposed
to chronic unpredictable mild stress [172]. More-
over, the peel of the Citrus kawachiensis fruit,
which contains 3,5,6,7,8,3′,4′-Heptamethoxyflavone
and other bioactive compounds prevented hippocam-
pal microglia activation and ameliorated deficits in
hippocampal neurogenesis in senescence-accelerated
mouse-prone 8 (SAMP8) mice, a model of accel-
erated aging [173]. Another flavonoid, spinosin,
exhibited a dose-dependent increase in dentate gyrus
DCX+ neurons, as well as increased cell prolifera-
tion, survival, and improved cognitive performance
in the passive avoidance test [174]. Meanwhile, the
flavonoid oroxylin A increased the survival of newly
generated hippocampal neurons in adult mice [175],
although these effects may occur directly, rather than
through the gut microbiome [176].

Potential mechanisms by which the gut
microbiota influences adult hippocampal
neurogenesis

There are several proposed mechanisms by which
the gut microbiota may exert influence on adult
hippocampal neurogenesis, including immune, neu-
ronal, endocrine, and metabolite-driven pathways
(Fig. 4).

Immune system and neuroinflammation
The gut microbiota regulates several aspects of

the host immune system, including in the brain,
potentially allowing the gut microbiota to influence
hippocampal neurogenesis via immune signaling
pathways. For instance, germ-free mice have defec-
tive hippocampal microglia, and a higher density of
microglia overall [177]. The regulation of microglia
by the gut microbiota appears to be at least par-
tially controlled by microbially produced acetate,
which can translocate from the gut to influence
the maturity and function of microglia in the
brain [165]. Microglia contribute to the balance of
neuronal cell birth and death in the subgranular
zone through apoptosis-coupled phagocytosis [178],
allowing them to clear debris from destroyed cells.
In response to phagocytosis, the microglia secre-
tome is altered towards substrates that have been
shown to support new neuron proliferation, such as
VEGF and FGF2 [178, 179]. Furthermore, upon acti-
vation, microglia produce various cytokines to induce
an immune response to dangerous threats. Neuroin-
flammation, mediated by proinflammatory cytokines
including interleukin (IL)-1�, tumour necrosis factor
� (TNF�), and IL-6, has detrimental consequences
to the proliferation and development of newly born
hippocampal neuronal cells [180–183], and immune
responses, including cytokine release, are blunted in
GF mice [184]. By regulating the function and matu-
rity of hippocampal microglia, the gut microbiota
may be able to reshape hippocampal neurogenesis,
although this direct mechanistic link is yet to be
established.

In addition to impacting the function of microglia,
the gut microbiota contributes to the systemic priming
of immune cells that may traffic to the brain. Through
the use of genetic knockout mice and antibody deple-
tion, circulating Ly6Chi monocytes were shown to
play a pivotal role in promoting hippocampal neu-
rogenesis [49]. Ly6Chi monocytes traffic throughout
the body and are highly sensitive to gut microbiota-
derived signals. Following antibiotic treatment, mice
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had lower numbers of Ly6Chi monocytes in the brain,
blood, and bone marrow, and displayed deficits in hip-
pocampal neurogenesis and behaviour [49]. Adaptive
transfer of Ly6Chi monocytes from the bone marrow
of C57BL/6 mice to antibiotic-treated mice was able
to restore the proliferation and survival of newly born
neurons in the dentate gyrus [49]. Fascinatingly, sup-
plementation with an 8-strain probiotic cocktail was
also able to rescue antibiotic-induced deficits in hip-
pocampal neurogenesis and Ly6Chi monocyte levels,
providing further evidence that the gut microbiota can
regulate hippocampal neurogenesis through Ly6Chi

monocytes [49].
The gut microbiome has been shown to modulate

the function of various types of T cells, including
CD8+ T cells [185, 186], CD4+ T cells [187, 188],
and Th17 cells [189, 190], suggesting potential T cell-
dependent mechanisms by which the gut microbiota
might influence hippocampal neurogenesis. T cells
are essential regulators of hippocampal neurogene-
sis [191]. For instance, CD8+ T cells are required for
the beneficial effects of environmental enrichment on
hippocampal neurogenesis, synaptic plasticity, and
behaviour including anxiety-like behaviour and spa-
tial learning in mice [192]. Meanwhile, depletion
of CD4+ T lymphocytes significantly reduced hip-
pocampal neurogenesis, while neuronal precursor
cell proliferation was increased in Rag2−/− mice,
mice which produce no mature T cells or B cells,
following repopulation of CD4+ cells [193]. Another
subset of T cells, T helper 17 (Th17) cells, can also
produce IL-17 [194], which inhibits adult hippocam-
pal neurogenesis in mice [195], and can promote
susceptibility to depressive-like behaviour in mice
[196].

By microbial crosstalk with microglia, monocytes,
and T cells, the gut microbiota demonstrates the abil-
ity to influence hippocampal neurogenesis in adult
rodents. More research needs to be conducted how-
ever to fully understand the cellular pathways and
scope of capability of microbiota-immune signalling
on influencing hippocampal neurogenesis.

Vagus nerve signalling
The vagus nerve innervates the gastrointesti-

nal tract, allowing for bidirectional communication
between the gut and the brain. Through virus-based
tracing techniques, it was shown that vagal sig-
nals derived from the gut are relayed from the
medial nucleus tractus solitarius through the medial
septum and to dorsal hippocampal glutamatergic

neurons, allowing gut-derived signals transmitted
through the vagus nerve to control hippocampus-
dependent episodic and spatial memory, and reduced
the expression of neurogenic and neurotrophic mark-
ers (DCX and BDNF) in the dorsal hippocampus
[197] though whether these signals were derived
specifically from microbiota-vagus nerve interac-
tions was not determined. Nonetheless, specific gut
bacteria, such as Lactobacillus rhamnosus, demon-
strate the ability to alter depressive-like behaviour,
hippocampal microglia density, and specific hip-
pocampal protein expression through the vagus nerve
[70, 198]. The capacity for oral Lactobacillus rham-
nosus JB1 treatment to alleviate the impact of stress
on behaviour may be related to its ability to decrease
the expression of the hippocampal GABAB1b gene
[70], a receptor subunit that plays a crucial role in
mediating stress resilience and the production of
new hippocampal neurons [199]. Moreover, it was
recently demonstrated that the vagus nerve is inte-
gral for the decreased hippocampal neurogenesis and
hippocampus-dependent memory impairment caused
by FMT from aged mice or humans into young mice
[45]. However, the mechanisms by which bacteria can
influence hippocampal neurogenesis directly through
vagal pathways remains unclear.

Independent from the gut microbiota, stimula-
tion of the vagus nerve has been reported to trigger
increased progenitor cell proliferation, numbers of
maturing neurons, and increased protein expression
of the neurotrophic factor BDNF in the hippocam-
pus of rodents [200–202]. Chronic simulation of
the vagus nerve also promotes dendritic branching
on immature hippocampal neurons [200]. Mean-
while, severing the vagus nerve via subdiaphragmatic
vagotomy was sufficient to reduce hippocampal cell
proliferation, neuronal differentiation, and BDNF
mRNA expression in the adult hippocampus [197,
203].

Microbial Metabolites
Due to complexities in tracing the origins of

metabolites within a living organism, it is difficult
to decipher whether specific gut microbiota-derived
molecules can translocate from the gut to the brain,
where they have the potential to directly hinder
or support neuronal birth, maturation, and survival.
As such, few radioactive tracing studies exist that
examine gut microbiota-derived metabolites within
the brain. Recently, one study utilizing radioactive
labelling revealed that the microbe-derived short
chain fatty acid acetate translocated from the gut
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to the brain of mice, where it influenced hippocam-
pal microglia metabolism and function [165]. While
it is possible to speculate that alteration in the
functionality of microglia would be able to alter
hippocampal neurogenesis, this study did not exam-
ine hippocampal neurogenesis. Nonetheless, short
chain fatty acids, including acetate, butyrate, and
propionate, have been shown to directly promote
neuronal differentiation in neural stem cells in vitro
when applied in physiologically relevant levels [50,
204], and the oral administration of sodium butyrate
increased proliferating cells, DCX+ neurons and
granular cell layer volume in the hippocampus of
pigs [166]. Furthermore, short chain fatty acid sup-
plementation improved performance or prevented
impairments in spatial learning and memory tasks,
and increased BDNF protein expression in preclin-
ical neurodegenerative disease models [205–207],
although hippocampal neurogenesis was not specifi-
cally assessed.

As discussed extensively elsewhere [208], the gut
microbiota can influence the bioavailability of hor-
mones and neurotransmitters including within the
tryptophan-kynurenine- serotonin pathways by syn-
thesizing or degrading components of this pathway.
These hormones have been strongly implicated in
depression [208]. Of interest, tryptophan and its
metabolites are able to be modulated by the gut micro-
biota, and can impact host cognitive function and
mood [209], as well as hippocampal neurogenesis
[139]. Recent research has found that indoles that are
produced by the gut microbiota-driven metabolism
of tryptophan can modulate hippocampal neuroplas-
ticity and promote the neuronal differentiation of
hippocampal neural progenitor cells through the acti-
vation of the aryl hydrocarbon receptor [139]. The
gut microbiota can also regulate the production of
serotonin in the gut [210]. Serotonin is integral
for neuronal differentiation, neurogenesis, and the
in vitro proliferation and survival of neurospheres
derived from adult neural stem cells [211–213].
Germ-free mice have increased hippocampal sero-
tonin [140] however whether gut-derived serotonin
can translocate to the brain to in turn promote hip-
pocampal neurogenesis is currently unknown.

The hypothalamic-pituitary-adrenal (HPA) axis
and hormonal signalling

The hypothalamic-pituitary-adrenal (HPA) axis is
a key endocrine pathway regulating the physiologi-
cal response to stress. HPA axis activation triggers
the release of glucocorticoids (including cortisol, or

corticosterone in rodents) which can directly bind
to receptors on neural stem and progenitor cells and
hinder their proliferation and differentiation in vitro
and in rodent models [214–216]. While a direct link
between specific microbes directly regulating adult
hippocampal neurogenesis through the HPA axis has
not yet been elucidated, the gut microbiota can influ-
ence HPA axis activation. For instance, the HPA axis
of male germ-free mice is hyperactive in response
to restraint stress, resulting in increased corticos-
terone relative to SPF mice [65, 140], though whether
this results in altered hippocampal neurogenesis post-
stress is unknown. It may be plausible that the gut
microbiota can adjust adult hippocampal neurogene-
sis through the HPA axis.

Several peptide hormones that regulate appetite
and food intake also demonstrate the ability to
influence adult hippocampal neurogenesis such as
ghrelin [217–220], leptin [221–224], cholecystokinin
[225–227], neuropeptide Y [227, 228], insulin-
like growth factor 1 [229–232], gastric inhibitory
polypeptide [233], and orexin-A [234]. Moreover,
the gut microbiome has been linked to the reg-
ulation of several of these hormones including
ghrelin [235, 236], leptin [236, 237], cholecys-
tokinin [236, 238, 239], neuropeptide Y [237],
although the mechanisms underlying these relation-
ships remain largely elusive [240]. By targeting some
of these molecules, there have been improvements in
aging-associated impairments in hippocampal neuro-
genesis. For instance, by restoring insulin-like growth
factor 1 levels in mice, researchers rescued the age-
related decline in adult hippocampal neurogenesis
[241, 242]. Mechanistic research needs to be con-
ducted to better understand the involvement of the
gut microbiota in regulating adult hippocampal neu-
rogenesis through hormone-driven pathways.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review, we aimed to provide an overview
of the current literature investigating the gut micro-
biota and adult hippocampal neurogenesis, including
the impacts of specific microbes and mechanisms by
which the gut microbiota has been shown to influ-
ence the proliferation, development, and survival of
new-born neurons in the adult hippocampus. We first
discussed overlaps in the factors that are known to
influence adult hippocampal neurogenesis and the
gut microbiome, postulating that these effects might
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be occurring independently and unrelatedly to one
another, but that they also might be linked through
microbiota-driven alterations to gut-brain dialogue.
Nevertheless, there is a growing body of evidence
that suggests that the gut microbiota regulates adult
hippocampal neurogenesis. Therefore, we then pro-
vided the current state of evidence demonstrating that
the gut microbiota plays an active role in shaping neu-
rogenesis in the adult dentate gyrus. In doing so, we
have outlined influential factors and biological path-
ways underlying the regulation of adult hippocampal
neurogenesis by the gut microbiota.

The gut microbiota harbours the ability to uti-
lize a variety of pathways to promote or hinder
adult hippocampal neurogenesis, including direct
communication through the nervous system, or indi-
rect communications via microbial metabolites, the
immune system, and hormones. Still, some potential
avenues of the microbiota-gut-brain axis have yet to
be investigated in the context of hippocampal neuro-
genesis. For instance, the gut microbiota contributes
to the secretion of hormones by intestinal cells, such
as ghrelin [240]. Meanwhile, intraperitoneal injec-
tion of ghrelin increases BrdU+/DCX+ cells in the
dentate gyrus [217]. However, whether the micro-
bial control of adult hippocampal neurogenesis is
mediated by ghrelin, or other intestinal peptides, has
not yet been demonstrated and should be explored.
Moreover, it is currently unclear how an individ-
ual’s mode of birth and weaning timeframe impact
hippocampal neurogenesis. Mouse pups born by cae-
sarean section demonstrated heightened anxiety-like
behaviour and altered neurochemistry that persists
into adulthood – phenotypes which appear reversible
by targeting the early life gut microbiota [243]. More-
over, the weaning timeframe is highly critical for
gut microbiota-mediated early life immune system
development, and substantially impacts regulatory T
cells [244]. Therefore, it is plausible that early life
events, including caesarean section birth and altered
weaning timeframes may impact adult hippocampal
neurogenesis in a microbiota-dependent manner.

Alterations to the gut microbiota are present in
numerous brain disorders, including depression [66],
Alzheimer’s Disease [245], and epilepsy [246], con-
ditions in which adult hippocampal neurogenesis has
been observed to be disrupted clinically or in relevant
animal models [10, 246, 247]. Given the strong pre-
clinical evidence demonstrating the ability of the gut
microbiota to influence various aspects of adult hip-
pocampal neurogenesis, the gut microbiota may be a
viable therapeutic target for treating and preventing

these diseases through its ability to alter adult hip-
pocampal neurogenesis. The gut microbiota is highly
accessible to interventions, including via probiotics,
antibiotics, and lifestyle choices such as diet, which
presents multiple opportunities to remediate abnor-
mal hippocampal neurogenesis which may contribute
to some brain disorders.

Currently, clinical conclusions about the mech-
anistic ability of the gut microbiota to influence
adult hippocampal neurogenesis are highly limited
by the technical challenges of assessing neurogenesis
in living humans. Therefore, evidence demonstrat-
ing the role of the gut microbiota in modulating
adult hippocampal neurogenesis, as well as its impact
on behaviour and disease progression, is largely
dependent on preclinical interrogations. While there
are vast biological similarities between mouse and
humans, evidence collected in rodent models might
not fully reflect clinical biological scenarios. Impor-
tantly, the murine and human gut microbiomes are
distinctly unique, and, although biological func-
tionality appears relatively conserved between these
species, differences in anatomy and physiology
between mice and humans may mean that preclin-
ically established mechanisms might not be capable
of translating to humans [248, 249]. Therefore, it
is difficult to confirm whether the gut microbiota
utilizes the same pathways observed in preclin-
ical studies to impact human adult hippocampal
neurogenesis. Nonetheless, largescale clinical trials
involving microbiota interventions will be incredi-
bly useful for understanding how the gut microbiota
may sculpt favourable effects on the brain and
related behaviour and identifying clinical biomark-
ers of microbiota-driven health benefits to potentially
reveal novel therapeutic options. Ultimately, under-
standing the pathways by which the gut microbiota
influence hippocampal neurogenesis may allow for
the development of novel therapeutics to ameliorate
hippocampal neurogenesis dysfunction, which could
provide crucial treatment options for improving cog-
nition and mood in brain disorders.
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