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Abstract. Tyro3, Axl and Mertk are members of the TAM family of tyrosine kinase receptors. TAMs are activated by
two structurally homologous ligands GAS6 and PROS1. TAM receptors and ligands are widely distributed and often co-
expressed in the same cells allowing diverse functions across many systems including the immune, reproductive, vascular,
and the developing as well as adult nervous systems. This review will focus specifically on TAM signaling in the nervous
system, highlighting the essential roles this pathway fulfills in maintaining cell survival and homeostasis, cellular functions
such as phagocytosis, immunity and tissue repair. Dysfunctional TAM signaling can cause complications in development,
disruptions in homeostasis which can rouse autoimmunity, neuroinflammation and neurodegeneration. The development
of therapeutics modulating TAM activities in the nervous system has great prospects, however, foremost we need a complete
understanding of TAM signaling pathways.
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THE TAM RECEPTORS, THEIR LIGANDS
AND TAM SIGNALING

Tyro3, Axl and Mertk collectively termed TAMs
are tyrosine kinase cell surface transmembrane
receptors capable of sensing extracellular ligands,
phosphorylating and activating diverse downstream
signaling pathways which are necessary for main-
taining different aspects of cellular physiology [1].
All TAMs are activated by growth-arrest-specific-
protein 6 (Gas6), which binds Axl with highest
affinity [2–5]. A structurally homologous ligand Pro-
tein S (PROS1) can activate Tyro3 and Mertk but
not Axl [6, 7]. The structure of TAM ligands and
receptors has been extensively described in recent
reviews [1, 8, 9]. Both TAM receptors (TAMRs) and
their ligands are expressed across a myriad of cells,
influencing various systems including in the immune,
reproductive, vascular, and the central and periph-
eral nervous system (CNS and PNS, respectively).
Co-expression of two TAMRs is common, allowing
functional redundancy, but this co-expression also
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provides diverse and regulated functions. TAMRs
play pivotal roles in cellular decisions such as cell
proliferation and survival, and are instrumental in cell
function, with efferocytosis (the phagocytic uptake
of apoptotic cells) and immune regulation as key
features. Altogether, both arms are necessary for
homeostatic regulation and tissue repair [10, 11].

Loss of function mutants in mice via the dele-
tion of TAMRs and ligands have elucidated the
diverse roles undertaken by this pathway. Single,
double and triple knockout mice are born without
obvious developmental defects [12]. Triple knock-
out mice deficient for all three TAM receptors are
viable and healthy for the first few post-natal weeks,
but consequently develop postnatal retinal degenera-
tion, autoimmunity and male sterility [12–18], with
increased apoptosis and cellular degeneration in the
hippocampus and the cerebellum [12]. Axl dele-
tion alone induced increased vascular permeability
and Mertk−/− mice are blind due to photoreceptor
degeneration [16]. Therefore, TAM function is nec-
essary for maintaining healthy adult tissues. Gas6
knockouts are viable, do not develop retinal degen-
eration, autoimmunity or infertility and are without
any reported neural phenotypes. Gas6 deficiency was
reported to protect against thrombus formation and
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liver inflammation [19, 20]. PROS1 is recognized for
its essential function as a blood anti-coagulant, and
its systemic deletion is embryonically lethal due to
coagulopathy, extensive haemorrhage and necrosis
throughout the embryo [21]. The role of PROS1 as
a TAM agonist has recently emerged from studies of
numerous cell specific conditional PROS1 deletions
in various tissues [22–26]. Within the nervous sys-
tem, deletion of Pros1 was reported in neural lineage,
including neural stem cells using Nestin-Cre [24, 25],
and in myeloid cells [22], also targeting microglia
[25].

Despite the functional redundancy of TAMRs and
ligands seen in the immune system, the downstream
diversity in cellular responses is quite remarkable
and is attributed to activation of distinct intracellu-
lar signaling pathways activated in a context-specific
manner. Gas6/Axl signaling can affect cell sur-
vival, growth and proliferation via the activation
of PI3K-Akt, ERK1/2 and MAPK pathways [27].
PROS1-mediated Tyro3 signaling activates the PI3K-
Akt pathway which protects cortical neurons from
NMDA-excitotoxicity induced apoptosis [28]. In
the retina, Gas6 and PROS1 activation of Mertk
stimulates phagocytosis of the outer segments of
photoreceptors, which is essential in supporting
healthy retinal tissue [7, 26]. The dysregulation
of TAM signaling is observed in a plethora of
pathological processes including cancer progression,
chronic inflammation and autoimmune disease [8, 17,
29–32]. In this review we will discuss the biologi-
cal function of TAM receptors and their ligands in
the nervous system and explore the dysregulation of
TAM receptors in neuroinflammatory and neurode-
generative conditions and diseases.

TAMRS AND THEIR LIGANDS IN THE
NERVOUS SYSTEM

All members of the TAM family are expressed
in the developing and adult nervous system. Of the
receptors, Tyro3 is the most widely expressed in
the nervous system, expressed embryonically but its
expression surges postnatally and into adulthood,
concurrently with synaptogenesis [33]. Analysing
the developing rat brain revealed high expression
of Tyro3 in the cerebral cortex, hippocampus, cere-
bellum, amygdala, piriform cortex, olfactory bulbs,
subventricular zones, forebrain, midbrain and hind
brain [33, 34]. Furthermore, neurons, glia, astrocytes
and oligodendroglia all express Tyro3 [33]. Axl and
Mertk are expressed in the nervous system rather

constantly during development, however, at lower
levels [33]. Axl is expressed in the cerebellum and
hippocampus by oligodendrocytes, astrocytes and
microglia and by Schwann cells in the PNS [33, 35,
36]. Mertk is detected in astrocytes and oligoden-
drocytes and is highly expressed by microglia [33,
35–39].

Among the ligands Gas6 is secreted by neurons
and endothelial cells, produced in the cerebral cortex,
hippocampus, cerebellum, midbrain and thalamus
and expressed by microglia, astrocytes and neu-
ral stem cells [5, 34, 40]. PROS1 is expressed in
neural stem cells, Schwann cells, neurons, astro-
cytes and microglia [5, 24, 25, 38]. Thus, many
cells within the nervous system express one or more
TAMRs and secrete one or both of the cognate ligands
PROS1 and Gas6, allowing either autocrine and/or
paracrine signaling, which lead to cell autonomous
as well as non-cell autonomous phenotypes. These
co-expression patterns allow tight modulation of vari-
ous physiological and cellular process contributing to
health. As mentioned, TAMRs are expressed in many
cells of the developing nervous system, but neural
development is not grossly affected in mice lacking
expression of all three receptors [12, 24]. Moreover,
their specific roles in different cell types is not yet
understood, mainly due to the lack of mouse models
allowing cell-specific deletion of the different TAM
components. The first conditional deletion of Mertk
in microglia was recently published [36].

TAMS IN NERVOUS SYSTEM
DEVELOPMENT AND HOMEOSTASIS

Typical to any physiological system, and the CNS
is no exception, many cellular processes and regula-
tory functions are critical for proper development and
to maintain homeostasis. Dysregulation of these pro-
cesses may disrupt neural development, homeostasis
and cause life-long complications. Within the CNS,
TAM signaling is involved in regulating development
and homeostasis via both autocrine/cell-autonomous
and paracrine/cell non-autonomous modes of action,
described below.

TAM RECEPTORS IN THE
DEVELOPMENT OF GnRH NEURONS

Gonadotropin-releasing hormone (GnRH) neu-
rons regulate reproduction processes by secretion of
GnRH from the pituitary into the hypophyseal portal
bloodstream. GnRH activity is very low in childhood,



T. Burstyn-Cohen and A. Hochberg / TAM Signaling in the Nervous System 35

increasing as puberty and adolescence strikes. The
GnRH neurons originate in the embryonic nasal pla-
code and migrate along the olfactory axon fibres to
the pre-optic area and hypothalamus during devel-
opment [41]. The migration of GnRH neurons must
follow a precise pathway to reach their target projec-
tions to induce gonadotropin secretion. Both Tyro3
and Axl are necessary for GnRH neuronal migra-
tion and survival, and their loss leads to reproductive
malfunctions [42, 43]. Axl is involved in GnRH neu-
ronal cell migration via the activation of the PI3K-Ras
pathway and P38 MAPK [44, 45]. Gas6/Axl activa-
tion of ERK and PI3K/Akt pathways is key to the
survival of migrating GnRH neurons by protecting
them from programmed apoptosis [45] and direct-
ing GnRH migration to the ventral forebrain [43].
Deletion of Axl and Tyro3 in mice led to a signifi-
cant loss of GnRH neurons, subsequently impairing
the sex hormone induced gonadotropin surge which
lead to abnormalities in the estrous cycle of female
mice [43]. Furthermore, the loss of Gas6 at any
stage embryonically and in adulthood results in a
reduced GnRH neuronal population, delays vaginal
opening and sexual maturation [46]. GnRH develop-
ment occurs embryonically, but numerous processes
which involve TAM signaling that are developmen-
tal in nature- also occur postnatally. Among these are
adult neurogenesis, synaptogenesis, synaptic pruning
and myelination, discussed below.

TAM SIGNALING IN NEUROGENESIS

Neurogenesis is a process by which neurons are
generated from neural stem cells and progenitor cells.
Massive neurogenesis occurs prenatally, and the pro-
cess continues to a lesser extent throughout adulthood
[47, 48]. Adult neurogenesis is restricted to the sub-
granular zone (SGZ) of the dentate gyrus, and the
subventricular zones (SVZ), lining the lateral walls of
the lateral ventricles. The newborn neurons in adult
neurogenesis are generated from a pool of stem cells
found in these two regions [49, 50]. Over their life-
time neural stem cells are faced with many binary
decisions: to stay quiescent or to proliferate, to differ-
entiate or to self-renew, and finally once differentiated
whether to adopt glial or neural fates [51]. These deci-
sions are regulated by cell intrinsic as well as cell to
cell interactions and complex external molecular cues
[49, 51].

All TAMRs are expressed by neural stem cells
(NSCs) [52], and play a vital role in NSC prolifer-
ation, neuronal differentiation and survival in-vitro

[52]. NSCs derived from knockout mice lacking all
three TAM receptors grew slower due to reduced pro-
liferation rates and greater apoptosis, and had reduced
neurogenesis rates [52]. Moreover, cultured primary
neural stem cells lacking TAMRs have a significant
decrease in the expression of nerve growth factor
and brain derived neurotrophic factor (BDNF) and
a compensational increase in the expression of neu-
rotrophins TrkA, TrkB, TrkC and P75 receptors [52].
These findings suggest a relationship between TAM
receptors and neurotrophins to support neural stem
cell survival, proliferation and differentiation.

Another developmental role TAMs undertake is the
maintenance of neural progenitors. Neural progen-
itor cells (NPCs) and their neuronal progeny were
isolated and purified from developing mouse cere-
bral cortices (E15.5) and their transcriptome analysis
revealed essential roles for TAMRs in maintaining
NPCs [53]. All three TAM receptors and PROS1 were
enriched in NPCs, and inactivation of both Axl and
Mertk promotes cell cycle exit and early differentia-
tion [53].

In the adult brain, newborn neurons can integrate
into neural circuitries and allow cellular plasticity.
Perturbations in adult neurogenesis are recognized
to disrupt hippocampal-dependent learning. As men-
tioned above, TAMR deficiency impaired adult
hippocampal neurogenesis and several studies have
been aimed at the role of the TAM ligands in adult
neurogenesis. Gely-Pernot reported that inhibiting
the bioactivity of both Gas6 and PROS1 by war-
farin leads to elevated BrdU incorporation in the
SVZ, indicating increased proliferation of NSCs.
When an anti-PROS1 function-blocking antibody
was perfused into the lateral ventricles, increased
NSC proliferation was observed, indicating PROS1
supresses SVZ NSC proliferation [40]. Interestingly,
the opposite effect was observed when Gas6-deficient
brains were analysed, demonstrating a significant
functional variability among the TAM ligands PROS1
and Gas6 in regulating NSC proliferation. This
emphasizes that both ligands can differentially induce
distinct outcomes in the same cells (Fig. 1). The basis
for this functional diversity is not yet understood. Our
lab has used genetic tools to inhibit PROS1 expres-
sion in a cell-specific manner from NSCs.

This approach identified NSC-derived PROS1 acts
in an autocrine manner, and affects numerous aspects
of both embryonic and adult NSC homeostasis. Anal-
ysis of adult Pros1-deficient NSCs (using the Nestin-
Cre driver) during embryonic development led to an
increase in NSC proliferation and affected the fate
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Fig. 1. Opposing roles for PROS1 and GAS6 in NSC choice
points. Different roles for the TAM agonists PROS1 and Gas6 were
revealed through their genetic deletion. Opposing effects are seen
on NSC self-renewal, where GAS6 deletion reduces the number of
NSCs [40] but PROS1 deletion increased NSC self-renewal [24].
NSC “stemness” is maintained by PROS1, which inhibits NSC pro-
liferation [25], but Gas6 promotes NSC proliferation [40]. PROS1
deletion led to an increase in astrogenesis, indicating its instructive
role in the neurogenic fate lineage [25]. By contrast, Gas6 deletion
had no effect on the cell fate of differentiated cells [40]. This del-
icate balance between Gas6 and PROS1 may contribute to NSC
homeostasis and neurogenesis.

of differentiated cells, increasing astrogenesis at the
expense of neurogenesis. These findings indicate that
PROS1 has an essential instructive role in maintain-
ing NSC quiescence and facilitating neurogenesis
[25], in agreement with experiments that neutral-
ized PROS1 protein [40]. We further found that
PROS1 promotes NSC quiescence through regulating
Notch-1 expression and signaling [25]. A continuing
study revealed that lack of PROS1 in NSCs doubled
NSC self-renewal, suggesting PROS1 regulates the
balance between NSC self-renewal and differentia-
tion. Mechanistically, we found that PROS1 inhibits
Bmi-1, which leads to exit from the cell cycle and
differentiation [24], summarized in Fig. 2.

NSCs and adult neurogenesis are heavily influ-
enced by the neighbouring niche cells, including
microglia - the primary immune cells of the CNS [54].
The cytokines secreted by microglia have profound
influence on adult neurogenesis [55], and since TAM
signaling within immune cells is anti-inflammatory
[13, 14, 22], their role in microglia was tested. In line
with their immune-suppressive function, cultured
TAM-deficient microglia are chronically activated,

Fig. 2. PROS1 regulates numerous aspects of NSC biology through multiple signaling pathways. Schematic of the dentate gyrus granular
layer, indicating the influence of PROS1 on different phases of adult NSCs and neurogenesis. Quiescent NSCs (qNSCs) are glia-like and
present with a dendritic arbor spanning the granular layer. Quiescent NSCs express PROS1, considered a stem-cell maintenance factor. PROS1
regulates Notch1 signaling, and suppresses NSC proliferation [25]. Upon integration of various signals, qNSCs begin to amplify through
proliferation. Amplifying NSCs (aNSCs) also express PROS1, which promotes NSC differentiation by inhibiting Bmi-1, a transcriptional
repressor of p16 and p19 which allows for continuation of self-renewing cell divisions [24]. PROS1 expression in differentiated NSCs
promotes a neural cell fate over astrogenesis [25]. Within the neurogenic niche, PROS1 is highly expressed by microglia, where it is thought
to regulate cytokine expression and phagocytosis of apoptotic neurons, thus influencing neurogenesis in a non-cell autonomous manner.
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with hyperactivation of the MAPK/p38/NFκB
pathway, and overproduction of pro-inflammatory
cytokines, including IL-6, which can be neurotoxic
and detrimental for NSC survival and self-renewal
[56]. Thus, through modulating inflammatory
cytokine signaling within microglia, TAMs can
support neural stem cells and adult neurogenesis
by restricting the release of toxic inflammatory
mediators. Moreover, Gas6 and PROS1 may both
modulate adult neurogenesis through regulating
cytokine secretion and restrict detrimental immune
responses [56, 57]. Such modulation may be utilized
as a therapy for diseases characterized by loss of
hippocampal neurons or to promote learning and
memory through supporting adult neurogenesis.

TAM signaling also supports survival of adult
neuronal populations. GAS6 was shown to rescue
cortical neurons from amyloid-� induced cell death
[58] and mice lacking all three TAMRs had elevated
instances of dentate gyrus and cerebellar purkinje
cell death [59]. Although this was attributed to a sys-
temic inflammation and impaired BBB integrity [59],
the PROS1/Tyro3 axis was shown to provide direct
neuronal protection following ischemic brain injury
and excitotoxicity [28, 60]. Tyro3 promotes survival
of hypothalamic Neuropeptide Y+ neurons [61], as
well as the survival of retinal ganglion cells (RGC)
and the maintenance of RGC dendrites within the
inner plexiform layer of the neural retina. This loss
of RGCs resulted in a thinner retina, with reduced
photoreceptor and RGC function [62]. While the
above examples demonstrate a cell-autonomous pro-
tective function for TAM signaling, survival of retinal
photoreceptors depends heavily on TAM function in
a cell non-autonomous manner. The neighbouring
retinal pigment epithelium (RPE) cells are profes-
sional phagocytes, which eliminate photoreceptor
outer (distal) segments in a circadian fashion [16, 26,
63]. Thus, in different physiological contexts the con-
tribution of TAM signaling to neuronal survival may
be either cell-autonomous or non-cell-autonomous.

TAM SIGNALING IN SYNAPTOGENESIS
AND SYNAPTIC PRUNING

Synaptogenesis - the establishment of synapses be-
tween neurons, occurs robustly during early ner-
vous system development and endures throughout
life. After the initial formation of the synapse, the
synapse has an ability to strengthen or weaken over
time due to fluctuations in activity, commonly known

as synaptic plasticity. Underlying these processes
is a phenomenon known as long term potentiation
(LTP) which strengthens synapses based on patterns
of activity and contributes to learning and memory
[64]. Tyro3 expression in rats increases in the early
post-natal stages correlating with the establishment
of synapses [33, 65], and is abundantly expressed in
in the CA1 hippocampal field, which is a hot spot
for LTP [33, 65]. Tyro3 expression on neuronal pro-
cesses [61] and its colocalization with post synaptic
density protein-95 (PSD-95), a scaffolding pro-
tein stabilizing synaptic connections [65] indicates
its cell-autonomous role. It was briefly mentioned
that Tyro3−/− mice exhibit diminished hippocam-
pal LTP, although the experimental evidence was
not presented [15]. In vitro, Gas6 can stimulate
Tyro3 phosphorylation in cortical neurons, inducing
MAPK and PI3K pathways, vital in the initiation
of hippocampal LTP and synapse formation [65].
The specific elimination of weakened and redundant
synaptic connections, commonly known as synaptic
pruning, is a critical process in the maturation and
establishment of proper brain function and strength-
ening essential synapses. Astrocytes and microglia
are the major phagocytes targeting synapses and
neuronal debris for elimination. Astrocytic engulf-
ment and removal of synapses were significantly
diminished in Mertk−/− mice, leaving redundant
excess synapses in the developing and adult neu-
ral circuits [37]. Addition of astrocyte-conditioned
media significantly increased their phagocytic ability.
PROS1 significantly elevated synaptosomes uptake
by astrocytes, and since astrocytes express and secrete
PROS1 [37], this function is presumably autocrine
in nature. Dysfunctional TAM signaling may there-
fore play a role in aberrant synaptic pruning which
is associated with many neuropsychiatric disorders
such as schizophrenia [66]. The emerging evidence
presented suggests that TAM signaling is involved in
both synaptogenesis and the homeostatic regulation
of synaptic pruning, supporting brain plasticity and
functionality. Yet, the relative and specific roles of the
TAMRs and ligands, and the downstream signaling
pathways activated in such biological processes are
still unknown.

TAM SIGNALING IN THE
NEUROIMMUNE INTERFACE

TAMR signaling in immune cells is anti-inflam-
matory. The nervous system is separated from the
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peripheral immune system by the blood-brain barrier
(BBB), a semipermeable neurovascular unit essential
to keep brain homeostasis. In the CNS microglia are
the principal resident innate immune cells account-
ing for 10–15% of glial cells found in the brain [67].
Belonging to the myeloid lineage, microglia originate
in the embryonic yolk sac and migrate to colonize
the mouse brain from embryonic day 9.5 [68, 69].
Microglia are essential in regulating neural devel-
opment and maintaining homeostatic conditions,
preserving neuronal networks and are the primary
immune defence to challenges faced by the CNS
[70, 71]. Microglia are primarily regarded for their
phagocytic and immune- inflammatory functions in
response to foreign material, damaged or apoptotic
cells and secretion of trophic factors which can insti-
gate repair mechanisms. Aberrations to microglia
functionality can contribute and lead to pathologi-
cal processes associated with many diseases and has
been linked to neurodegeneration [72–73].

As potent phagocytes, microglia prevent the accu-
mulation of toxic products leading to autoimmunity
[74, 75]. Moreover, microglial phagocytosis is impor-
tant for synaptic regulation (as mentioned above),
myelination and repair mechanisms, shown to main-
tain a healthy functional brain tissue and prevent
neuroinflammation and neurodegeneration. Various
molecular mechanisms participate in the different
microglial functions, with the TAM receptors and
ligands being key. Although TAM receptors share
functional homology, they are activated under dif-
ferent conditions: Mertk is the dominant receptor
in resting microglial functions, while Axl functions
in acute inflammatory environments [36, 76]. In
Axl−/−Mertk−/− double knockout mice phagocy-
tosis is impaired with subsequent accumulation of
apoptotic cells [36]. Axl is important for the migra-
tion of microglia (and infiltrating macrophages) to
damaged tissue and the clearance of debris [77].
Moreover, without TAMs microglia produce excess
proinflammatory cytokines harming homeostasis and
repair mechanisms [56, 57]. Gas6 was shown to
inhibit TNF� production in microglia [78], however
the relative roles of PROS1 and GAS6 in microglial
biology have not been investigated.

In addition to serving as TAM agonists, PROS1 and
Gas6 are necessary for TAM function, by providing
a bridging moiety linking the apoptotic cell (or the
cell fragment to be uptaken) and the phagocyte. An
N-terminus Gla domain of approximately 60 amino
acid binds externalized phosphatidylserine, an “eat
me” signal exposed by apoptotic cells, in a Ca2+-

dependent manner [79–81]. This bridging capacity
drives immune cells including microglia to remove
apoptotic cells via phagocytosis, and instigates anti-
inflammatory signaling at the same time [30].

TAM SIGNALING IN INFLAMMATION
AND DISEASE

The TAM pathway is key in regulating immune
homeostasis though mediating anti-inflammatory
responses [1, 8, 59]. Inflammation is a complex bio-
logical response to perturbations such as pathogens,
toxins and trauma, and being primarily a defen-
sive reaction involves immune cells and complex
molecular signaling [82]. However, the magnitude
of inflammation must be carefully controlled. Ele-
vated and sustained (chronic) inflammation in the
CNS are stress inducers promoting ‘secondary injury’
and hindering repair and remyelination [82], fur-
ther exacerbating damage. As TAMs are involved in
phagocytosis, debridement and modulation of inflam-
mation, it is no surprise that their dysfunction is
involved in autoimmune, inflammatory and neurode-
generative diseases.

The dysregulation of TAM signaling has been
implicated in pathological processes leading to
neuroinflammation, myelination abnormalities, neu-
rodegeneration and ischemic injury to neurons
(Fig. 3). Mice that were genetically deleted for
all three TAM receptors had systemic chronic
inflammation and autoimmunity, which lead to
brain damage, BBB breakdown, release of pro-
inflammatory cytokines, protein aggregate deposition
and neuronal death [59]. Given the cellular tasks per-
formed by TAMs are anti-inflammatory in nature,
their therapeutic potential in autoimmune disease has
been investigated. Multiple sclerosis (MS) – a com-
plex autoimmune disease involving many, if not all
TAM-related aspects is one such disease, discussed
below.

TAM SIGNALING IN MULTIPLE
SCLEROSIS

Multiple sclerosis is a complex disease, involving
inflammation, demyelination/remyelination dynam-
ics and axonal damage. Oligodendrocytes (OD) and
Schwann cells are responsible for myelination in the
CNS and PNS respectively, protecting and insulat-
ing axons, necessary for their proper function. Recent
studies indicate that in addition to anti-inflammatory
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Fig. 3. The role of TAM signaling in maintaining homeostasis, regulating inflammation and preventing neurodegeneration. At steady state,
the TAM pathway mediates homeostasis via regulation of NSCs, microglial activity, myelination and phagocytosis. Upon injury, such as acute
trauma, a demyelination event or neurodegenerative conditions, inflammation is instigated which may induce neurogenesis, elevated cytokine
secretion, microglial and astrocytic gliosis, oligodendrocyte damage and demyelination. If unresolved, primary injury further develops into
secondary injury with high toxicity, necrosis and may potentially develop into a chronic inflammatory condition, with activation of microglia
and astrocytes, demyelination and toxin release before a new homeostasis is reached with accompanying tissue repair. Alternatively, primary
injury may be resolved without secondary injury. TAM signaling is involved in various aspects of homeostasis and tissue repair, as detailed
in the main text.
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and neuroprotective functions, TAM signaling also
promotes myelination [83, 84].

The pathogenesis of MS remains largely unknown
but the processes of demyelination and remyelination
provide sound insight into dysfunctional pathways
that may underlie MS and impair neurological func-
tion leading to physical, mental and occasionally
psychiatric symptoms [85]. Inflammation in MS
results from immune cell infiltration, microglia acti-
vation and tissue damage, also affecting OD viability
and myelin maintenance. The diversity of MS pathol-
ogy is further complicated by acute and chronic
courses, eventually leading to lesions. The two major
mouse models used to study the TAM pathway in
MS are the Experimental Autoimmune Encephali-
tis (EAE) model, induced by immunization with
myelin oligodendrocyte glycoprotein (MOG) and
the cuprizone-induced demyelination/ remyelination
model [86]. The former includes significant involve-
ment of immune cells including CD4+ and CD8+ T
cells, followed by monocytes/macrophages infiltra-
tion, which then elicit microglia and astrocyte reactiv-
ity [86]. Administration of cuprizone - a copper chela-
tor - in the latter model targets ODs, causing their
degeneration, and subsequent demyelination [86].
When cuprizone is withdrawn from the diet, remyeli-
nation occurs. Thus, whereas immune cell infiltration
has been reported for both models, EAE includes both
demyelination and stronger inflammatory involve-
ment, while the cuprizone model is primarily a
demyelination and remyelination model, also involv-
ing OD differentiation and maturation [86].

The TAM receptors and ligands have all been asso-
ciated with these different aspects of MS biology both
in humans and in experimental MS models in mice
[77, 84, 87–92]. Mertk and Axl are upregulated in
human chronic MS lesions and genome wide studies
showed that Mertk is a risk gene for MS suscep-
tibility [88, 91]. Gas6 was upregulated in patient’s
cerebrospinal fluid (CSF) compared to controls and
plasma levels of total but not free PROS1 was reduced
in MS patients compared to controls [89, 90].

The degraded myelin and cell debris, overacti-
vation of immune cells and hyperinflammation in
the CNS and oligodendrocyte survival and func-
tion all inhibit tissue repair mechanisms, successful
remyelination and consequent recovery [93, 94].
TAMs, chiefly Mertk, mediate the uptake of apoptotic
cells and myelin debris by recruiting microglia and
macrophages in mouse models and in human cells to
the injury site - a process essential for debridement
and allowing the myelin sheath to repair [39, 93, 94].

The upregulation of Axl in disease states is impor-
tant for the engagement of microglia and infiltrating
macrophages in clearing apoptotic cells and debris,
necessary to alleviate disease progression [77]. Mertk
and Axl pathways also mediate myelin clearance by
phagocytosis in Schwann cells of the PNS and Mertk
in myeloid cells [39, 95]. Moreover, since phos-
phatidylserine is present in myelin [96], it may be
recognized by PROS1 and Gas6 for debridement. A
recent work identified Mertk in microglia activation
and myelin clearance following cuprizone-induced
demyelination. Moreover, remyelination in Mertk-
deficient mice was impaired following cuprizone
withdrawal [97]. Mertk−/− microglia showed an ele-
vated Interferon gamma (INF�) signature, which
impeded on their normal function [97]. Whether
PROS1, GAS6, or both activate Mertk in these con-
texts remains to be determined. Chronically inflamed
tissue, as in MS, can cause further deterioration due to
glial cell activation accompanied by proinflammatory
cytokine production, further exacerbating demyelina-
tion and axonal nerve damage [75]. Loss of Axl itself
or its ligand Gas6 leads to inflammation, impaired
clearance of myelin debris and diminished remyeli-
nation [77], pointing to their functional importance
in minimizing MS pathology.

Tyro3 has been implicated in developmental myeli-
nation of the optic nerve and the absence of Tyro3
accelerated demyelination which resulted in thinner
corpus callosum myelin sheaths [98]. Interestingly,
loss of Tyro3 did not affect the density of microglia
or OD progenitor cell recovery after cuprizone treat-
ment, indicating the survival of these cells is not
affected by loss of Tyro3 function [99].

Based on the above, stimulating TAM functions
by their ligands Gas6 and PROS1 is hypothesized to
benefit multiple MS-related aspects leading to better
patient outcomes. Indeed, Gas6 delivery stimulates
remyelination both in vitro and in vivo and Gas6/TAM
signaling favours myelin repair and recovery from
damage [83, 90, 100]. However, the effects of TAM
inhibition on myelination are only partially pheno-
copied by the loss of Gas6 implying a potential
compensatory role for PROS1 [98]. Furthermore, the
recent discovery that PROS1 both induces phago-
cytosis and inhibits inflammation in macrophages
in vitro and in vivo [22, 101] suggests it may sup-
port a similar role in microglia following myelin
and cellular damage. Taken together, activation of
Axl and Mertk by PROS1 and Gas6 is postulated to
re-establish homeostasis by regulating inflammation,
promoting debris clearance and directly supporting
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oligodendrocyte cell survival. These functions not
only support the effector cells, but also promote
an environment that is favourable for remyelination.
Given ODs, astrocytes and microglia become reactive
in MS lesions, the roles of TAM signaling molecules
in these cells should also be clarified in the context
of MS.

TAM SIGNALING IN NERVOUS SYSTEM
INJURY AND NEURODEGENERATION

Insults to the CNS and PNS share common patho-
logical mechanisms, but specific reactions are also
characteristic of the particular insults. Traumatic
brain injury, stroke, hypoxic or ischemic injury and
nerve crush can all result in inflammation, a milieu
of cell death and neurological damage, and TAM
signaling molecules play roles in the recovery pro-
cess. Gas6 and PROS1 both support neuronal survival
under stress conditions [28, 102]. Gas6 functions as
a neurotrophic factor also exhibiting anti-apoptotic
effects in serum-starved cultured hippocampal neu-
rons [102]. PROS1/Tyro3 signaling protects from
N-methyl-D-Aspartate receptor (NMDA-R) medi-
ated neurotoxicity, and from hypoxic/ischemic injury
[28]. PROS1 was also identified as a neuroprotec-
tant during ischemic brain injury, as treatment with
PROS1 resulted in decreased hypoxia-induced dam-
age and reduced infarction and edema [60]. PROS1
is upregulated in the rat sciatic nerve as early as 1-2
days following nerve injury, suggesting its function
in the immediate response to injury [5]. A recent
study focusing on the peripheral nervous system
identified that TAMs mediate phagocytic uptake of
myelin following nerve injury by Schwann cells [95].
Moreover, TAM-deficient microglia display reduced
process motility and delayed convergence to sites of
injury, limiting repair mechanisms [36].

Neurodegenerative diseases are also accompanied
by chronic neuroinflammation, with microglia and
astrocytes as key mediators [103]. Neurodegenerative
diseases are commonly recognized by the accu-
mulation of pathological protein deposits such as
alpha synuclein in Parkinson’s disease (PD) and
beta- amyloid and tau in Alzheimer’s disease (AD)
[104]. These protein deposits can cause inflammatory
immune reactions characterized by the release of pro-
inflammatory cytokines and reactive oxygen species
which lead to progressive neurodegeneration, brain
atrophy and associated mental and physical deficits
[72].

AD is the largest cause of dementia, causing
60–70% of cases worldwide [105]. Although the
pathophysiology of AD is not completely understood,
increased prevalence of AD is seen among patients
who experienced traumatic brain injury, suggesting
AD is linked to CNS injuries and inflammation [106,
107]. The presence of beta amyloid plaques and tau
tangles typical to AD is thought to cause neuronal
death and subsequent brain atrophy [72]. TAM signal-
ing is understudied in the field of AD, however, a role
for Tyro3 in AD has been indicated. The overexpres-
sion of Tyro3 in the hippocampus led to a reduction in
amyloid beta plaques, while the knockdown of Tyro3
in a transgenic AD mouse model led to more amy-
loid beta plaques [108]. Within microglia, Axl was
identified to downregulate inflammation and improve
microglial phagocytosis via PPAR�/HSP90� both
in vitro and in a mouse model of AD, also mea-
surable by cognitive tests performed in these mice
[109]. This study investigated the effect of Jujubo-
side A (JuA) on early-onset Alzheimer’s disease.
JuA is an antioxidant possessing neuroprotective and
anti-inflammatory properties. JuA recently shown to
promote the clearance of Amyloid-�1-42 (A�42),
which is associated with a higher risk for developing
AD, through Axl-mediated pathways [109]. A recent
study found that in-vivo clearance of A� plaques
is significantly inhibited in Axl−/−Mertk−/− mice,
along with accumulated debris, in line with their
role in apoptotic cell clearance. Surprisingly, dou-
ble knockout mice had fewer A� dense-core plaques
than WT mice, leading to the conclusion that amyloid
dense-core plaque deposition is actually supported
by TAM-mediated phagocytosis [110] - a somewhat
contradictory finding which calls for further research.
In humans, research has been limited but Axl was
found to be one of several CSF protein biomark-
ers preceding a reduction in A�42 [111]. Another
recent study has found the upregulation of PROS1
and Gas6 in the frontal cortex of AD patients [112].
Yet another study found elevated Gas6 levels in CSF
of AD patients compared to controls which corre-
lated with improved cognitive scores suggesting Gas6
could play a defensive role in AD progression [113].

PD is characterized by motor and non-motor symp-
toms, commonly recognized by a resting tremor, and
causes stiffness and progressive slowing of move-
ment. The aggregation of �-synuclein found in Lewy
bodies in the CNS and PNS is a central pathology
to the disease [114]. The pathophysiology of PD is
still largely a mystery and the role of TAM signal-
ing in PD is not yet completely understood. In the
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SNCAA53T mouse model of PD overexpressing the
human �-synuclein with the PD-associated A53T
mutation in neurons, both Axl and its soluble form
(sAxl)- an inflammatory biomarker- were upregu-
lated in microglia of diseased spinal cords [36]. When
SNCAA53T mice were crossed to Axl−/−Mertk−/−
mice, the survival of the mutated mice slightly
extended. It is not yet understood whether lack of Axl
and Mertk in the SNCAA53T model influences inflam-
mation, phagocytosis, or both. Another aspect of Axl
and Mertk in PD is their transcriptional regulation by
Nrf2, and potentiating their phagocytic and immune
regulatory functions [115]. In PD, Nrf2 deficiency
is associated with protein aggregation, inflammation
and neuronal death. suggesting dysfunctional Axl and
Mertk may play a role in PD [115]. A recent report
describing exposure of phosphatidylserine by live
neurons expressing Tau filaments, showed that phos-
phatidylserine exposure mediates their phagocytic
uptake by microglia through milk fat globule-EGF
factor 8 (MFGE8) and nitric oxide (NO) [116]. In
light of this finding, TAM-mediated phagocytosis
may actively modulate the development and progres-
sion of neurodegenerative diseases with pathological
Tau aggregation, including PD.

The contribution of microglia has been associated
both positively and negatively with neurodegener-
ation. Microglia activation can be beneficial and
protective helping clear the protein deposits aggregat-
ing in these disorders such as MS, AD and PD [103].
On the contrary, microglia dysfunction often occurs
early on in disease compromising the clearance of
proteins and accruing to the inflammatory response
[103]. Further research is necessary to determine the
role of TAM signaling in neurodegenerative disease
and directing therapeutics from a neuroinflammatory
towards a neuroprotective and reparative response.

CONCLUSION

TAMs and their ligands have multiple and diverse
physiological roles in many biological systems,
including the nervous system. Throughout the ner-
vous system TAMRs, PROS1 and Gas6 are widely
distributed across many tissue and cell types and
often co-expressed allowing functional diversity.
From development throughout adulthood TAM sig-
naling partakes in many important roles detailed in
this review. TAM signaling dysfunction can cause
disease, with a direct impact on inflammation due
to their key role regulating inflammation, or as a sec-

ondary outcome, due to their role in phagocytosis,
in which deficiencies can lead to an accumulation
of apoptotic cells. The association between neu-
roinflammation and neurodegeneration is advancing
rapidly with a novel therapeutic focus to downregu-
late and prevent secondary inflammation and shift
to a neuroprotective response. The modulation of
TAM signaling has great potential for developing
new therapeutic strategies across a wide spectrum
of pathologies and diseases due to their distinct and
overlapping networks. Therapies effectively modu-
lating TAMs could stimulate phagocytosis and rapid
debridement of damaged cells and debris, remyeli-
nation, neurogenesis and shift the inflammatory
response to be neuroprotective. However, develop-
ment of an effective therapeutic strategy to modulate
TAMs depends on the complete understanding of the
interactions between TAMs and their ligands in dif-
ferent cell types. Future research lies in attaining
deeper knowledge of TAM signaling and thorough
investigation of the possible side effects of modifying
specific pathways.
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