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Alcohol and Cocaine Combined Substance
Use on Adult Hypothalamic Neural Stem
Cells and Neurogenesis
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Abstract. Many advancements have been made over the years looking at the individual and combined effects of drugs of
abuse on the brain, with one key area of research focusing on the effects on neurogenesis. An integral part of fetal brain
development and, later, maintenance in the adult brain, neurogenesis occurs in three main regions: subventricular zone of
the lateral ventricles (SVZ), subgranular zone of the dentate gyrus (SGZ), and the tanycyte layer in the hypothalamus (TL).
We will review current literature on combined drugs of abuse and their effect on adult neurogenesis. More specifically, this
review will focus on the effect of combining cocaine and alcohol. Additionally, the tanycyte layer will be explored in more
depth and probed to look at the neurogenic properties of tanycytes and their role in neurogenesis.
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Neurogenesis and gliogenesis have been exten-
sively studied since the discovery that new neurons
and astrocytes, respectively, can be produced from
neuronal stem progenitor cells (NSPCs) in two main
regions; the subventricular zone (SVZ) of the lat-
eral ventricles and the subgranular zone (SGZ) of the
dentate gyrus of the hippocampus [1–3]. Neuroge-
nesis is integral to brain maintenance and repair in
the adult brain [3] and studies, primarily focused on
the SGZ, have focused on how loss of these cells can
alter behavior and cognition [1, 4–6]. More recently, a
new neurogenic niche was discovered in the hypotha-
lamus, lining the third ventricle. This region, known
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as the tanycyte layer (TL), has unique cells called
tanycytes which have been identified as neural stem
cells due to their ability to self-renew and differenti-
ate [7, 8]; two key properties identifying NSPCs. In
addition to this, we have shown that following insult
from drugs of abuse there is a marked decrease in
NSPC proliferation and differentiation in all three
neurogenic regions [9, 10].

TANYCYTES AS HYPOTHALAMIC
NEURAL STEM PROGENITOR CELLS

The tanycyte layer of the hypothalamus is becom-
ing recognized as a new neurogenic area. This area
was discovered in 1954 [11], however the NSPC-
like properties of these cells have only recently been
explored. To further clarify, tanycytes were originally
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subdivided based on their location, along the third
ventricle, and morphology into alpha1, alpha2 and
beta1, beta2 [12]. Haan et al., explored a distinct sub-
population of these cells that were fibroblast growth
factor 10+ (FGF10+) and revealed from P28-P60
there is an increase in proliferation of these NSPCs
[8]. However, the exact subpopulation of cells that
are NSPCs is still up for debate [13], as another
group postulated that the alpha1 cells were the true
NSPC population [7]. Our own studies have also sug-
gested that the alpha1 subpopulation is NSPCs [10].
One crucial difference in these studies was the age at
which the animals were studied. Haan et al., investi-
gated the tanycyte layer at early postnatal days while
two others investigated NSPCs in adult brain [7, 8,
10]. Multiple groups have also investigated this pop-
ulation of cells and have confirmed NSPCs exist in the
hypothalamus [14–19]. Unlike the well-studied SVZ
and SGZ, the TL has not undergone extensive charac-
terization as to the rate of cell proliferation or turnover
in the adult brain. It has been shown, however, that
there is an increased rate of NSPC proliferation dur-
ing development [8] or following insult in the adult
brain [9, 10, 17].

While the SGZ zone has been studied for the
effects of neurogenesis and behavior, a limited num-
ber of studies have addressed behavioral alterations
in regard to the TL. More recently, one group has
shown that ablating Sox2+ cells in this region leads
to an advanced aging phenotype, as well as learn-
ing and memory deficits [19]. By using age-matched
controls, Zhang et al. was able to show that animals
who had undergone NSPC ablation in the hypothala-
mus expressed locomotor deficits and trouble with
memory recall in a novel object recognition task.
Additionally, due to their close connection with the
arcuate nucleus, which has been implicated to play a
large role in feeding behaviors, several groups have
suggested that these hypothalamic NSPCs play a role
in energy and nutrient sensing [14, 15, 17, 20]. The
cell body of tanycytes sits along the third ventricle
where they are directly exposed to the cerebrospinal
fluid circulation and also arterial blood circulation
[15]. Therefore, these cells are in a unique position
to relay information to the hypothalamus, and more
specifically, the arcuate nucleus. Zhang et al., also
proposed NSPCs in the hypothalamus send informa-
tion via exosomes, and can have indirect effects on
distal neurogenic regions by releasing miRNAs [19].
Additionally, since the cell bodies of tanycytes are
found along the ventricle they are directly exposed to
neurotoxins. One group showed that injecting mono

sodium glutamate (3.5 g/kg) systemically resulted in
an upregulation of proliferating cells becoming neu-
rons in the arcuate nucleus [17]. Multiple studies have
documented neuronal differentiation of hypothala-
mic NSPCs [7, 8, 17, 21–23], while other studies have
focused primarily on glial differentiation [9, 10]. Fur-
ther investigation is needed in this area to understand
why there may be a preferential switch from neuronal
to glial differentiation in models of drug use. Thus it is
of increasing importance to look at the effects on the
tanycytes following substance use and downstream
effects on neurogenesis.

COMBINED DRUG USE BACKGROUND

Drugs of abuse have long been studied for their
effects on not only the body’s peripheral systems but
also their direct effect on the central nervous system.
Both legal and illicit drugs can have drastic effects
on the brain and behavior [24–26]. These can include
short-term effects such as loss of coordination, confu-
sion, and even mood alterations [27]. While focusing
on acute drug use is important, increased risk lies in
repeated use of these drugs, in not only establishment
of a chronic condition, but also due to the fact that use
of these substances frequently leads to the develop-
ment of addiction [28]. Chronic use of drugs of abuse
can have a lasting impact on the brain, affecting not
only neural connections and impacting behavior, but
also causing a loss of key cells, such as NSPCs [9, 10,
29–31]. While most drugs of abuse are studied inde-
pendently to uncover specific mechanisms of action,
it is of translational importance to study combined
drug use, due to the high prevalence of combining
one or more substances. Combined substance use
has been reported to be more common due to the
amelioration of negative side effects from one drug
by using another [32]. Combined substance use has
been linked to a higher risk of relapse following drug
taking cessation and a worse prognosis after clini-
cal treatment [33–35]. However, when two drugs are
combined we have to consider not only the effects of
each drug independently, but also additive or syner-
gistic effects when two drugs are combined [36–38].
This can be potentially fatal, as the drug’s properties
can be altered when another substance is present. An
example of this is combining cocaine and ethanol,
where ethanol is used to ameliorate the negative or
“coming down” effect of cocaine [32, 39], and there
is the production of a unique metabolite, cocaethylene
[36, 40].
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COCAINE AND ETHANOL COMBINED
DRUG USE CONSEQUENCES AND
METABOLISM

In multiple cross-population based studies, it has
been reported that a substantial number, around 90%,
of cocaine users simultaneously used ethanol to ame-
liorate the negative side effects and enhance the
psychoactive effects of cocaine [33, 35, 41, 42]. This
combination is the third most lethal combination of
drugs due to cardiac failure [38]. Additionally, the
combined use of cocaine and ethanol can result in
enhanced psychiatric disorders such as depression,
psychotic episodes, and suicidal/homicidal ideation
[43–47]. The individual effects of both cocaine and
ethanol have been extensively studied [10, 25, 30,
48]. The mechanism of action for cocaine has been
described to be primarily mediated by the dopamine
and serotonin systems [49–53]. For ethanol, the
main CNS-mediated mechanism of action remains
more ambiguous due to its small molecular weight
and hydrophilic properties, but research suggests
the effects of ethanol to be driven by GABA-A
receptor activation and NMDA receptor inactiva-
tion [54, 55]. Noticeably, the combination of these
two drugs is clinically important due to the produc-
tion of metabolite, cocaethylene [56]. Cocaethylene
is only produced when cocaine and ethanol are
consumed simultaneously. This is because ethanol
inhibits the canonical hydrolysis of cocaine and,
instead, induces carboxylesterase 1 (CES1) which
metabolizes cocaine into cocaethylene [57–59].
Cocaethylene, similar to cocaine, inhibits dopamine
reuptake; and has been shown to have greater
euphoric properties than cocaine due to an additive
effect following alcohol and cocaine use [52, 60].

Metabolism of drugs of abuse have been well cate-
gorized, with the majority of drug metabolism taking
place in the liver. However, it has been previously
shown that some key metabolic enzymes related to the
breakdown of drugs of abuse are present in the brain
[61, 62]. It is unknown whether local metabolism of
ethanol and cocaine in the brain is harmful or bene-
ficial.

While aldehyde dehydrogenase 1 (ALDH1) is
primarily involved in ethanol metabolism, it plays
a role in cocaine metabolism by metabolizing
3,4-dihydroxyphenylaldyhde (DOPAL), which is
produced following cocaine administration due to the
breakdown of extracellular dopamine [63]. ALDH
antagonist, disulfiram, has been used clinically for
the treatment of ethanol use disorders for decades

[64, 65]. Disulfiram has also been used to treat con-
current use of ethanol and cocaine, and shown some
efficacy in reducing consumption [64]. Yao and col-
leagues have also evaluated aldehyde dehydrogenase
2 (ALDH2) antagonists to decrease cocaine-seeking
behavior [63]. Further investigation of ALDH antag-
onism is needed to assess its direct or indirect effect
on NSC survival and differentiation in the context of
poly-drug abuse.

Cocaethylene, metabolized by CES1 which is
found in low levels in the brain [9, 66], has been
studied primarily for the effects on the heart, and
has been shown to be ten times more cardio-toxic
than cocaine [38, 40, 67]. This is due, in part, to the
fact that the half-life of cocaethylene is three times
longer than cocaine, so effects are sustained for longer
periods of time. Additionally, one study has shown
cocaethylene can have negative effects on the brain,
specifically a loss in righting reflex following intrac-
erebroventricular (ICV) administration [58]. Further
research, specifically into the neurotoxic effects of
cocaethylene, have yet to be done. Future directions
for investigation also include whether cocaethylene
is independently neurotoxic to NSPCs and if the pro-
duction of cocaethylene can precipitate an addictive
phenotype greater than cocaine or ethanol alone.

Our laboratory recently established an animal
model to begin studying combined substance use
of cocaine and ethanol [9]. More importantly, this
animal model allowed for the genetic fate-mapping
of endogenous NSPCs in the adult brain. Using a
Nestin-Cre/LoxP mouse model [68], NSPCs were
able to be temporally-and spatially-tracked despite
proliferation or differentiation following tamoxifen
induction. This allowed for the study of the sys-
temic effects of chronic administration of combined
cocaine and ethanol in a mouse model. The study
focused on all three neurogenic regions and also
investigated sex differences following poly-drug use.
Sex differences have been observed in and across
multiple drugs of abuse, and this trend holds true
for poly-drug use [39, 69–71]. Females reported
higher feelings of euphoria following the combi-
nation of cocaine and ethanol [39]. Additionally,
females have an increased chance of developing psy-
chiatric symptoms [47]. We showed that indeed,
across all three neurogenic regions, females had a
greater loss of NSPCs than males [9] (Fig. 1). Addi-
tionally, astrogliogenesis, or the production of new
astrocytes, was upregulated in females more so than
males, however the reason behind this still needs to
be explored.
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Fig. 1. Neural Stem Progenitor Cell Response to Combined Drug Use in Neurogenic Regions. NSPCs are labeled by green fluorescent
protein (GFP), nuclei stained with DAPI showing the representative neurogenic regions. SVZ-subventricular zone, SGZ-subgranular zone,
TL–tanycyte layer.

CONCLUSION

Individual use of drugs of abuse have been stud-
ied to better understand addictive properties and the
impact on behavior and the brain. In addition to this,
the effects of alcohol or cocaine on neurogenesis and
the negative effects on endogenous NSPC popula-
tions has been investigated. With the discovery of the
tanycyte layer and identification as a new neurogenic-
niche, new avenues are now presented, to explore
how drugs of abuse can impact NSPCs in this region,
directly and indirectly. Additionally, other behaviors,
outside of feeding, that can be impacted following
loss of NSPCs in the TL need to be investigated. One
group showed that loss of these cells, using a viral
knockdown approach, can result in an aging-like phe-
notype as shown by loss of locomotion and learning
deficits [19]. Therefore, it would be interesting to see
if local administration of these drugs directly to the
third ventricle, can produce similar effects.

More recently, combined drug use of cocaine and
alcohol in a clinically-translational animal model has
been established to further investigate the effects on
neurogenesis [9]. Results from the three neurogenic
regions showed decreased NSPC survival and differ-
entiation into new neurons, greater than either drug
alone. Interestingly, an increase in astrogliogenesis

was seen, more often in females than males. Fur-
ther investigation is needed to explore these results
and to probe whether the observed effects are due
to additive or synergistic effects of combining alco-
hol and cocaine. Additionally, further studies need
to be conducted to investigate the role of cocaethy-
lene, independently, on the three NSPC populations.
Future in vitro studies could also be used by isolating
the NSPCs from the three neurogenic regions to more
directly investigate the mechanisms behind cell loss
and reduced differentiation following drug use.
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