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Abstract. Alzheimer’s disease and related dementias (ADRD) represent an increasingly urgent public health concern, with
an increasing number of baby boomers now at risk. Due to a lack of efficacious therapies among symptomatic older adults,
an increasing emphasis has been placed on preventive measures that can curb or even prevent ADRD development among
middle-aged adults. Lifestyle modification using aerobic exercise and dietary modification represents one of the primary
treatment modalities used to mitigate ADRD risk, with an increasing number of trials demonstrating that exercise and dietary
change, individually and together, improve neurocognitive performance among middle-aged and older adults. Despite several
optimistic findings, examination of treatment changes across lifestyle interventions reveals a variable pattern of improve-
ments, with large individual differences across trials. The present review attempts to synthesize available literature linking
lifestyle modification to neurocognitive changes, outline putative mechanisms of treatment improvement, and discuss dis-
crepant trial findings. In addition, previous mechanistic assumptions linking lifestyle to neurocognition are discussed, with
a focus on potential solutions to improve our understanding of individual neurocognitive differences in response to lifestyle
modification. Specific recommendations include integration of contemporary causal inference approaches for analyzing par-
allel mechanistic pathways and treatment-exposure interactions. Methodological recommendations include trial multiphase
optimization strategy (MOST) design approaches that leverage individual differences for improved treatment outcomes.

SCOPE OF AGE-RELATED
NEUROCOGNITIVE DECLINE

The number of older (aged>65) adults in the
United States is projected to double by 2030, rep-
resenting an immense demographic shift that has
been referred to as the ‘silver tsunami’[1]. Along
with an increasingly older and complex general
population, rates of age-associated neurocognitive
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impairment, stroke, and Alzheimer’s and Related
Dementias (ADRD) are projected to increase in tan-
dem, representing a looming source of public health
expenditures [2]. ADRD is among the mostly bur-
densome and costly public health concerns in the
United States. As treatments for coronary disease and
cancer have increased life expectancies among aging
adults, the risk of ADRD has continued to increase,
with a projected increase in prevalence from 26.6 mil-
lion to over 106 million worldwide by mid-century
[3-5]. Moreover, many more individuals will develop
cognitive impairment that substantially impairs qual-
ity of life without reaching criteria for dementia,
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including mild cognitive impairment (MCI) and cog-
nitive impairment no dementia (CIND) [52]. Prior
estimates have suggested that ADRD may account for
up to $215 billion annually in public health expendi-
tures, [6] with an anticipated increase in the coming
decades. The public health cost of ADRD is partic-
ularly troublesome as the presence of ADRD is not
only detrimental to afflicted individuals but often has
dramatic ramifications for the quality and productiv-
ity of life among caregivers, many of whom have to
substantially restrict or discontinue their participa-
tion in the workforce in order to provide care [7]. In
addition, most older adults reportedly fear the devel-
opment of ADRD more than cardiovascular disease
(CVD) or other common chronic diseases, [8, 9] sug-
gesting that strategies to mitigate ADRD risk have
critical importance for both the quality and quantity of
life for an exponentially increasing number of ‘baby
boomers’ now at risk for ADRD [10-12].

The public health cost of ADRD is particularly
troublesome as the presence of ADRD is not only
detrimental to afflicted individuals but often has dra-
matic ramifications for the quality and productivity
of life among caregivers, many of whom have to
substantially restrict or discontinue their participa-
tion in the workforce in order to provide care [7]. In
addition, most older adults reportedly fear the devel-
opment of ADRD more than CVD or other common
chronic diseases, [8, 9] suggesting that strategies to
mitigate ADRD risk have critical importance for both
the quality and quantity of life for an exponentially
increasing number of ‘baby boomers’ now at risk
for ADRD [10-12]. The increasing prevalence of
ADRD is particularly concerning as pharmacolog-
ical treatments to mitigate or prevent ADRD have
been largely unsuccessful, with a 99% failure rate
among novel pharmacotherapies [13]. Indeed, despite
recent trials reporting tentatively positive findings,
the consistent lack of efficacy observed from inter-
ventions among symptomatic older adults has led
several large pharmacological entities to reallocate
resources away from therapeutic pursuits due to a
perception of futility [14-16]. Accordingly, a bur-
geoning body of evidence suggests that targeting
modifiable risk factors in midlife may hold promise
for mitigating or even preventing ADRD in later
life [17-23]. For example, the Lancet Commission
recently concluded that optimal treatment of modifi-
able risk factors holds the potential to delay or prevent
up to one-third of ADRD cases [2, 24]. However,
due to a relative paucity of randomized controlled tri-
als, similar systematic reviews have yielded far less

positive conclusions [25]. Beyond the potential merit
of lifestyle change for preventing ADRD, optimiz-
ing modifiable risk factors is increasingly recognized
for its importance in protecting from more norma-
tive decline in the context of cognitive aging, which
has implications across all older adult populations
[1, 26]. The present review will provide a narrative
review of contemporary literature examining lifestyle
characteristics and neurocognition, as well as innova-
tive opportunities to improve mechanistic inferences
from lifestyle trials attempting to mitigate ADRD risk
and improve neurocognition.

LIFESTYLE, NEUROCOGNITION, AND
ADRD: IMPORTANCE OF MODIFIABLE
RISK FACTORS

A burgeoning body of evidence suggests that
targeting modifiable risk factors in midlife may
hold promise for mitigating or even preventing
ADRD in later life [17-20]. For example, recent
consensus statements by the NINDS, NIA, and Amer-
ican Alzheimer’s association have all advocated an
increased focus on ADRD prevention, primarily
focusing on three overarching risk factors: physi-
cal inactivity, ‘Western’ dietary patterns (e.g. high
intake of saturated fat and complex carbohydrates,
and low intake of fruits and vegetables), and poorly
controlled cardiometabolic (CVD) risk factors. In
contrast to some ADRD risk factors, such as age and
genetic predisposition, these lifestyle-related dimen-
sions all share an important characteristic: they are
modifiable. CVD risk factors include an array of risk
factors shown to increase risk of ADRD through
vascular and/or metabolic risk, including compo-
nents of metabolic syndrome (hypertension, obesity,
diabetes or insulin resistance, hyperlipidemia, ele-
vated triglycerides), smoking, atrial fibrillation, and
left ventricular hypertrophy. In the United States,
common CVD risk factors (e.g. hypertension and
obesity) affect nearly 2/3 of adults and are inde-
pendently predictive of cognitive decline and ADRD
[10]. Individuals with elevated CVD risk factors in
midlife are 2-3 times more likely to develop demen-
tia, [17, 18, 27, 28]. leading many investigators to
characterize CVD components as primary targets for
dementia prevention initiatives [11]. Because AD and
dementia are projected to constitute the largest pub-
lic health burdens in the U.S. within two decades
and pharmacological treatments have proven ineffec-
tive, the ability to curb cognitive deterioration carries
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tremendous public health importance [2, 29]. Indeed,
although estimates related to potential prevention of
ADRD are inherently imprecise, reductions in modi-
fiable risk factors by 10-25% could reduce up to half
of AD cases worldwide, representing millions of indi-
vidual cases [30]. An integrated understanding of the
effects of diet and exercise on neurocognitive func-
tioning is therefore critical to guide prevention efforts
over the coming decades.

BEHAVIOR AND THE BRAIN:
CONCEPTUAL FRAMEWORKS LINKING
LIFESTYLE AND NEUROBEHAVIORAL
FUNCTIONS

“A system is a set of things—people, cells,
molecules, or whatever—interconnected in such
a way that they produce their own pattern of
behavior over time. The system may be buffeted,
constricted, triggered, or driven by outside forces.
But the system’s response to these forces is char-
acteristic of itself, and that response is seldom
simple in the real world.”[31]

Neurobehavioral Considerations

Over the past two decades, an explosion of empir-
ical evidence has been published linking lifestyle
behaviors to brain function [19, 32-36]. Indeed, great
strides have been made at multiple levels of inference,
including randomized trials of clinical populations,
[37-41]. mechanistic studies within preclinical older
adults using neuroimaging modalities, [42—44] and
animal studies linking neurobehavioral changes to
alterations in mitochondrial structure, [45-47] neu-
rotrophic, [48, 49] and metabolic function [50, 51] to
underlying changes of neuropathological pathways
[52-54]. While exciting, the abundance of data has
made a systematic synthesis of the linkages between
diet, exercise, and neurocognition more difficult. One
specific difficulty has been delineating overlapping
mechanistic pathways by which change in lifestyle
may alter the brain and, as a behavioral corollary, neu-
rocognitive function. Moreover, prevailing biomarker
models of preclinical ADRD progression increas-
ingly suggest that subtle, systemic ADRD changes
occur over decades, with alterations in neurocogni-
tive function only observable in the final stages of the
process [16, 55, 56].

Translational studies across animal and human
models are potentially compounded by inherent
and well-characterized neurobiological differences

across animal and human studies, in which the
behavioral markers most sensitive to the effects
of aging [57-59] and CVD risk factors [10, 60]
in humans are also the most distinct and hardest
to measure in animals (e.g. higher-order executive
functions). For example, while the most anterior
brain regions in humans (e.g. orbitofrontal cortex)
and associated projections have widely studied neu-
ropsychiatric relevance, [61-65] these brain regions
have less representation in rodents, making trans-
lational behavioral inferences more difficult [66].
Therefore, while critically informative for elucidat-
ing mechanistic underpinnings, animal studies have
necessarily prioritized behavioral markers of learn-
ing and memory, [67] which are critically reliant on
mesial temporal lobe structures in humans.

In humans, episodic memory performance is
closely tied to integrity within mesial temporal
lobe structures, providing the earliest and most pro-
totypical impairment observed in preclinical AD,
often with associated cortical atrophy and ventricular
enlargement [68, 69]. In contrast, the most common
age-related neurocognitive changes occur on tests of
complex processing speed, [57, 70] which are sub-
served by a small array of frontal-subcortical circuits
(FSCs), some of which are preferentially vulnerable
to microvascular and ischemic damage [71]. Under-
scoring their complexity, the FSCs all have direct and
indirect pathways across the prefrontal cortex, cortic-
ocortical connections with other circuits, and more
distal connections with outside brain regions [72].
While interconnected, FSCs carry various degrees
of importance in facilitating distinct components of
‘executive functions’ depending on the specific needs
of the task. Anterior injuries to the superior / medial
FSC may experience impairments in task initiation,
whereas damage to the dorsolateral prefrontal cortex
are more commonly associated with impairments in
set-shifting and working memory. FSCs also facili-
tate a delicate balance of neurotransmitter functions
across various ‘reward system’ brain regions in the
ventral striatum and caudate, which are particularly
important in their sensitivity to various monoamines
(e.g. dopamine). This may explain why neurocog-
nitive improvements following exercise appear to
preferentially improve executive functions and speed
across diverse clinical populations, such as vascu-
lar cognitive impairment, [73]. Parkinson’s Disease
(PD), [74] and Attention Deficit Hyperactivity Dis-
order (ADHD) [75]. While neurocognitive deficits
across these disorders are etiologically distinct, they
have shared dysfunction within neurocircuitry in
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the FSCs and particularly the ventral striatum and
associated prefrontal cortex projections, which are
critical to facilitating these complex neurocognitive
functions.

Conceptual models

Several widely used conceptual models are use-
ful in elucidating the complex associations between
lifestyle factors and neurocognition. One widely used
and conceptual framework is the scaffolding the-
ory of aging (STAC) and its revision (STAC-R)
[76-78]. This framework explicitly grapples with
several important elements of the dynamic systems
by which peripheral systems, structural markers of
neuropathology, and functional neural pathways all
act in concert facilitate neurocognitive function. It
is worth remembering that, although an increas-
ing focus is been placed on the identification of
preclinical biomarkers the AD literature, the end
goal of treatment remains the same: to preserve
function through preserved neurocognition [79-81].
Importantly, many investigators hypothesize that the
beneficial effects of lifestyle modification on neu-
roplasticity are occur primarily by strengthening
compensatory functions of the brain, with more mod-
est effects occurring through direct enhancement to
neuropathological aspects of brain structure (e.g.
cortical atrophy and white matter disease) [77]. How-
ever, the ability to recruit and retain new neurons
is also dependent on the underlying health of the
brain and supportive systems, such that there may be
a ‘tipping point’ beyond which these compensatory
changes are eclipsed by larger neurodegenerative
changes.

An important corollary of this theory is that the
impact of lifestyle on brain function may act through
different mechanisms with a different time course
is depending on the person’s age, neuropathological
burden, and systemic health. For example, optimally
managing cerebrovascular risk factors over the course
of decades through exercise and diet would likely help
sustain brain function by sustaining microvascular
function [82]. In contrast, reducing cerebrovascu-
lar risk over the course of months among an older
individual with significant cortical volume loss may
not be helpful and could paradoxically worsen func-
tion if compensatory cerebrovascular remodeling has
occurred within the neurovascular unit following
decades of hypertension [83—85]. In essence, this the-
ory allows for a dynamic, systems level approach to
cognitive functioning that takes into account mul-

tiple factors often overlooked and more simplistic
models.

Another important conceptual approach is the
potential ability of lifestyle to strengthen neurocog-
nition through its impact on reserve capacity, which
has conventionally been conceptualized as cogni-
tive reserve [86] and more recently extended to
include metabolic [87-89] and brain reserve [90].
Reserve capacity reflects wide individual differ-
ences in the ability to withstand great amounts of
neuropathological damage without apparent neu-
rocognitive impairment, which may be reflected
across multiple systems that all indirectly impact
ultimate neurocognitive function. For example, mark-
ers of fluid intelligence, [91] greater efficiency of
metabolic ‘cross-talk’ between the peripheral and
central nervous systems (CNS), [92] and greater
white matter integrity [93] all could be conceptu-
alized as representing reserve capacities, measured
across cognitive, metabolic, and structural brain sys-
tems. Although there appears to be wide agreement
that reserve capacity is a critical component under-
lying the associations between diet, exercise, and
neurocognition, [32, 89, 94, 95] there remains wide
disagreement about how these concepts are defined
and how they should be measured [80, 81, 96].
Nevertheless, it appears likely that lifestyle has a ben-
eficial effect on the brain through its parallel impacts
on brain structure, reserve capacity, and directly on
neurotransmitter systems, which indirectly influence
each other (Fig. 1).

Related conceptual frameworks with smaller
empirical bases in humans include the effects of
lifestyle on 1) hormesis and 2) compensatory repair
functions within the brain facilitated by preserved
lipid metabolism. Hormesis reflects the adaptive
response of the brain to intermittent, low-dose envi-
ronmental exposures (e.g. dietary energy restriction)
that enhance systemic functional response capabil-
ities [97, 98]. More recent evidence suggests that
alterations in phospholipid metabolism may be par-
ticularly important to the progression of subclinical
ADRD biomarkers of cortical atrophy [99]. CNS
lipids have a critical, structural role in supporting
neuronal integrity and it has been hypothesized that
intact phospholipid metabolism may serve a criti-
cal compensatory mechanism underlying neuronal
repair in preclinical adults. Alterations in phospho-
lipid metabolism are prognostic of incident cognitive
decline, conversion from normal cognition to mild
cognitive impairment (MCI), and conversion from
MCIto ADRD [99, 100]. Altered lipid metabolism is
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Fig. 1. Directed acyclic graph linking lifestyle modification to neu-
rocognitive outcomes. As shown, lifestyle modification likely has
beneficial effects on structural markers of neuropathology, reserve
capacities, and more directly on neurotransmitter systems, all of
which contribute to neurocognitive function as observed through
behavioral testing. The associations between markers of reserve
capacity and/or scaffolding (i.e. blood brain barrier integrity, cere-
brovascular reactivity, neurogenesis) likely impact neurocognition
indirectly through their influence on structural markers and by
potentiating or blunting neurotransmitter systems.

also potentially consistent with the increased rates of
ADRD among individuals with different apolipopro-
tein (APOE) genotypes, as the APOE gene was
originally discovered because of its lipid metaboliz-
ing properties. It is therefore possible that blunted
peripheral metabolic function may impair the brain’s
ability to offset normative neurodegeneration, with
marked dysregulation of phospholipid metabolism
occurring in the years immediately preceding clinical
neurocognitive impairment [101-105].

Conceptual frameworks have proven useful in
guiding lifestyle-related intervention approaches, but
have been used sparingly in generating falsifiable
hypotheses. As discussed later in this review, this
may owe partly to the inherent ‘systems-level’
nature of models following from models such as
STAC-R, which posit that an individual’s level of neu-
rocognitive function represents the brain’s ability to
compensate for underlying disease burden. Implicit
within this standard definition of brain reserve /
resilience is a multi-level system in which function
(neurocognition) is a product of disease exposure
(e.g. advancing age, vascular risk), neuropathological
burden (e.g. cortical atrophy), and cerebral compen-
satory factors (e.g. neurogenesis, synaptic plasticity).
In other words, exogenous disease exposure causes
both structural and functional degradation in the
CNS, and neurocognition therefore reflects the degree
of successful compensation exerted by an individual
to sustain function in the presence of this underly-
ing burden. Neurocognitive performance therefore

reflects a gradient: it reflects both the amount brain
function / reserve capacity exerted and the amount of
underlying neuropathological / structural burden.

Dynamic conceptual models suggest several
important and testable hypotheses. First, the associa-
tion between markers of exposure and neurocognition
should be mediated through their impact on underly-
ing brain structure and compensatory function. For
example, the association between advancing age and
memory decline would be explained by alterations
in structural (e.g. cortical atrophy and microvas-
cular burden) and compensatory / functional (e.g.
CNS metabolic function). In other words, an indi-
vidual with greater vascular risk who (miraculously)
does not evidence microvascular ischemic damage
or impaired cerebrovascular reserve function would
be hypothesized to have better neurocognition com-
pared to an individual without evidence of these CNS
sequelae, even if they were comparable in their degree
of (peripheral) vascular risk. Similarly, greater white
matter damage / leukoencephalopathy caused by fac-
tors unrelated to chronic vascular risk factors (e.g.
CADASIL or multiple sclerosis) would be hypothe-
sized to impair neurocognition even in the absence
of vascular risk, because the primary mechanism of
impairment (brain structure) is still impacted. Touse a
more concrete analogy, knowing that a car cannot get
from point A to point B tells you little about whether
the car’s impairments are structural (e.g. the frame is
compromised) or functional (e.g. flat tires and out of
gas). Designing intervention to make the car function
would therefore be highly dependent on the type of
impairment: filling up the gas is unlikely to be helpful
if your car’s frame is compromised. As a corollary,
lifestyle interventions designed to modify exposure
variables (e.g. blood pressure) or that select partic-
ipants based on their level of neurocognition may
therefore overlook important individual differences
in biomarkers of disease burden that could plausibly
impact participants’ ability to improve brain function
with treatment.

Another important and testable extension of these
conceptual models is that structural markers of
reserve should function as a constraining factor to any
treatment-related improvements in neurocognition.
Because structural reserve markers (e.g. atrophy)
are less changeable and in some cases represent a
marker of optimal functioning (e.g. educational sta-
tus or premorbid intelligence), they may function
to moderate the degree to which improving com-
pensatory factors improves neurocognition. In other
words, structural markers may impact the capacity of
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improvement, whereas improvements in functional
markers of reserve may track more closely with neu-
rocognitive changes. In some conceptual models, like
STAC-R, lifestyle modification is thought to impact
neurocognition primarily through its impact on com-
pensatory factors, with smaller gains over time in
structural neuropathological markers. As a corollary,
improvements in neurocognition may be mitigated
in the presence of greater neuropathological burden.
Nevertheless, few trials attempt to collect or integrate
individual difference in structural markers of disease
burden into their inclusion criteria or account for them
in their analytic plans [106].

PHYSICAL ACTIVITY, DIETARY
PATTERNS, AND NEUROCOGNITIVE
OUTCOMES

Lifestyle factors, such as physical activity and
healthier dietary patterns, are increasingly recog-
nized as potential contributors to ADRD risk [18,
107-111]. For example, meta-analytic studies of
middle-aged adults have demonstrated that greater
engagement in physical activity associates with sig-
nificant reductions in ADRD risk, with individuals
who exercise regularly demonstrating an approxi-
mate 40% reduced risk [112]. Prospective studies
have also linked various dietary patterns to differ-
ential ADRD outcomes [110, 113, 114]. Multiple
intervention studies have reported similar findings,
with numerous meta-analytic reviews suggesting
that individuals randomized to participate in aerobic
exercise training experience modest but appreciable
increases in cognitive performance [115-118]. These
findings are reviewed briefly below.

Physical activity

Physical activity, including leisure time exercise,
has gained increasing attention as a possible modifi-
able factor mitigating the risk of Alzheimer’s disease
and cognitive impairment in later life [112, 119, 120].
Numerous epidemiological studies now suggest that
greater levels of physical activity confer a lower risk
of a dementia in later life, with even modest improve-
ments and habitual activity demonstrating significant
reductions in long-term risk. For example, in a
meta-analysis of 15 prospective studies incorporat-
ing nearly 34,000 individuals, higher physical activity
levels associated with a 38% lower risk of neurocog-
nitive decline, with even low-to-moderate exercise
levels conferring lower risk (35%) [112]. Discrepant

findings have also been reported, however, with a
recent study from the Whitehall II study failing to
find a protective association between physical activity
and risk of ADRD nearly 30 years later [121]. These
discrepant findings may be influenced, in part, by dif-
fering risks between ADRD subtypes, with AD and
vascular dementia (VaD) differing to various degrees
in their underlying pathophysiologic risk profiles. For
example, a more recent meta-analysis of prospective
studies demonstrated that physical activity was pro-
tective against all-cause dementia (OR=0.79 [0.69,
0.88]) and cognitive decline (OR =0.67 [0.55, 0.78]),
with the greatest benefits for development of AD
(OR =0.62[0.49, 0.75]), whereas risk of VaD was not
associated with physical activity (OR=0.92 [0.62,
1.30]) [122]. An interesting but inconsistent finding
within published exercise trials is the potentially dif-
ferential effect based on genetic risk for AD (APOE)
[123, 124]. Although results have been mixed, several
studies have demonstrated that the beneficial effects
of aerobic training may be greater among individuals
with greater AD genetic risk, [123] although others
have failed to replicate these subgroup differences
[125, 126]. Taken together, these findings suggest that
being physically active in middle-age is likely pro-
tective against future ADRD, although there is wide
individual variation across individuals that remains to
be understood, as discussed in later sections below.
Physical activity interventions also have tended
to report beneficial effects, [41, 117, 127-129].
with some notable exceptions [36]. Results have
generally suggested that improvements in neurocog-
nition following aerobic training are strongest in
frontal-subcortical functions, including attention and
executive functions, although improvements across
other domains also have been noted [117, 118].
Similar findings have been reported from resistance
training interventions, with participants randomized
to exercise demonstrating improvements relative to
controls [130] and a tendency for the pattern of
improvements to favor frontal-subcortical functions
[131, 132]. As discussed in more detail below, the
largest source of variation across studies appears not
to be whether they can improve neurocognition, but
whether the observed improvements can be attributed
to changes in fitness or other downstream mecha-
nisms. For example, multiple studies examining the
physical activity and neurocognition association have
failed to demonstrate dose-response benefits [112,
117, 133-135] or an association between improved
aerobic fitness (the putative treatment mediator for
aerobic training) [36, 136]. The comparable benefits
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observed from resistance training may therefore
suggest that downstream changes (e.g. metabolic
function or neurotrophins) represent a more plau-
sible mechanism underlying the observed treatment
benefits.

Dietary patterns

An extensive body of evidence, including hundreds
of trials, has attempted to improve neurocognition
through dietary supplementation. As reviewed in
detail elsewhere, areas of intervention tended to focus
on antioxidants (vitamins A, C, and E), B vita-
mins and folate, and polyunsaturated fatty acids (e.g.
omega-3s). Although the details of this large body
of evidence are beyond the scope of the present
paper, systematic reviews of supplementation tri-
als have generally produced equivocal findings with
one exception: individuals who are deficient in a
various nutrient (e.g. vitamin B) benefit from sup-
plementation to normalize their levels. Beyond this,
supplementation does not appear to improve neu-
rocognition and may even have adverse effects in
some individuals. An emerging body of evidence
has shifted focus form specific nutrients to overall
dietary patterns, with a focus on the Mediterranean
diet (MeDi), the Dietary Approaches to Stop Hyper-
tension (DASH) diet, the Mediterranean-DASH for
Neurodegenerative Delay (MIND) diet, and caloric
restriction.

Dietary patterns have also gained interest, as a
growing number of prospective studies have demon-
strated that better adherence to dietary patterns with
higher intake of fruits, vegetables, whole grains, and
reduced intake of saturated fat and complex car-
bohydrates appear to be associated with reduced
ADRD risk [137-141]. For example, greater adher-
ence to the DASH diet, [142-147] MeDi, and
MIND [148-150] have all been associated with
lower ADRD risk. However, there have also been
null findings, with recent systematic reviews report-
ing that evidence linking dietary patterns to ADRD
outcomes remains inconclusive [113, 151, 152].
Importantly, although the MeDi and DASH were
originally characterized for their beneficial impact
on CVD risk factors and CVD outcomes, few stud-
ies have provided compelling evidence that the
observed associations between dietary patterns and
ADRD are mediated through vascular pathways,
[148, 153] with multiple, indirect mechanisms con-
necting dietary behaviors to cognitive outcomes
[144, 154].

Mediterranean diet

One of the most widely studied dietary patterns
is the MeDi. The MeDi was originally identified for
its characteristic pattern among individuals living in
European countries surrounding the Mediterranean
sea, who also consistently exhibit a low incidence of
cardiovascular disease. Accordingly, the MeDi is typ-
ified by greater levels of fish intake, fresh fruit and
vegetables, unsaturated fatty acids, and modest but
regular consumption of wine [153, 155]. The majority
of prospective cohort studies have found a protective
association between the MeDi and neurocognitive
outcomes [137, 156, 157]. For example, a prior meta-
analysis combining results across five studies found
that higher adherence to the MeDi diet (highest ter-
tile) was associated with a 27% reduced risk of
MCI and a 36% reduced risk of AD among cogni-
tively normal adults [158]. The majority of existing
observational evidence suggests that the beneficial
effects of MeDi on brain outcomes are mediated
by reduced cerebrovascular risk and incidence of
brain infarcts on neuroimaging assessment [159]. As
detailed below, results from the PREDIMED trial,
[160, 161] are one of the only RCTs available to
assess the benefits of MeDi diet in an intervention
context, though several ongoing trials are currently
underway. In addition to available trial data, a recent
meta-analysis of prospective cohort studies suggested
that the association between MeDi dietary pattenrs
and ADRD exhibits dose-response characteristics,
suggesting that increasing levels of adherence may
have additionally protective effects [162].

Dietary approaches to stop hypertension (DASH)

Similar to the MeDi, the DASH diet was orig-
inally designed for its beneficial effects on blood
pressure and associated hypertensive outcomes. The
DASH diet emphasizes consumption of fresh fruits
and vegetables, whole grains, low-fat dairy prod-
ucts, modest meat consumption, and modest alcohol
consumption. In contrast to the MeDi, the DASH
places greater emphasis on reducing dietary salt
intake and does not incorporate regular alcohol con-
sumption. Greater DASH adherence has also been
associated with greater blood pressure reductions
[163] and reduced risk of stroke, [164] underscoring
its potential benefits to cerebrovascular mechanisms
of neurocognitive impairment. Preliminary evidence
suggests that individuals who are more adherent to a
DASH-style diet have a lower incidence of cognitive
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decline [144, 146]. For example, DASH diet adher-
ence was also associated with lower rates of cognitive
decline among older adults participating in the Mem-
ory and Aging Project during a 4-year follow-up [146,
165].

Mediterranean-DASH (MIND) Diet

An emerging dietary pattern of interest is the
MIND diet, which combines aspects of the MeDi
and DASH diet with an emphasis on dietary com-
ponents linked to neuroprotection and dementia
prevention [166—168]. For example, the MIND diet
has a more explicit emphasis on dietary components
with polyphenolic effects, such as blueberries, red
wine, and dark chocolate [169]. The MIND diet has
been associated with a lower incidence of neurocog-
nitive decline [150, 168, 170] and ADRD [169-172].
Indeed, recent evidence suggests that the MIND
dietary pattern is associated with more protective
effects when compared to either the MeDi or DASH
directly [165-167]. Although no clinical trials have
focused on modifying dietary patterns using MIND
specifically, investigators are increasingly integrating
this pattern of dietary intake into preventive efforts
aimed at lowering the incidence of ADRD through
dietary modification [173].

Caloric restriction / intermittent fasting

Lower caloric intake is historically one of the most
widely studied aspects of dietary intake believed
to improve brain outcomes. While early studies
were almost exclusively in animal models, an accu-
mulating body of data suggests that lower caloric
intake may be associated with lower risk of cogni-
tive decline, [174, 175] and that intentional weight
loss through caloric restriction may improve neu-
rocognition [176]. For example, both cross-sectional
[177] and prospective studies have suggested that
caloric intake is associated with ADRD risk, [178]
and that this association may vary based on genetic
risk for AD [179]. In addition, several RCTs have
examined the impact of caloric restriction on neu-
rocognition among humans, with mixed results [178,
180-182]. In one study, a three-month caloric restric-
tion intervention improved memory performance
among fifty healthy, elderly adults who were either
normal weight or overweight [178]. Following three
months of treatment, individuals randomized to
the caloric restriction group showed improvements
in verbal memory performance. In addition, these

improvements were associated with decreased lev-
els of fasting insulin and C-reactive protein and were
strongest among participants with the best adher-
ence. Similar findings were noted in recent post hoc
analyses from the CALERIE trial, [183] in which
improvements on some neurocognitive subtests were
noted among individuals in the caloric restriction
among obese adults [184]. Moreover, improvements
in neurocognition were associated with peripheral
inflammation levels, [185] suggesting a possible
mechanism linking caloric restriction and neurocog-
nitive improvements. Despite these positive findings,
three other trials examining caloric restriction failed
to find significant effects, which may due to the
younger age of participants in these trials [180-182].

In one of the more positive caloric restriction
trials, Horie and colleagues demonstrated that a one-
year caloric restriction trial in 80 obese adults with
MCI improved cognitive function, with improve-
ments observed across neurocognitive domains
[186]. Improvements in neurocognition varied some-
what by age and APOE genotype, with participants
aged 60-70 demonstrating the largest improvements
in memory and verbal fluency, and APOE-4 car-
riers demonstrating the largest improvements in
executive function. Most notably, improvements
in neurocognition were associated with improved
metabolic function (increased insulin sensitivity and
leptin), reduced inflammation (C-reactive protein),
and reduced energy intake (carbohydrates and fats).
Similarly positive findings were reported from a
small trial examining changes in brain structure and
function among 37 obese, postmenopausal women
randomized to an intensive 12-week low-caloric diet
or a control group [187]. In a per protocol analysis,
the authors excluded individuals in the intervention
group who did not lose at least 10% body weight,
as well as participants in the control group who lost
more than 5% of body weight. Participants in the
intervention group exhibited improved memory per-
formance paralleled by increased gray matter volume
in the inferior frontal gyrus and hippocampus, as well
as augmented hippocampal resting-state functional
connectivity to parietal areas. The effects appeared
to be specific to transient negative energy balance,
and were not detected after subsequent weight main-
tenance.

Other dietary patterns

Two closely related dietary patterns, with a much
small literature base, include intermittent fasting and
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ketogenic dietary patterns. Intermittent fasting has
been suggested to have beneficial effects on the brain
by improving metabolic function through intentional
manipulation of energy balance, as well as reducing
inflammation and oxidative stress [188—190]. Inter-
mittent fasting appears to produce comparable weight
loss benefits when compared to traditional caloric
restriction, [191] reduces cardiovascular risk factors,
[192, 193] and has been associated with reduced
risk of age-related neurocognitive deficits [194]. An
additional benefit is that it may be easier for many
individuals to comply with It also may be easier
for many individuals to comply with, [195] increas-
ing the likelihood of sustained adherence. Finally,
the ketogenic diet (KD) has been examined, origi-
nally as a potential non-pharmacological strategy to
reduce the frequency and severity of seizure activity
in epileptic patients [196]. Through hermetic mecha-
nisms, KD has been postulated to improve central
metabolic function, [169, 197, 198] a critical fac-
tor in age-dependent neurocognitive decline [197].
Although very few studies have examined KD outside
of epileptic samples, [199-201] mechanistic animal
studies suggest that KD may improve glucose trans-
port, with differential effects on the prefrontal cortex
and hippocampus [202].

Randomized Trials Combining Exercise and
Dietary Modification

Although individual lifestyle components appear
to confer lower ADRD risk, preliminary evidence
suggests additive benefits associated with each com-
ponent, such that individuals engaging in regular
exercise and healthier diets show the lowest risk
[203-205]. Data from the WHICAP project demon-
strated that participants engaging in physical activity
or the MeDi diet had lower risk of Alzheimer’s Dis-
ease (AD), and participants engaged in both had the
lowest prospective risk of AD [206]. Similar mech-
anistic findings have been demonstrated in animal
models as well, with exercise facilitating the bene-
ficial effects of some dietary components on brain
outcomes [98, 207-212]. Preliminary data from mul-
ticomponent trials have reported similar findings,
with both exercise and diet combining to improve
neurocognitive performance [145, 213]. Similarly, in
the recently completed Finnish Geriatric Intervention
Study to Prevent Cognitive Impairment and Disabil-
ity (FINGER) trial, [214] individuals randomized to
the multicomponent intervention of exercise, diet,
cognitive training, and monitoring of CVD risk fac-
tors experienced greater cognitive improvements. In

contrast, recent data from the LOOK-AHEAD trial
suggest that behavioral weight loss does not neces-
sarily improve neurocognition [215-219] and may
even have deleterious effects in older individuals,
[220] despite improvements in some neuroimaging
biomarkers of ADRD [221, 222]. Multicomponent
trials are presented in detail below:

FINGER: The Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability (FIN-
GER) trial was one of the more positive RCTs to show
improvements in neurocognition following lifestyle
modification [214]. In this RCT, 1260 number of
older adults (60-77) with cardiovascular risk fac-
tors were randomized to a two-year, multidomain
intervention consisting of aerobic exercise training,
dietary modification, cognitive training, and vascular
risk monitoring. The control group received general
health advice. Participants were 60-77 years of age,
had a CAIDE (Cardiovascular Risk Factors, Aging,
and Dementia) Risk Score of > 6 points, and had to
exhibit some evidence of neurocognitive weakness
based on screening using the CERAD neuropsy-
chological test battery. The dietary intervention was
conducted by study nutritionists and personalized
across participants. Although the dietary intervention
was developed to accord with Finnish dietary recom-
mendations, the overall dietary pattern was similar to
that proposed across other DASH and MeDi trials in
that it consisted of high fruit and vegetable consump-
tion, whole grains, low-fat daily products, reduced
intake of refined carbohydrates, and consuming at
least two portions of fish per week [223]. Weight
reduction was not uniformly recommended, but a
5-10% overall energy reduction was implemented as
necessary and the intervention group demonstrated
overall weight reductions compared to controls [214].
In addition, participants engaged in a physical activity
intervention, which was supervised for the first 6-
months, and a 10-session cognitive training program
facilitated by a study psychologist with additional
computerized training provided to participants. The
intervention was therefore uniquely comprehensive
in its targeting of physical activity, whole-diet pat-
terns, vascular risk reduction, and cognitive training.

The physical activity intervention consisted of both
aerobic and resistance training and was modified
from the Dose-Responses to Exercise Training (DR’s
EXTRA), which used a personalized training target
for aerobic exercise of 55-65% of peak oxygen con-
sumption. Aerobic training was gradually titrated to
increase duration and intensity over the course of the
trial, beginning with 30—45 mins twice per week and
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incrementally increasing to exercise bouts of 45-60
mins 3-5 times per week [223]. Progressive mus-
cle training was also individually tailored in terms of
intensity and titration, but standardized its approach
by using exercises for eight main muscle groups (e.g.
knee extension and flexion, abdomen and back, rota-
tion, upper back and arm muscles, and leg press for
lower extremity muscles), as well as postural balance
exercises.

Following two years of treatment, a modified ITT
analysis revealed that the intervention group demon-
strated improvements in physical activity, dietary
composition, and reduced weight. Most importantly,
there was a small but significant improvement in a
composite marker of neurocognition, as indexed by
a comprehensive neuropsychological test battery z-
score. Closer examination revealed that the largest
improvements were observed in processing speed and
executive function, without consistent improvements
in memory performance [213]. While statistically
significant, it should be noted that the findings were
modest as a standardized effect (ES =0.13). In addi-
tion to the primary findings from FINGER, structural
MRI markers were obtained at baseline, 1-year, and
2-years after randomization, providing an opportu-
nity to examine intervention effects on established
biomarkers of ADRD risk [224]. Surprisingly, no
intervention effects were observed on changes in MRI
markers. However, integration of MRI and cognitive
data revealed that treatment-related improvements in
processing speed were more pronounced among indi-
viduals with higher baseline cortical thickness and
volumetric characteristics of mesial temporal struc-
tures with critical importance for AD risk, suggesting
that the beneficial effects of treatment were strongest
among individuals with less advanced neuropatho-
logical changes. These findings may suggest that
lifestyle modification improves neurocognition, but
must be initiated earlier in the disease process to yield
appreciable benefits.

Notably, mechanistic data from FINGER demon-
strated similar findings to some other trials below,
with cardiorespiratory fitness associating most
strongly with observed neurocognitive improvements
in processing speed and executive function, but not
memory [225]. Improved dietary patterns also pre-
dicted improvements in executive function, [226]
whereas baseline dietary patterns (not change) asso-
ciated with global cognitive improvements over the
course of the intervention. Perhaps most notably,
changes in neurocognition were not associated
with APOE genotype [126] and greater CVD risk,

although associated with volumetric characteristics
of ADRD risk, was not associated with beta-amyloid
deposition [227].

Pre-DIVA: The Pre-DIVA trial was a cluster-
randomized trial that enrolled 3526 participants from
26 healthcare centers to receive either a multicom-
ponent intervention or a usual care control group
for 6-years [228]. Participants were older adults
aged 70-78 and the primary exclusion was the pres-
ence of dementia. The intervention consisted of a
nurse-led, cardiovascular risk management protocol
with motivational interviewing techniques. In this
pragmatic trial setting, incident dementia served as
the primary cognitive outcome of interest, in con-
trast to the majority of other multicomponent RCTs
that used neurocognitive performance [229]. Results
demonstrated that the intervention group demon-
strated improvements on multiple CVD risk markers,
although notably the intervention did not reduce
‘hard’ CVD outcomes, such as myocardial infarction
or stroke. Similarly, the intervention did not appear
to reduce the development of dementia, with both the
treatment and control participants had a comparable
prevalence of incident dementia (7%). This negative
finding may have been influenced by the relatively
modest level of baseline cardiovascular risk and also
the high standard of care within the control group
[230].

The lack of a primary finding ignores several
interesting nuances within the Pre-DIVA findings,
however. First, although the overwhelming number
of dementia cases were attributed to AD, interven-
tion effects were much stronger among the limited
subset of participants experiencing non-AD causes
of dementia (HR =0.37 [0.18, 0.76]), including VaD
(HR=0.43 [0.17, 1.12]). In addition, the authors
conducted several sensitivity analyses in order to
determine whether intervention may have conferred
benefits among participants who 1) followed the
intervention more closely and 2) had a less severe
history of CVD or CVD risk at baseline. These anal-
yses, although post hoc, seem to suggest that greater
risk reductions may indeed be beneficial for par-
ticipants with less advanced CVD at study entry.
For example, in a per protocol analysis the treat-
ment group showed a trend towards reduced dementia
development (HR =0.78 [0.58, 1.04]). The trend for
a treatment benefit was stronger among individu-
als with untreated HTN (HR=0.69 [0.43, 1.11]),
particularly among those with higher levels of com-
pliance (HR = 0.54[0.32,0.92]). A similar magnitude
of benefit was observed when analyses were limited
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to participants free from a history of CVD events
at baseline and who complied with the intervention
(HR =0.64 [0.44, 0.94]).

MAPT: The multidomain Alzheimer preventive
trial (MAPT) was a 3-year, multicenter RCT among
1680 community-dwelling older adults aged>70
[231]. Additional symptom-related inclusion criteria
were spontaneously reporting a memory concern to
their physician, limitations in one IADL, or slower
gait speed. The multidomain intervention consisted
of physical activity, nutrition, cognitive training,
and three preventive consultations. Participants were
randomly assigned to either the multidomain inter-
vention plus omega 3 polyunsaturated fatty acids
(800 mg docosahexaenoic acid and 225 mg eicos-
apentaenoic acid), multidomain intervention plus
placebo, omega 3 polyunsaturated fatty acids alone,
or placebo alone. Physical training recommendations
provided to participants in MAPT were to perform
at least 150 minutes of moderately intensive phys-
ical activity per week (5 sessions, 30 mins each)
[232]. Recommendations were individually tailored
and participants could select either aerobic exer-
cises or strength training. The primary outcome was
change from baseline to 36 months on a compos-
ite z-score combining four cognitive tests, comprised
of two memory indices, ten MMSE items, the Digit
Symbol Substitution Test, and Category Naming Test.
There were no significant differences in 3-year cog-
nitive decline between any of the three intervention
groups and the placebo group, with the exception that
the combined treatment group showed improvements
on the MMSE relative to placebo. In exploratory sen-
sitivity analyses, participants with a higher risk of
dementia at baseline in the combined treatment group
demonstrated modest improvements relative to other
participants, with modest effect sizes on the order of
treatment benefits observed in FINGER (ES =0.131).

ADDITION: The ADDITION trial was a multi-
national, cluster-randomized trial in with individuals
with type-2 diabetes (T2DM) were randomized to
lifestyle advice for metabolic function vs. routine
care [233]. Although the trial incorporated 498 par-
ticipants, less than 200 had baseline neurocognitive
assessment, and, within the ADDITION pragmatic
design, the ‘baseline’ assessments occurred several
years after initiation of the study intervention. Using
a stepwise treatment process, lifestyle advice (includ-
ing physical activity and diet) was implemented as
a first-line treatment with integration of pharma-
cological treatment (e.g. statins for cholesterol or
beta-blockers for hypertension) at subsequent steps

if CVD risk treatment targets were not achieved.
The trial utilized an extensive, 90-minute neu-
rocognitive assessment batter with multiple tests of
learning / memory, attention / processing speed,
and executive function. Results of the primary trial
suggested that T2DM screening was not associated
with reduced CVD outcomes and both treatment and
control participants exhibited weight loss, without
significant between-groups differences [234, 235].
In the subgroup of participants with neurocogni-
tive testing, all participants exhibited improved blood
pressure, insulin sensitivity, and cholesterol, with
only cholesterol differing between groups. Perhaps
not surprisingly, neurocognitive outcomes also were
not differentially improved between groups, with a
slight decline in performance across domains.

ENLIGHTEN: The recently published
ENLIGHTEN trial examined the impact of aerobic
exercise, the DASH diet, and their combination on
neurocognition among individuals with vascular cog-
nitive impairment, no dementia (vCIND) [142, 236].
The trial used a 2X2 factorial design, with aerobic
exercise and the DASH diet serving as factorial treat-
ments, in order to examine the potentially additive
benefits of both lifestyle components. Participants
included sedentary, older adults (>55), with CVD
risk factors and some evidence of neurocognitive
impairment based on screening battery. Aerobic
training was supervised for the first three months of
treatment, with participants exercising three times
per week at a level of 70-85% of their peak heart
rate reserve. The latter three months of exercise
were performed by the participants individually,
with weekly documentation of their adherence that
was reviewed by study personnel. The DASH diet
intervention was provided by a nutritionist in a series
of 30-minute sessions, conducted weekly for the
first three months and biweekly from 4—6 months.
Following 6-months of treatment, participants in the
exercise factor groups exhibited improved fitness,
participants in the DASH factor groups exhibited
improved dietary patterns, and all intervention
groups demonstrated a general reduction in CVD
risk factors. Examination of neurocognitive changes
revealed that both aerobic exercise (ES=0.32) and
DASH diet (ES=0.30) factor groups experienced
improvements in executive function and a modified
clinical dementia rating scale. Examination of treat-
ment mechanisms revealed that greater increases in
aerobic fitness, reductions in composite CVD risk,
and reduced dietary salt intake were the strongest
correlates of improved neurocognition.
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ENCORE: The ENCORE trial examined the
effects of a comprehensive weight loss interven-
tion using aerobic exercise (for weight management)
and the DASH diet, or the DASH diet alone, on
changes in blood pressure and metabolic outcomes
[237, 238]. The study enrolled 144 overweight /
obese, middle-aged and older adults with hyperten-
sion (mean age 52 years [SD=10]), who were not
taking antihypertensive therapy. Participants exer-
cise training consisted of supervised weekly sessions,
three times per week for 30 minutes, at an intensity of
70-85% of their initial heart rate reserve. The DASH
diet condition participated in an initial two-week con-
trolled feeding period and then transitioned to weekly,
supervised sessions in which a nutritionist imple-
mented the dietary intervention using both education
and cognitive-behavioral strategies for weight loss.
Because the trial was designed to test the effects of the
DASH diet in a free-living setting, participants were
not required to meet any cognitive inclusion criteria.
Although the trial was designed to assess the effects
of lifestyle modification on metabolic parameters, the
majority of participants also underwent neurocog-
nitive assessments both pre and post-treatment as
a secondary outcome [145]. Results demonstrated
that combining aerobic exercise with the DASH diet
improved neurocognition on measures of executive
functioning / memory / learning (ES =0.56) and simi-
lar improvements on measures of psychomotor speed
(ES=0.48). In addition, participants in the DASH
diet alone group demonstrated similar, albeit more
modest improvements on psychomotor speed tests
(ES =0.44). In addition, improvements in neurocog-
nition were associated with both increased aerobic
fitness and weight loss.

PREDIMED: One of the most widely publi-
cized and early dietary interventions to demonstrate
improvements in neurocognitive outcomes is the
PREDIMED trial [239]. Participants in PREDIMED
included thousands of community-dwelling, older
adults (men: 55-80 years; women: 60—80 years), ini-
tially free of CVD but at high vascular risk because
of the presence of either type-2 diabetes or at least
three major risk factors (smoker, HTN, HLD, over-
weight, or family history of premature CVD). The
primary PREDIMED trial examined the effects of a
MeDi diet intervention on CVD outcomes with three
groups: MedDiet with extra virgin olive oil; MedDiet
with mixed nuts, or a control group who received
nutritional advice. As previously reported, the pri-
mary trial found that participants in the intervention
groups exhibited improvements on screening mea-

sures of neurocognition relative to controls, including
the MMSE and clock drawing test. Secondary sub-
group analyses revealed even stronger benefits among
participants with selected for CVD risk [113, 240]. In
addition, a follow-up analysis suggested that partici-
pants in the MeDi+olive oil group had a lower risk of
developing MCl relative to controls (OR =0.34[0.12,
0.97]), even after accounting for additional lifestyle
factors, including CVD risk factors and physical
activity [241].

LOOK-AHEAD: One of the largest extant weight
loss trials was the Action for Health in Diabetes
study (Look AHEAD), which enrolled T2DM adults
aged 45-76 years of age. Additional inclusion crite-
ria included a BMI more than or equal to 25 kg/m2
(=27 kg/m?2 if taking insulin), HbAlc less than 11%
(97 mmol/mol), systolic blood pressure less than 160
mmHg, diastolic blood pressure less than 100 mmHg,
and triglycerides less than 600 mg/dL [242]. partici-
pants were randomly assigned to an intensive lifestyle
intervention (ILI) or a Diabetes Support and Educa-
tion (DSE) control condition. The ILI included diet
modification and physical activity and was designed
to induce at least a 10% weight loss following one
year of treatment and then to maintain this over
follow-up. Intervention participants were assigned a
calorie goal (1,200-1,800 based on initial weight),
with less than 30% of total calories from fat (<10%
from saturated fat) and a minimum of 15% of total
calories from protein. The physical activity goal was
more than or equal to 175 minutes per week through
activities similar in intensity to brisk walking. Partic-
ipants were instructed to accumulate at least 30 mins
of moderate-intensity physical activity, most days of
the week [243]. Participants in the control condition
were invited to three group educational sessions each
year. Similar to some of the other intensive lifestyle
trials in which neurocognitive outcomes were col-
lected as a secondary outcome, the first assessment
of neurocognition took place 8 years after random-
ization on a large subset of participants.

The treatment group demonstrated substantial
weight loss, much of which was maintained at the
time of first neurocognitive assessment [242]. As
reported in detail elsewhere, [242] the ILI group
experienced an approximate 11% weight loss at year
one and maintained approximately 7% weight loss
through the 8-year follow-up. In contrast, the DSE
group experienced a mean weight loss of around 1%
at one year and 3% at the 8-year follow-up. Neu-
rocognition was assessed using a composite score
across multiple domains, including global function,
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verbal fluency, verbal memory, attention, execu-
tive function, and processing speed. Examination
of treatment group differences, however, revealed
that performance was not consistently improved
between conditions, without any significant treat-
ment group impact. There was some evidence that
the intervention differentially affected overweight
compared with obese participants. Among those
who were overweight but not obese at enrollment
(ie, 25 kg/m2 > BMI <30 kg/m2), ILI was associated
with a mean benefit for composite cognitive function
of 0.276 (0.033, 0.520), compared with a deficit of
0.086 (-0.021, 0.194) among those who were obese
(nominal p value for interaction: p =0.008). In a sub-
sequent follow-up examination, a parallel pattern of
results was observed for the development of cognitive
impairment, with a baseline weight by intervention
effect, such that ILI was beneficial among overweight
participants and harmful among those with the high-
est baseline weight [217].

Results of the ILI on neuroimaging markers
revealed a different pattern of findings. Among a sub-
set of participants who underwent structural brain
imaging or cerebral perfusion scans, ILI generally
demonstrated improvements compared to DSE [221,
244]. For example, ILI participants demonstrated a
28% lower white matter hyperintensity volume com-
pared to DSE participants, as well as a 9% lower
ventricle volume [221]. Similarly, cerebral blood flow
increased among the ILI participants relative to DSE
[244]. Most interestingly, these improvements did
not associate with changes in neurocognition, and
changes in CBF actually demonstrated a divergence
in their association with neurocognition between
treatment groups, with improved CBF associating
positively with neurocognition among ILI partici-
pants, but not in DSE participants.

Other Multicomponent Trials: In a smaller, single-
site trial, Napoli and colleagues [245] examined
the impact of a weight management using diet,
exercise, or both on neurocognition among 107
obese adults. Following one-year of treatment, the
authors found most improvements in several neu-
rocognitive subtests in a battery that included the
modified MMSE (3MS) and several tests of execu-
tive function. Improvements in neurocognition were
largest in the combined group and exercise alone
group, both of which appeared to outperform the
diet and control group. Interestingly, examination of
the associations between improved 3MS scores and
treatment mechanisms varied somewhat across treat-
ment groups, with a tendency to suggest that fitness

and metabolic parameters were most closely associ-
ated with treatment improvements. For example, in
the exercise groups the strongest associations with
neurocognition were observed between improved
fitness, strength, insulin sensitivity, whereas for
the dietary groups insulin sensitivity appeared to
be most strongly associated with neurocognitive
changes. Taken together, results from available mul-
ticomponent trials demonstrate an encouraging but
inconsistent pattern of findings. Although these
inconsistencies make a synthesis of available evi-
dence more difficult, they also provide insights into
potential mechanistic associations that can be lever-
aged to inform future intervention studies.

Putative Mechanisms: Opportunities for
Optimization

Mechanistic pathways linking physical activity,
dietary consumption, and neurocognitive outcomes
have been postulated across multiple levels within
the peripheral and central nervous system. Despite
their heterogeneity, increasing evidence suggests that
disparate risk factors may have overlapping effects
through ‘convergent pathways’ of risk, including car-
diovascular, metabolic, and inflammatory systems.
Conceptually, risk factors for neurocognitive impair-
ment can be thought of as exerting their influences
on the brain by affecting structural neuropathologi-
cal features within the brain (e.g. cortical atrophy),
compensatory factors buffering the CNS from age-
associated injury (e.g. cerebrovascular reserve), and
more direct effects on neurochemical messenger sys-
tems within the CNS (e.g. monoamines) (Fig. 2).
Individual mechanisms are reviewed briefly below,
with a focus on identifying convergent pathways of

risk.
Reserve | Neuropathological
Capacity Burden
Lifestyle Factors: Inflammation / Neurotransmitter Neurocognitive
Physical Activity / Diet Oxidative Stress Function Function
Cardiometabolic Synaptic Plasticity /
Function Neurotrophins

Fig. 2. Directed acyclic graph linking lifestyle to neurocognition
among middle-aged adults through indirect, downstream pathways
including metabolic function, inflammation, and neurotrophic fac-
tors. As shown, these factors likely impact neurocognitive function
through their downstream impact on brain structure and reserve
capacity, with additional, indirect influences through modulation
of neurotransmitter systems (e.g. monoamines).
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Neurotrophins / Growth Factors

Growth factors are groups of proteins or neurohor-
mones with effects that serve to facilitate neuronal
and cerebrovascular growth, including nerve fibers,
dendritic density, and arterioles [246, 247]. The pri-
mary growth factors most consistently linked to
lifestyle changes are BDNF, [248-250] VEGF, [251,
252] and IGF-1, [251, 253-255] all of which are
enhanced by lifestyle modification but act through
distinct mechanistic channels to improve neurocog-
nition. BDNF has been shown in numerous animal
and human samples to be increased following aero-
bic exercise training, [256-258] for increased BDNF
to associate with neurogenesis in the dentate gyrus
and subventricular zone, [259-261] and for higher
BDNF levels to associate with small but consistent
structural increases in hippocampal volume [260]. In
multiple animal studies and an increasing number
of human trials, these increases in BDNF associate
with improved neurocognition, particularly on tests
of learning and memory [260]. In addition to these
intermediate training effects, occurring over weeks
and months, acute exercise has also been shown to
confer transient increases in BDNF measured from
peripheral sources for several hours [43, 262]. This
may explain the dual effects of BDNF as having both
an acute impact, such as observed among children
with ADHD, and a chronic training impact in adults,
both of which appear strongest on frontal-subcortical
tasks.

VEGF has also been associated with lifestyle
modification and is most closely tied to vascular
and inflammatory functioning [263]. Endothelial cell
functioning is one of the earliest, subclinical markers
of vascular dysfunction, observable even in sam-
ples of obese children [263-265]. VEGF has been
shown to play a critical role in angiogenesis within
the brain, potentially offsetting normative damage
to the small arteries with little redundancy in dor-
sal aspects of the prefrontal cortex. Moreover, as
a marker of endothelial cell function, VEGF holds
importance as a systemic, preclinical markers of vas-
cular integrity [266]. In our own data and others,
peripheral markers of endothelial function appear
to mediate the associations between cerebrovascular
risk factors and neurocognitive deficits in middle-
aged, preclinical samples [267, 268]. In addition,
endothelial cell functioning serves an important role
in maintaining blood brain barrier permeability, [265,
269] which is critical for protecting the CNS from
infection.

Insulin like growth factor (IGF-1) is a neurohor-
mone with both direct and indirect influences on
neurocognitive functions, primarily induced through
exercise training [270, 271]. IGF-1 appears to have
important regulatory effects on both BDNF and
VEGF, and may therefore have a critical moderat-
ing influence on other growth factor influences within
the CNS [251]. IGF-1 also appears to have indepen-
dent effects on neuronal signaling, neuroprotection,
and modulation of neuroinflammation [272]. More
generally, IGF-1 has been hypothesized to play a
mechanistic role linking peripheral impairments in
metabolic function to CNS metabolic perturbations
[273, 274]. IGF-1 has also been associated with neu-
rocognition, [275] is responsive to exercise training,
[276] and has been suggested to mediate the benefi-
cial effects of exercise on brain outcomes [251].

Neuroinflammation / Oxidative Stress

Neuroinflammation is increasingly recognized as
having adverse effects on brain [277, 278]. Greater
levels of circulating neuroinflammatory markers are
frequently shown among individuals with ADRD
compared to controls, [272, 279, 280] associate with
worsening neurocognition in prospective studies,
[281, 282] and are upregulated among middle-aged
adults with CVD risk factors and obesity [283, 284].
Neuroinflammation likely acts through several indi-
rect pathways to worsen brain outcomes. First, the
presence of elevated inflammation appears to exac-
erbate transient brain insults due to ischemia or
hypoxia, [285] causing a prolonged recovery with
potentially lingering adverse effects. Second, sev-
eral lines of evidence suggest that neuropathological
changes in the brain, such as beta-amyloid deposition,
may independently increase inflammation levels,
suggesting that they may reflect a proximal marker
of neuropathological burden [279, 286]. And third,
higher levels of inflammation appear to impair neu-
rotransmitter functions, particularly in reward system
brain regions critical for executive function. Taken
together, elevated neuroinflammation appears to have
an amplifying effect, interacting with other mechanis-
tic channels to set of a feedback loop.

A closely related mechanism by which dietary
modification may improve brain function is oxidative
stress [45, 287]. Free radicals and other markers of
oxidation increase with aging and are widely asso-
ciated with brain health and neurocognition, with
some investigators postulating that oxidative damage
precedes broader neuroinflammatory changes [288].
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Multiple nutritional components have been hypoth-
esized to have beneficial effects on the brain by
counteracting oxidative damage, particularly antiox-
idants such as vitamins A, C, and E [144, 289].

Metabolic dysfunction

A large and extensive literature base demonstrates
that greater metabolic dysfunction is associated with
increased ADRD risk [290, 291]. Recent consen-
sus statements by the NIA, NINDS, and others have
all advocated an increased focus on ADRD preven-
tion, primarily focusing on three overarching risk
factors: physical inactivity, ‘Western’ dietary pat-
terns (e.g. high intake of saturated fat and complex
carbohydrates, and low intake of fruits and vegeta-
bles), and poorly controlled CVD, [109, 292, 293]
all of which strongly influence metabolic function.
The presence of common CVD risk factors, partic-
ularly HTN and obesity, have a robust and adverse
impact on neurocognitive outcomes. Obesity is one
of the most common risk factors for ADRD, affect-
ing nearly half of adults in the United States, [294,
295] and is associated with neurocognitive impair-
ments, cortical atrophy, [76, 296, 297] and a 2-3
fold increase in long-term ADRD risk [76, 294,
298]. Midlife obesity, for example, has been asso-
ciated with substantially elevated risk of impaired
neurocognitive function and ADRD in later life [76,
299-302] and appears to accelerate the aging process,
independent of other CVD risk factors [76]. Simi-
lar associations have been observed for HTN, with
prospective studies demonstrating that the presence
of HTN in midlife is associated with more than dou-
ble the risk of neurocognitive decline [303-305] and
dementia, [305-309] and may have particularly dele-
terious effects in the presence of obesity [310, 311].
As reviewed in detail elsewhere, impaired peripheral
metabolic function likely impairs central metabolic
function over time through insulin and leptin resis-
tance,[ 50, 312] resulting in blunted CNS metabolic
responses, energy exchange, and lipid metabolism.

Improving metabolic function has been hypoth-
esized to mediate neurocognitive improvements
following lifestyle modification [34, 88]. Although
exercise and dietary modification both improve
metabolic function, improvements in metabolic func-
tion are most closely associated with intentional
weight loss, which may explain why extant studies
have demonstrated improved neurocognition follow-
ing variable intervention modalities, including caloric
restriction [178], resistance training, [131] and aer-

obic paradigms [313]. This could also potentially
explain why there appear to be additive effects of
both aerobic training and dietary modification on
neurocognitive outcomes [145, 236, 314]. Inten-
tional weight loss among obese, middle-aged adults
is increasingly recognized as a potential method
to reduce ADRD risk, regardless of whether it is
achieved through routine physical activity, healthier
dietary patterns, or caloric restriction. For exam-
ple, meta-analytic studies of middle-aged adults have
demonstrated a dose-response relationship between
greater weight loss and improved neurocognition,
with the largest improvements observed in trials
using exercise and diet to reduce weight [315]. It
has been hypothesized that midlife weight loss may
improve neurocognition by augmenting ‘cross talk’
between peripheral and central metabolic function,
in which improved peripheral metabolism increases
the efficiency and recruitment of central glucose
resources and transport across the blood brain barrier
[316]. Obesity is known to impair both glucose and
lipid homeostasis, causing central glucotoxicity and
impaired CNS insulin signaling, and weight loss may
‘recalibrate’ central homeostatic function by alter-
ing CNS metabolic mechanisms [47, 317]. Available
evidence therefore indicates that pluripotent inter-
ventions “with combinatorial neuroprotective and
‘eumetabolic’ activities” [318] confer the largest neu-
rocognitive benefits [318].

Neurogenesis / Synaptogenesis

Neurogenesis, the growth of new neurons and other
neural tissue, represents one potential central path-
way through which lifestyle modification improves
brain function and potentially offsets normative, age-
dependent brain volume loss. Synaptogenesis, the
growth of new synaptic connections between neu-
rons, is closely related to the creation of neuronal
tissue [319], as immature granule cells are partic-
ularly plastic due to their sensitivity to long-term
potentiation [67]. Synaptic plasticity is also a plausi-
ble downstream mechanism linking neurotrophic and
metabolic factors to neurocognition, as the creation
of new synaptic connections appears to be dependent
both on growth factor expression and adequacy of
central metabolic resources [320].

Although neurogenesis and synaptic plasticity are
widely acknowledged to be improved through aero-
bic exercise, [32, 321] aerobic modification in and
of itself appears to be a necessary but not sufficient
component of neuronal growth. Although new stem
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cells are created, they take several weeks to integrate
into the surrounding neural system and many new
stem cells die off before becoming mature. The suc-
cessful growth of new neurons, much like the growth
of plant life in a garden, is ultimately dependent on
several critical elements necessary for growth within
the brain: energy, nutrients, and a conducive envi-
ronment. In a simplistic model within the human
brain, similar elements appear to be necessary to
support neurogenesis: metabolic function, [322-324]
neurotrophins, [325] and low levels of neuroinflam-
mation [326, 327].

Several other neuropathological features of adult
neurogenesis may explain their importance to the
lifestyle and neurocognitive decline association. It
is notable that the two primary areas of adult neu-
rogenesis in mammals are in close proximity and
have interconnections to neurocircuitry critical for
learning/memory and executive functions: the dentate
gyrus (proximal to the hippocampal gyrus) [259, 328]
and the subventricular zone (proximal to the caudate
nucleus) [329-333]. As noted earlier, these are also
the two primary brain circuits implicated in AD and
vascular cognitive impairment, respectively. The ear-
liest neuropathological changes associated with AD
occur in peri-hippocampal gyrus, whereas the earliest
manifestations of subclinical microvascular disease
are most commonly observed in periventricular brain
regions because of their vulnerability to ischemia.
This data could be interpreted as suggesting that the
areas most vulnerable to common neuropathological
changes are also most amendable to buffering and
repair through behavioral modification. In addition
to their impact on neurogenesis, impaired metabolic
function and elevated inflammation / oxidative stress
have been shown to have direct, adverse effects on
neurotransmitter systems, which are worsened in
the presence of both factors [334]. Higher levels of
inflammation appear to disrupt connectivity between
the ventral and dorsal striatum and the ventromedial
prefrontal cortex [335, 336]. Both the ventral stria-
tum and vmPFC have significant mesocorticolimbic
dopamine innervations [335, 336].

Taken together, there remains a lack of consen-
sus as to whether the effects of physical activity
and dietary modification on ADRD risk overlap, are
additive, or synergistic [142, 143, 214, 337-340].
For example, treatment implications would differ if
the effects of physical activity and diet were found
to act through aerobic fitness and inflammation,
respectively, instead of both contributing to improved
metabolic function. In contrast, finding synergistic

effects might suggest that multicomponent interven-
tions with both exercise and dietary components may
be necessary to achieve ADRD risk reduction [129,
341-344]. Nevertheless, the present literature base
suggests several important themes that may help to
further optimize lifestyle approaches to ADRD pre-
vention. First, lifestyle appears to impact the brain
through pluripotent mechanisms, which vary in their
importance across chronic and acute intervention set-
tings. Second, many peripheral and indirect pathways
connecting lifestyle to the brain have convergent,
downstream mechanistic pathways, including central
metabolic function, growth factor modulation, neu-
roinflammation, and neurotransmitter functions. And
finally, the effects of lifestyle seem strongest when
implemented early, with the greatest potential to pre-
vent ADRD seeming to be in middle-age. Evidence
increasingly may therefore suggesta ‘critical window’
for intervention among middle-aged individuals with
ADRD risk factors, identified before compensatory
cerebrovascular remodeling, systemic metabolic dys-
function, [345, 346] or elevated neuroinflammation
set in motion a cascade of changes that may require
more than lifestyle change to treat [347-350].

Mechanistic assumptions and potential solutions

“Explanations exist; they have existed for all
time; there is always a well-known solution to
every human problem — neat, plausible, and
wrong.” [351]

“[Many] arguments are kept alive by a failure to
acknowledge nuance... to argue one point using
two entirely different sets of assumptions, like two
tennis players ... hitting beautifully executed
shots from either end of separate tennis courts.”

[352]

Despite the overwhelming amount of evidence
linking variations in lifestyle to differential brain
outcomes from both animal and human literatures,
there remains a lack of consensus as to whether
lifestyle modification represents a viable treatment
approach to mitigate ADRD risk among middle-aged
and older adults. One could argue from the present
review that exercising regularly and eating a healthier
diet can clearly improve brain and neurocognitive
function among some individuals. The most pressing
questions are therefore less concerned with whether
lifestyle modification can improve brain function
but how and for whom. These latter questions
can be informed by contemporary analytical and
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methodological advancements designed to address
these specific issues: causal inference analytical
paradigms [353, 354] and optimization trial designs
[355, 356]. These techniques can readily be applied
to several, potentially implicit assumptions, regard-
ing the causal nature and underlying mechanisms
linking exercise, diet, and the brain. Testing these
assumptions may provide critical insights to advance
ADRD preventive efforts.

Assumption 1: Homogeneous Mechanisms of
Cause and Cure

Put simply, the causes and cures of neurocognitive
impairment may not be the same, suggesting that dif-
ferent treatment approaches may be needed beyond
those specifically targeting the causes of initial neu-
rocognitive change. This may be one reason why
simply reducing CVD risk factors does not consis-
tently improve neurocognition: the presence of CVD
risk causes a cascade of CNS damage that is only
partially reversible once the risk factors are miti-
gated. The distinction in mechanisms can also be
seen by a brief examination of their time-courses,
with both acute and chronic effects observed [357].
For example, while the adverse effects of hyperten-
sion (HTN) on brain function are widely accepted,
[358] the downstream mechanisms by which HTN
impairs brain function exert their influence over the
course of decades, [53, 359] whereas lifestyle HTN
trials demonstrate benefits over the course of several
months, [145, 236]. Moreover, reductions in white
matter hyperintensities may take years to accrue [221]
and do not necessarily associate with neurocognitive
improvements from available trial data [242].

Assumption 2: Mechanisms are Monolithic

As easily seen in the available animal literature,
many of the proposed mechanisms linking lifestyle
modification to neurocognition interact with other
downstream mechanistic pathways. For example,
metabolic function may interaction with inflamma-
tion to increase ADRD risk [360]. While multiple
mediators are widely acknowledged in animal liter-
ature, available lifestyle interventions are strikingly
simplistic in their analysis of treatment mecha-
nisms from available trials. Contemporary analytical
approaches now incorporate approaches for exam-
ining multiple mechanisms and even interactions
between mechanisms, which could plausibly be
hypothesized to impact brain function [361, 362]. For

example, the association between increased BDNF
and improvements in learning might be moderated
by inflammation levels, increasing learning for those
with low inflammation but failing to do so among
individuals with high levels. Similarly, it is possible
that neurocognitive improvements may be medi-
ated by parallel mechanistic processes, by interacting
mechanistic processes, or by different mediators for
different individuals. Because lifestyle modification
is pluripotent, all of these scenarios are plausible and
testable within contemporary analytical paradigms
[363, 364]. Moreover, examination of multiple mech-
anisms could potentially explain the lack of a main
effect in some cases, if one mechanistic process
has opposing effects through a separate mechanis-
tic pathway, [363] or if the association between the
putative mediator and the outcome is confounded by
an unmeasured factor. In the HTN example above, for
example, the effects of BP reduction on neurocogni-
tion could plausibly confounded by impaired cerebral
autoregulation or cerebrovascular reserve capacity,
which are blunted by chronically elevated HTN and
are not conventionally accounted for or even assessed.

Although the notion that mechanisms may inter-
act may seem unnecessarily complex, it is consistent
with several aspects of the available literature on
exercise and neurocognition, which has reproducibly
demonstrated that aerobic exercise training improves
neurocognition, [117, 118, 365] but failed to find any
association between improved fitness and neurocog-
nitive improvements [133]. Although the magnitude
of treatment effect has varied, most meta-analyses
of exercise interventions and cognitive function have
reported improvements across multiple domains of
function [129, 366, 367]. Surprisingly, the associa-
tions between putative mechanistic features within
these trials and cognitive improvements has been
far less consistent, with the majority of evidence
from systematic reviews of both older [136] and
more contemporary trial data failing [133] to find a
dose-response association between improved aerobic
fitness and improved cognitive outcomes. Observa-
tional data can be interpreted as showing a similar,
non-linear effect, such that modest to moderate
levels of activity are most critical for improv-
ing cognitive outcomes, with diminishing returns
beyond this threshold [112, 135]. This could suggest
that improvements in neurocognition may parallel
improvements in metabolic function, which have
been shown to have a threshold effect in response
to various training paradigms and may not mirror
aerobic improvements [368, 369].
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Assumption 3: Uniformity of the
Mediator-Outcome Association

Another critically important and often overlooked
assumption is that putative mediators of treatment
act uniformly across participants. In other words, if
one hypothesizes that improved fitness will improve
neurocognition, they may also implicitly assume that
this association is similar enough across participants
to use linear regression-based approaches. Unfor-
tunately, contemporary causal inference approaches
have demonstrated this is often not the case for
several reasons: 1) the mediating variable is not nor-
mally distributed, 2) the mediator interacts with the
treatment variable to differentially modify outcomes
(treatment-exposure interaction), or 3) the associa-
tion underlying changes in the mediator and changes
in outcome is confounded by a related but unmea-
sured confounder [354, 370]. One has to look no
further than the LOOK-AHEAD trial to find evi-
dence for a treatment-exposure interaction, with the
effects of weight loss on neurocognition varying
across participants [242], as well as the associ-
ation between improved CBF and neurocognition
showing differential associations across participants
[244]. These findings suggest that unmeasured factors
likely impacted the mechanistic function of weight
loss, perhaps with more metabolically compro-
mised participants experiencing destabilized central
metabolism in the presence of weight reduction.

It is likely that treatment-exposure interactions
explain some of the disparate findings across trials,
as well as the potential presence of a ‘tipping point’
beyond which lifestyle modification does not appear
to improve neurocognitive outcomes. Although the
precise causes of these large individual differences
are unclear, they appear to vary based on two
premorbid characteristics that differ widely across
patient populations: degree of metabolic impair-
ment and neuropathological burden. Meta-analyses
of lifestyle intervention trials have reported age-
dependent effects on neurocognition, with larger
benefits among middle-aged and older adults free
from cognitive impairment, [36, 117, 128, 129, 371]
suggesting a metabolic ‘tipping point’ for inter-
vention efficacy [365, 366, 372]. In addition, trials
enriched for metabolic disturbances appear to have
a greater degree of individual treatment variation,
with more metabolically compromised individuals
exhibiting lesser treatment improvements, or in some
cases showing an adverse impact. Paradoxically, later
behavioral intervention among individuals with sys-

temic vascular dysfunction may actually precipitate
cognitive decline, [215, 220, 306, 373, 374] despite
the beneficial effects of CMRF management at early
disease stages [10, 375-377]. This could explain
why recent multicomponent trials among partici-
pants with impaired metabolic function, including
the Diabetes Prevention Program (DPP) [378] and
LOOK-AHEAD trials, found that behavioral weight
loss does not necessarily improve neurocognition
[215-219] and may even have deleterious effects
in more metabolically compromised individuals,
[220] despite improvements in some neuroimaging
biomarkers [221, 222].

Similar individual differences have been noted for
CVD risk reduction, particularly for hypertension.
The presence of CVD risk factors in midlife is one
of the most widely documented and robust risk fac-
tors for future development of ADRD [379, 380].
Interestingly, the association between CVRFs and
ADRD appears age-dependent, with midlife CVRFs
drastically increasing risk, whereas the presence of
CVD risk factors in older adults having equivocal
or even protective associations with ADRD develop-
ment [85, 381, 382]. It is possible that these disparate
associations result from unmeasured individual dif-
ferences in metabolic or brain reserve capacities,
with chronic exposure to CVD risk compromising
the ability of the scaffolding / reserve system to with-
stand additional age-related insults. Because chronic
engagement in healthy lifestyle habits may reduce
ADRD through its parallel effects on cognitive and
metabolic reserve capacity, [89, 96, 383, 384] col-
lection of more detailed historical information on
midlife lifestyle habits may be informative, even
among trials in older adults, because of its poten-
tial function as an unmeasured moderator of the
treatment-exposure association.

Individual differences in reserve capacities may
also explain large variations in treatment-related cog-
nitive outcomes from randomized trials of exercise
[19, 36,116, 128, 365, 366], similar to those observed
following intentional weight loss [186, 215,217, 220,
315, 385].

Assumption 4: All Neuropathological Changes
are Created Equally

Although a comprehensive discussion of func-
tional neuroanatomy is beyond the scope of the
present review, it is worth noting that the maintenance
of some higher order neurocognitive functions is pref-
erentially dependent on neurocircuitry in the frontal
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lobe and FSCs [386, 387]. While these areas gen-
erally undergo uniform, age-associated degradation
through middle-age, occult microvascular damage
and cortical atrophy are endemic among older adults,
with substantial variation [388-394]. It is widely
documented that strategic infarcts to the caudate
nucleus, basal ganglia, and other critical brain circuits
can cause precipitous cognitive impairment leading
to dementia in a normally functioning adult under
some circumstances [376]. Although rare in their
pure form, [395] the conceptual relevance of discon-
nectivity between functionally critical brain circuits
and larger regions is well-known and increasingly
implicated as important for ADRD risk [396, 397].
In contrast to the known functional neuroanatomi-
cal correlates of intact neurocognition, most lifestyle
RCTs examining mechanistic data have relied on
global markers of brain health (e.g. cortical atro-
phy, microvascular burden), which may obscure wide
variation among older participants. This is partic-
ularly important for examinations of lifestyle and
neurocognitive dysfunction, which may only become
manifest after substantial neuropathological burden
has accrued.

The potential importance of a circuit-based appre-
ciation for neurocognitive change is particularly
relevant within the aerobic exercise literature, for
which treatment improvements are preferentially
observed on tests of frontal-subcortical function and
more broadly in the ‘executive control’ (ECN) and
‘salience’ networks (SN), as well as their recipro-
cal associations with the ‘default mode’ network
(DMN), all of which work in concert to facili-
tate complex neurocognitive functions. Within these
networks, fronto-subcortical brain regions (e.g. ante-
rior cingulate cortex, ventromedial prefrontal cortex,
insular cortex) [398] interact reciprocally with crit-
ical ‘hub’ regions in the posterior cingulate cortex
involved in the DMN [399]. DMN activity is tra-
ditionally anti-correlated with task-based networks,
such as the SN [400, 401]. Thus, coordination of
the DMN and SN are critical to attentional / exec-
utive control and reduction of internal distractors
[402, 403]. A circuit- or network-based interpretation
of aerobic exercise effects would synthesize mech-
anistic studies demonstrating that physical activity
improves functioning within FSCs across disparate
patient populations, including older adults, [117,404]
vCIND, [73, 236] Parkinson’s Disease, [405, 406],
bipolar, [407] and ADHD [75].

Areas within the SN and ECN are also criti-
cal for executive functions because of they have

a greater density of ‘rewards system’ neurotrans-
mitter receptor sites, particularly for monoamines
such as noradrenaline and dopamine. Noradrenergic
function, in particular, is increasingly recognized as
having an important role in the development of cogni-
tive impairment among older adults and is critical for
the maintenance of frontal-lobe functions [408, 409].
Moreover, these findings have recently been extended
to healthy aging samples, with multiple investigators
proposing that NE activation facilitating by the locus
coeruleus may represent the best central nervous sys-
tem biomarker of cognitive reserve (i.e. LC-reserve
hypothesis) [410, 411]. Although no adult trials, to
our knowledge, have examined the potentially mod-
erating role of catecholamines, this association has
been demonstrated in adolescent samples [412].

Assumption 5: Large, Randomized Trials are
Necessary to Delineate Specific Treatment
Mechanisms

Examination of the available literature demon-
strates that most of the available trial data on
neurocognitive outcomes comes from large, exceed-
ingly costly trials in which multicomponent treatment
packages were typically ‘bundled’ into one group.
For example, the FINGER trial utilized four differ-
entintervention components: diet, exercise, CVD risk
management, and cognitive training [214]. Although
RCTs will ultimately carry the greatest scientific sig-
nificance to change clinical practice, and emerging
wave of multiphase optimization strategy (MOST)
trials have provided critical insight into some recal-
citrant public health problems [355]. Using an
elaborated factorial design, particularly sequential
multiple assignment randomized trials (SMART),
these approaches allow investigators to systemati-
cally test treatment sequencing, optimize intervention
components, and disentangle treatment-exposure
interactions systematically using an efficient design
with small sample size requirements. SMART
designs in particular are ideal for patient popula-
tions with large individual differences in treatment
response, with a secondary randomization occurring
based on initial treatment response. For example, a
MOST-based design in which exercise, diet, and cog-
nitive training was examined would be helpful in
determining their independent and synergistic effects
(Table 1).

MOST and SMART-based approaches could be
adopted for brain-based mechanisms for which mul-
tiple treatment elements must be integrated in order to
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Table 1
Example of a factorial design to determine optimal intervention
components among exercise, diet, and cognitive training. Within
the example below, main effect comparisons for factors would
consist of 1) Exercise vs. No-Exercise (conditions 1, 2, 3, 4 vs. 5,
6, 7, 8); 2) Diet vs. No-Diet (conditions 1, 2, 5, 6 vs. 3, 4, 7, 8);
and Cognitive training vs. No-cog training (conditions 1, 3, 5, 7
vs. 2, 4, 6, 8). Interactions between intervention factors can also
be examined

Experimental Exercise Diet Cognitive Training
Condition Factor Factor Factor

1 Exercise Diet Cog Training

2 Exercise Diet No-Cog Training
3 Exercise No-Diet Cog Training

4 Exercise No-Diet No-Cog Training
5 No-Exercise Diet Cog Training

6 No-Exercise Diet No-Cog Training
7 No-Exercise ~ No-Diet Cog Training

8 No-Exercise ~ No-Diet No-Cog Training

improve outcomes. SMART design approaches could
be used to test, for example, whether training modal-
ities that first target inflammation or metabolism
before introducing other treatment elements may
have the greatest benefits, if these treatment mecha-
nisms truly do block other downstream brain changes.
These kinds of approaches appear particularly rel-
evant to test the effects of cognitive training in
conjunction with lifestyle modification, [413] as cog-
nitive engagement is increasingly recognized as a
pillar of prevention [173, 414] and may have con-
tributed to the observed success of the FINGER
trial [213, 224, 415]. It is possible that discrepant
findings between FINGER and other combined inter-
ventions, such as the MAX trial, [416] could have
been that elements of the dietary intervention served
to ‘prime’ brain areas needed for cognitive improve-
ments for plasticity by augmenting metabolic or
inflammatory pathways. Such sequential approaches
have been hypothesized to confer greater cognitive
benefits among older adults in cognitive rehabilitation
[413].

Future directions

As shown by the present review, the impact of
lifestyle on the brain, as well as the field of ‘health
neuroscience’ more broadly, [417] is a burgeoning
area with a great diversity of avenues for future
inquiry. This is particularly relevant as intervention
strategies are increasingly personalized for improved
treatment effect [418]. Several specific hypotheses
could be tested as an extension of the associations
reviewed above. First, because neuropathological

changes in the brain occur over the course of decades
and may vary widely between individuals, [55] efforts
to assess and better understand individual differ-
ences in chronicity of disease burden and structural
brain imaging markers on neurocognitive changes
following lifestyle change appear indicated. Future
interventions would also be informed from inferences
brought about by the NIA’s task force on ‘cognitive
reserve’, [86, 94, 96] so that randomized trials can
incorporate codified markers of reserve capacity to
either examine as modifiers of treatment response or
at least as a individual difference variable to control
for in their examination of treatment changes [419].
Moreover, future interventions should consider inclu-
sion criteria that partially account for reserve factors,
such as the use of demographically-corrected norma-
tive data, which provide deviations in neurocognitive
performance based both age and premorbid educa-
tion level (a conventional marker of cognitive reseve).
Indeed, it is notable that trials accounting for individ-
ual differences in baseline neurocognitive function,
disease burden (e.g. vascular risk), and cognitive
reserve capacity (e.g. education level [145, 236] or
indirectly through CAIDE [214]) have demonstrated
the largest treatment-related improvement in neu-
rocognition.

Second, routine collection where possible of
‘downstream mechanistic pathways’ (e.g. metabolic
function, inflammation, and brain structure) could
help inform mechanistic pathways in future studies,
even if other pathways are unmeasured (neu-
rotrophins and neurotransmitter function). These
would allow emerging trials to align with contem-
porary causal inference analytic paradigms in which
‘blocking’ of various causal pathways could prove
highly informative [353, 420]. Moreover, collection
of detailed historical data on cumulative exposure to
CVD risk factors could provide important informa-
tion on individual differences in reserve capacity, in
order to examine whether this functions as an unmea-
sured individual difference influencing the observed
treatment-exposure interactions.

A third potential extension from the present review
is the need to carefully account for basal levels of
inflammation, which may function as a conceptually
central mechanism blocking the effects of indirect
mechanistic pathways. Elevated inflammation has
been shown to mitigate neurotrophic effects on neu-
rocognition, [421] is common among individuals
with CVD risk factors and obesity in particular, [278]
has been associated with biomarkers of preclinical
ADRD progression, [422] and has been robustly asso-
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ciated with neurocognitive decline [277]. This could
partially explain the lack of neurocognitive improve-
ments in some comprehensive lifestyle trials, such as
LOOK-AHEAD [242]. This may also explain why
individuals with more advanced neuropathological
burden, such MCI or AD, may not experience the
same cognitive improvements as cognitively normal
older adults [372] as the presence of higher beta amy-
loid load has been suggested to promulgate elevated
neuroinflammatory levels in a feedback loop [279,
423-425]. Future trials may therefore benefit from
optimizing intervention components that are most
closely associated with improved inflammation, such
as weight loss and an anti-inflammatory diet, may
therefore be indicated.

Fourth, the application of SMART-based designs
that sequentially improve metabolic function or
inflammation may provide critical insights for the
sequencing of future intervention trials. For exam-
ple, trials in which participants have been ‘primed’
to maximize the benefits of cognitive training could
first attempt to optimize metabolic or inflammatory
targets, with secondary randomization to cogni-
tive training. Within this framework, finding that
metabolic or inflammatory systems must be opti-
mized in order to experience cognitive gains may
suggest that treatments should first attempt to induce
neuroplasticity as the first line of treatment. In addi-
tion to testing for sequencing effects, this type of
approach would also allow for granular examina-
tion of which individuals were unable to augment
metabolic or inflammatory systems before additional
intervention. This would provide critically important
data on which individuals may be most or least likely
to respond to such an intervention approach, as well
as which individuals may be able to meet interme-
diate treatment targets with additional intervention.
Regardless of the findings, such approaches, if care-
fully performed, would provide clinically meaningful
information to inform prevention efforts using per-
sonalized approaches.

Although SMART-based approaches have not gen-
erally been utilized in geriatric samples, likely
because of the relative insensitivity of cognitive
tests to detect early treatment improvements, sev-
eral paradigms could be considered leveraging such
approaches. For example, although early markers of
treatment response have not been systematically used
in geriatric samples, several conventions have been
explored and could be investigated more rigorously
for personalized treatment approaches. Short-interval
biomarkers of improvement have been published both

for neurocognitive function itself, [426] changes in
TIADLs based on functional assessment, [427] as well
as putative mechanistic markers of brain reserve,
including surface-based cortical thickness indices
[428, 429] and mesial temporal lobe morphologi-
cal features [430—433]. Because these morphological
features experience accelerated change in some clini-
cal samples, such as MCI, [431], and are impacted by
lifestyle factors [43, 260] and vascular risk, [434] it
is plausible they could be examined as intermediate
markers of treatment response. Although less sen-
sitive to treatment improvements, available markers
appear to hold promise for testing intervention effects
on stabilization of function in populations hypothe-
sized to be experiencing a progressive decline.

SMART-based designs also have several advan-
tages over conventional treatment approaches in
their ability to test treatment response to unimodal
vs. multimodal interventions targeting ‘downstream’
mechanistic factors (e.g. metabolic function), as
well as treatment sequencing for potential ‘priming’
effects. For example, because interventions impact-
ing metabolic function may be particularly important
for neurocognitive gains, a natural extension may be
investigating which individuals benefit from conven-
tional exercise training modalities (e.g. brisk walking
or jogging) vs. aerobic training with high inten-
sity interval training, which more directly targets
metabolic parameters (Fig. 3). Additional dietary
modification and/or caloric restriction could also be
employed for non-responders as a means of fur-
ther metabolic enhancement. In addition to testing
the main effects of primary intervention, this also
provides rich clinical data to characterize individu-
als factors associated with initial treatment response,
such as older age, greater metabolic dysfunction, vas-
cular risk, and APOE genotype. Cognitive training
interventions could also be employed with or with-
out exercise training (Fig. 4). In addition to testing
the additive benefits of exercise, such designs would
allow for testing whether treatment improvements
emerge after longer treatment duration, whether
behavioral modification to induce neuroplasticity is
needed to enhance cognitive training, and charac-
terizing individual differences in initial treatment
response.

Finally, if individual differences in background
characteristics continue account for substantial vari-
ation in treatment improvements, more nuanced
approaches to leverage variation from neurocognitive
assessment batteries may prove beneficial. Similar
applications using Bayesian modeling approaches



24 P.J. Smith / Pathways of Prevention

YES

+Atrophy
Stabilized?

Exercise Training

Older
Adults w/
Metabolic
Syndrome

Exercise Training

Exercise Training

Exercise Training +

+Atrophy
Stabilized?

Exercise Training
+ HIT

Exercise Training
+HIT

Exercise Training +
HIIT + Diet

H—}.Lr—’

Fig.3. Example of a SMART-based design among older adults with metabolic syndrome. In this example, participants are initially randomized
to either walking or a more metabolically intensive intervention using high intensity interval training (HIIT). The tailoring variable used
to determine secondary randomization is stabilization of cortical atrophy. Secondary randomization among non-responders introduces an
additional metabolic treatment, dietary modification, in order to determine if some individuals are able to achieve improved cognitive
outcomes when metabolic parameters are targeted with additional treatment components.
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Fig. 4. Example of a SMART-based design among older adults with mild cognitive impairment (MCI). In this example, participants are
initially randomized to either cognitive training or a combined cognitive and physical activity program, that may augment neuroplasticity.
The tailoring variable used to determine secondary randomization is improvements on a brief measure of processing speed, which has been
associated with intervention responsivity in other trial settings. Secondary randomization among non-responders introduces an additional
treatment augmenting metabolic and inflammatory function, dietary modification, in order to determine if some individuals are able to

achieve improved cognitive outcomes with additional treatment.

of individual variation in neuroimaging outcomes
are increasingly utilized to model the integrity
of functionally integrated neurocircuitry [435-438]
across structural and functional assessment modali-
ties [439—441]. An increasingly common approach
across multiple neurocognitive tests is the use of
decomposition methods to quantify the level of over-

all function, domain-specific function, and variation
across assessment measures [442—444]. Emerging
evidence suggests that both the overall level of per-
formance and variation across performance measures
represent markers of cognitive reserve with unique
predictive abilities [445]. Because increased ineffi-
ciencies in functional connectivity precede overall



P.J. Smith / Pathways of Prevention 25

behavioral decline, [446, 447] use of decomposition
methods may be particularly important among pre-
clinical samples [448].

Conclusions

Dietary and exercise interventions hold promise
for improving neurocognition, although we are just
beginning to determine the optimal components,
intervention modalities, and downstream mecha-
nisms of treatment benefit. As noted in the present
review, there remain large individual differences
in treatment response that we are only beginning
to understand. Future studies may benefit from
inclusion of codified measures reflecting individual
differences in chronicity or degree of disease bur-
den and markers of cognitive reserve. Optimization
strategies to determine the optimal timing and modal-
ities of intervention hold critical importance for the
development and implementation of future ADRD
prevention efforts.
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