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Abstract. There is increasing evidence that an active lifestyle benefits both body and brain. However, not everyone may be
able to exercise due to disease, injury or aging-related frailty. Identification of cellular targets activated by physical activity
may lead to the development of new compounds that can, to some extent, mimic systemic and central effects of exercise. This
review will focus on factors relevant to energy metabolism in muscle, such as the 5° adenosine monophosphate-activated
protein kinase (AMPK) - sirtuin (SIRT1) - Peroxisome proliferator-activated receptor y coactivator-la. (PGC-1a) pathway,
and the molecules affecting it. In particular, putative exercise-mimetics such as AICAR, metformin, and GW501516 will be
discussed. Moreover, plant-derived polyphenols such as resveratrol and (-)epicatechin, with exercise-like effects on the body
and brain will be evaluated.
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INTRODUCTION active lifestyle for the brain are being supported by an
increasing amount of scientific evidence. In particu-

“Methinks that the moment my legs begin to move, lar, exercise promotes adult hippocampal neurogen-

my thoughts begin to flow” esis and neuronal plasticity [1, 2], and is associated

with increased memory performance and cognition,
and is considered to counter cognitive decline caused
by aging and by neurodegenerative diseases [3-5].
The vast beneficial consequences of exercise might
not be within reach of debilitated, diseased and
elderly patients. The development of compounds
capable of activating cellular targets of exercise
may be a new therapeutic approach. Indeed, recent
research indicates that factors secreted by skele-
tal muscle during exercise may exert beneficial
effects on brain function [6-9]. This review will
focus on the identified targets relevant to energy
metabolism in muscle, such as the 5’ adenosine

) ° ¢ - monophosphate-activated protein kinase (AMPK) -
ity and Behavior Unit, Laboratory of Neurosciences, NIA/NIH, irtui SIRT1 P . liferat tivated
Biomedical Research Center, Suite 100, 251 Bayview Blvd. sirtuin ( ) - reroxisome proliterator-activate

Baltimore, MD 21224, USA. Tel.: +1 410 558 8064; E-mail: receptor y coactivator-1a (PGC-1a) pathway, and the
vanpraag17 @gmail.com. molecules affecting it.

- David Henry Thoreau -
‘Thoreau’s Journal’ August 19, 1851

Thoreau was among those intellectuals who saw
physical activity as a fundamental component of
keeping their mind active and the spring of inspiration
flowing. Exercise benefits young and old organisms,
including increased skeletal mass, improvement in
the cardiovascular system and metabolic regulation,
as well as in brain functions associated with cog-
nition, memory and mood. Indeed, benefits of an
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Skeletal muscle is the most abundant tissue in the
human body and the most highly activated organ in
response to physical activity. Aerobic exercise affects
skeletal muscle by inducing a substantial switch in
composition from fast-twitching, glycolytic type IIb
fibers to the more oxidative, slow-twitching type I
fibers [10]. Endurance training results in an increase
in mitochondrial biogenesis and activity [11], vascu-
larization, oxygen consumption [12] and an overall
improvement of aerobic capacity [13]. Furthermore,
the resulting activation of signaling pathways relevant
to energy metabolism, such as the AMPK-SIRT1-
PGC-1la pathway in muscle may contribute to the
benefits of exercise for brain function. In this con-
text, compounds such as AICAR, metformin, and
GW501516 will be discussed. Moreover, the capac-
ity of dietary supplements, such as resveratrol and
epicatechin, to mimic effects of exercise on body and
brain will be evaluated (Fig. 1).

AMPK-SIRT1-PGC-1ae PATHWAY, A
POSSIBLE TARGET?

Repeated muscle contractions affect a plethora of
cellular allosteric factors, such as ATP/AMP concen-
tration, Ca™™ availability, and NAD™ levels, which
in turn regulate enzymes whose activity is at the core
of metabolic regulating pathways. Sirtuin 1 (SIRT1)
is sensitive to NAD™ levels, and, via its deacetylase
ability, is known to regulate up to 40 different down-
stream proteins [14], including AMPK and PGC-1a
which are essential for muscle energy metabolism
and mitochondrial biogenesis.

AMPK

AMPK is a master regulator of cellular
metabolism. It is a heterotrimeric Ser/Thr kinase
formed by three distinct subunits: the o subunit is
responsible for the catalytic activity, while 3 and y
are regulatory subunits. AMPK is responsive to the
cellular ratio of ATP:AMP, which is greatly reduced
by ATP consumption during muscle contraction.
Increasing AMP concentration leads to the formation
of an AMP-AMPK complex on the y subunit, which
activates the catalytic a subunit of AMPK [15].
Moreover, once AMP binds AMPK, the complex has
increased affinity with AMPK-kinase Liver Kinase
B1 (LKB1), which in turn phosphorylates Thr172,
massively increasing AMPK catalytic activity [16].
AMP-AMPK complex prevents dephosphorylation

of Thr172, maintaining the kinase in the active form
[15].

In skeletal muscle, AMPK activation induces a
switch of cellular metabolism from anabolic to
catabolic, blocking energy-consuming processes and
promoting ATP synthesizing processes from fatty
acid oxidation [17], glycosylation and glucose uptake
[18]. Such modifications are rapidly induced by
direct phosphorylation of metabolic enzymes, while
a slower, long-lasting effect is obtained by regulat-
ing transcription. AMPK is therefore a transcriptional
regulator, because it directly phosphorylates, among
others, PGC-1a [19], whose activity modulates mito-
chondrial biogenesis.

SIRTI

Deacetylase SIRT belongs to a family of 7 proteins
called sirtuins, so named for being the mammalian
homologs of the yeast silent information regulator
(SIR2) protein. Studies showed that SIRT1 is crucial
for downstream activation of AMPK by promoting
the deacetylation of AMPK-kinase (LKB1), which
in turn activates AMPK [20]. Interestingly, SIRT1
acts as a metabolic sensor via changes in intracellular
redox state. Increasing cellular levels of NAD™ acti-
vates SIRT1 and promotes PGC-1a activity, playing
an important role in role in mitochondrial biogenesis
[21]. Indeed, SIRT1 and PGC-1a form a complex.
In this form, NAD™ driven deacetylation by SIRT1
activates PGC-1a promoting its specific activity as
a transcriptional factor on mitochondrial respiratory-
and fatty acid metabolism-related genes [22]. Inter-
estingly, SIRT1, in conditions of overexpression or
knock-out, can also act as a PGC-1a inhibitor, reduc-
ing mitochondrial activity [23], suggesting there is an
important role for SIRT1 in exercise-induced mito-
chondrial biogenesis.

PGC-la

Endurance exercise activates PGC-1a by stimu-
lating P38 MAPK in skeletal muscle, and activated
PGC-1a enhances mitochondrial biogenesis. PGC-
la is a crucial co-activator of a huge variety of
downstream transcriptional factors involved in fatty
acid oxidation and mitochondrial biogenesis, ulti-
mately boosting cellular respiratory rate. Impaired
endurance, abnormal fiber composition and flawed
mitochondrial-related gene regulation are observed
in muscle specific PGC-1a knock-out models [24,
25]. These results support the idea that PGC-la
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Fig. 1. Overview of the cellular effects of exercise and exercise-mimetics. AMP-Kinase (AMPK) is activated by AICAR, Metformin and
Resveratrol in skeletal muscle. Activated AMPK positively regulates signaling pathways involved in endurance capacity, fat metabolism,
mitochondrial biogenesis. The compound GW501516 also has metabolic effects by selectively activating transcription factor PPAR-§. Nitric
oxide synthase (NOS) is stimulated by (-)Epicatechin and Resveratrol, affecting vasodilation and angiogenesis in the brain and periphery.
(-)Epicatechin also increases BDNF expression through the TrkB-AKT-CREB pathway. These molecules exert partial exercise-like effects
on brain and skeletal muscle.
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has an important role in angiogenesis, mitochondrial
biogenesis and muscle fiber type transition during
exercise.

PPARS

PPARG is a nuclear hormone receptor which acts
as a transcriptional regulator of more than 100 genes
and in doing so plays a crucial role in a variety
of biological processes, from energy regulation to
development and differentiation [26]. The role of
PPARS in skeletal muscle has been widely stud-
ied and is known to affect mitochondrial biogenesis,
lipid metabolism and oxidative processes, slow/fast
twitch fiber regulation, weight reduction, impairment
of liver gluconeogenesis, and regulation of inflamma-
tory processes [27, 28].

EXERCISE-MIMETICS

Exercise is an effective tool to counteract a wide
variety of metabolic problems, age-related loss of
function and physiological issues. Overall, physical
activity is a cornerstone of a healthy lifestyle. Unfor-
tunately, exercise often is difficult to implement as
an intervention for patients with conditions requir-
ing better weight management and improved glucose
metabolism. An active lifestyle has also been shown
to enhance mood and cognition, and may delay the
onset of neurodegenerative diseases. The beneficial
effects of exercise on the body and brain are likely not
replaced by one single pill. The complex underlying
molecular mechanisms and modes of action provide
multiple opportunities for pharmacological strategies
for the various diseases. To better understand the
molecular mechanisms, numerous studies focus on
the systemic metabolic networks of transcriptional
activators and interconnected enzymes involving
AMPK, SIRT1, and PGC-1a. However, the possibil-
ity of minimal or even detrimental effects on brain
function of candidate compounds targeting these
peripheral pathways must also be considered. Indeed,
differences between effects of exercise-mimetics on
central versus peripheral systems could be another
factor limiting the viability of a pharmacological
alternative to exercise (Fig. 2, Table 1).

AICAR

The compound 5-Aminoimidazole-4-carboxa-
mide ribonucleotide (also known as AICAR or
AICA-ribotide) is the analog of AMP and interme-

diate metabolite of the purine synthesis pathway.
AICAR is an endogenous substance, and is the active
agent of the drug 5-aminoimidazole-4-carboxamide-
1-B-D-ribofuranoside. AICA-riboside is phosphory-
lated by the cellular adenosine kinase and, as AMP,
activates AMPK by binding the AMPK <y subunit
and promoting phosphorylation of Thr172 [29].

Effects of AICAR on peripheral organs

AICAR affects many organs and regulates a
plethora of metabolic processes, in part by replicat-
ing the effects of exercise in both in vivo and in vitro
studies. For instance, AICAR can mimic exercise by
increasing glucose transporter type-4 (GLUT-4), hex-
okinase activity, resting glycogen content and muscle
mitochondria numbers [30, 31]. AICAR has been also
reported to increase angiogenesis and vascularization
by inducing VEGFa expression in a fashion similar to
exercise [32], although not necessarily acting through
AMPK activation, rather via independent, alternative,
and still unclear mechanisms [33].

Similar to exercise, AICAR also promotes liver
fat consumption and inhibits lipogenesis as well
as reduces circulating triglyceride levels and blood
pressure [34, 35]. Furthermore, this compound can
reduce hyperglycemia and improve glucose toler-
ance in obese diabetic mice in an insulin-independent
way: reducing rate of gluconeogenesis in the liver,
while increasing GLUT-4 mediated glucose uptake
[36]. AICAR is also known for its direct AMPK-
dependent effects on inflammatory process, resulting
in a reduction of cytokine levels and inflammation.
For instance, in vitro incubation of human aortic
smooth muscle cells with AICAR reduced vascular
inflammation and pro-inflammatory cytokine levels
in a dose-dependent manner [37]. In vivo, treatment
of mice with AICAR lowered cytokine levels in the
lungs and reduced inflammation of the airways [38].

Effects of AICAR on the brain

The most interesting feature of exercise-mimetics
is their ability to replicate, to some extent, the ben-
eficial effect of exercise on brain functions. Daily
AICAR (500 mg/kg) treatment in young mice for one
week improved spatial memory and increased neu-
rogenesis one month later [6]. Even in 2-year-old
mice, longer treatment (14 days) produced memory
and motor coordination benefits [39]. These effects
are likely to be indirect consequences of peripheral
AICAR administration [9], given the extremely low
permeability through the blood brain barrier [40]
the lack of spatial memory improvement by AICAR



Table 1

Compounds exerting exercise-like effects on body and brain. We provide an overview of the effects of AICAR, Metformin and GW501516 on central (gray shading) and peripheral systems.

Agonist Target Dosage Species Function Mechanism References
AICAR AMPK 500 mg/kg/day, 4 weeks Mice Reduced epidermal fat mass PPARdelta, Ucp3, Cpt 1b, Pdk4 [79]
Enhanced endurance capacity
300 mg/kg/day, 4 weeks Mice Angiogenesis VEGF [32]
0.5 mg/kg/day, 7 weeks Rats Reduced hyperglycemia GLUT4 [35]
(subcutaneous injection) Lower TG levels & Blood pressure
100 mg/kg/day, 3 days Mice Reduced airway inflammation Lowering lung cytokines [34]
150 mg/kg/day, 5 weeks Reduced macrophage inflammation SIRT1
500 mg/kg/day, 3 to 7 days Mice Improved spatial memory Hippocampal neurogenesis, BDNF [6, 43]
Metformin Indirect 300 mg/kg/day, 14 days Mice Improved Insulin sensitivity AMPK, PGC-1alpha, GLUT4 [52,54]
AMPK Inhibition of gluconeogenesis
300 mg/kg/day, 7 days Human 6% weight loss [56]
2500 mg/kg/day, 6 months Human weight loss [57]
850 mg, twice a day for 3 months Human Lower Blood pressure [64]
850 mg/day, 6 months Human Reduced BMI, cholesterol, HDL, VHDL, glucose level [55]
200 mg/kg, 38 days Mice Improved spatial memory Hippocampal neurogenesis [69]
50 mg/kg, 7 days Mice Regulation of macrophages and microglia Angiogenesis & Neurogenesis [71]
200 mg/kg, 14 days Mice Hippocampal neurogenesis AMPK [72]
500 mg/kg/day, 21 days Mice Improved motor skills in Alzheimer’s model Reduced oxidative stress [74]
Enhanced BDNF
GW501516 PPARdelta 5 mg/kg/day, 4 weeks Mice Changes in fiber composition (to slow-twitch fibers) Transcriptional process [79]
10 mg/kg/day, 7 days Mice Reduced lipid accumulation [85]
1-10 mg/kg, 3 weeks Mice Inhibition of leukocyte-endothelial cell interaction Lowering TNFalpha, iCAM, vCAM [89]
and E-selectin
5 mg/kg/day, 1 week Mice Improved spatial memory Hippocampal neurogenesis [6]
2 mg/kg/day, 14 days Mice Brain vessel protection MnSOD [96]
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in muscle specific AMPKa2 mutant mice [39], and
the adverse effect of direct intracranial infusion on
synaptic plasticity and spatial memory in rats [41].
It should also be noted that in young mice, longer
(14 days) treatment failed to improve spatial memory
and neurogenesis, raising the possibility of negative
consequences of chronic administration [39].

Divergence between effects of short and long
administration correlates neural plasticity with a
study in skeletal muscle, where 14 days of AICAR
failed to increase SIRT1 expression, contrary to 7
days of administration [42]. In a recent study, we
made a side-by-side comparison between effects of
short- and long-term AICAR administration and exer-
cise regimens, on gastrocnemius muscle and brain
in young C57Bl/6 male mice. Both interventions
induced similar AMPK pathway activation in skele-
tal muscle after both short (3—7 days) and longer
(14 days) administration. However, in the brain only
the short-term treatment was beneficial. Specifically,
in the dentate gyrus of the hippocampus, brain-
derived neurotrophin (BDNF) levels and neuronal
proliferation were elevated by short-term treatment,
while no increase was reported after longer adminis-
tration [43]. Moreover, gene expression profiles in
brain areas crucial for learning and memory pro-
cesses exhibited divergent regulation between longer
AICAR administration and exercise treatment [43]
(Fig. 2).

A possible reason for lack of beneficial effects
in the brain after 14 days of AICAR adminis-
tration could be elevated inflammatory cytokine
IL-1b and divergent expression of nitric oxide (NO)
synthetic enzymes, suggesting an up-regulation of
inflammation and oxidative stress [43]. Given the
aforementioned possibility that AICAR indirectly
affects the brain, and the evidence of in vitro modula-
tion of inflammatory responses and cytokine levels
in rat microglia through both AMPK-dependent
and -independent mechanisms [44], an indirect
pro-inflammatory effect of long term AICAR admin-
istration on the brain seems possible. Moreover,
AICAR is known to increase skeletal muscle release
of IL-6 into the bloodstream, which can cross the
blood brain barrier and is an active pro-inflammatory
cytokine [31].

To some extent, these findings show that AICAR
can improve the parameters that are enhanced by
exercise, however these have a short half-life [45]
and off-target effects may occur because of various
distributions of AMPK receptor subtypes in different
tissues [46]. Such observations are corroborated by a

recent study by Jang et al., which showed an increase
in BDNF levels, an increase neuronal proliferation
and a decrease in AMPK activation in the brain - but
notin the periphery - upon 7 days of AICAR treatment
in young but not in old mice. Moreover, the activation
of AMPK, measured after acute AICAR adminis-
tration was more prominent than after subchronic
AICAR treatment, thus supporting the possibility
that brain tissues could be particularly sensitive to
extended activation or over-activation of AMPK [47].
Therefore, the precise dosage and duration of admin-
istration must be carefully adjusted to the aim of
treatments, in order to elicit effects that mimic those
of exercise, and to minimize side effects.

Metformin

Metformin is a compound that belongs to the
biguanidine class, commonly used in clinical treat-
ment as an anti-diabetic drug. Despite numerous
studies, the mechanisms of action of metformin are
still unclear. Metformin’s primary target within cells
is the mitochondrial respiratory chain. In fact, met-
formin has a transient inhibitory effect on Complex I,
possibly via accumulation of positively charged met-
formin molecules within the mitochondria. Complex
I inhibition in turn reduces the concentration of ATP
in favor of AMP. As seen in the previous section, this
decline of ATP/AMP ratio activates AMPK. Like-
wise, both AICAR and metformin activate AMPK
and have similar roles in hepatic glucose production
even though the mode of AMPK activation is differ-
ent [48]. Moreover, metformin acts as a metabolic
inhibitor and disrupts the downstream cAMP-PKA
pathway [49].

Peripheral organ effects of metformin

Exercise and metformin are prescribed treatments
for type 2 diabetes [50-52]. Exercise and metformin
reduce circulating glucose levels by stimulating
GLUT-4 membrane translocation and expression,
both in adipose tissue and skeletal muscle which
increases their glucose uptake. However, in terms
of hepatic gluconeogenesis [53], they have con-
trasting roles. Indeed, exercise increases hepatic
gluconeogenesis while metformin greatly reduces
gluconeogenesis, thus reducing endogenous glucose
synthesis up to 30% [54].

Chronic metformin administration causes signifi-
cant weight loss both in rodents and humans [55, 56],
similar to exercise. This weight loss is at least in
part due to the anorexigenic effect of metformin, as
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Fig. 2. Comparison of effects of exercise and AICAR treatment on the Dentate Gyrus. A) Immunoblotting of AMPK activation in Dentate
Gyrus (DG) of C57BI/6J mice, after 7 days and 14 days of treatment in control (CTR), AICAR (ACR) and voluntary running (RUN) mice.
Phosphorylated AMPK is increased by both interventions at 14 days. B) BDNF protein levels are transiently increased by AICAR: DG
BDNEF protein levels are elevated after 7 days in ACR and RUN groups, however after 14 days only in the RUN but not the ACR group. C)
Microarray analysis of the Dentate Gyrus. Heat map of selected neuro-related GO Term gene classes: red represents up-regulated classes,
green represents down-regulated classes. For every class the Z-ratio value is reported. Bold, underlined Z-ratio values represent classes with
a Selector value above 2 or below —2. Note the inversion in gene expression that occurs with 14 days of AICAR treatment as compared to
the 7 day time-point. D) Cell genesis in C57B1/6J mice is transiently increased by AICAR: DG BrdU-positive cell number increases in ACR
and RUN groups at 7 days, but is elevated only in the RUN and not the ACR group at 14 days. The photomicrographs of BrdU-positive cells
at 7 (left column) and 14 (right column) days are prepared from hippocampal sections derived from CONTROL (first row), AICAR (second
row) and RUN (third row) mice. Scale bars, 250 wm in overview images and 25 wm in inserts. (*p <0.05; compared to CTR; **p <0.05
compared to CTR and ACR). Error bars denote S.E.M. Data and images from Guerrieri and van Praag, 2015 [43].
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reported in animal models of diabetes [51] and in
human patients [57]. The underlying mechanism is
still unclear. It has been proposed that metformin
reduces hypothalamic Neuropeptide Y (NPY) gene
expression, partly via regulation by AMPK, as shown
after direct intracranial injection (200 g metformin)
in fasting rats [58]. NPY is known to induce an
increase in food intake while decreasing physical
activity [59]. Moreover, blood levels of leptin have
been shown to correlate with the anorexigenic effect
of metformin, raising the possibility that metformin
administration also induces hypothalamic sensitiv-
ity to leptin by promoting leptin receptor expression
[60]. The hypothalamus is a crucial brain region for
energy balance and regulation [61] and by acting
upon it, metformin could reduce food intake both in
diabetic [57] and non-diabetic [62] conditions.

Metformin can reduce blood pressure in diabetic
patients [63]. In addition, metformin improves mul-
tiple cardiovascular risk factors by reducing body
mass index, total cholesterol, HDL and VHDL levels,
along with blood glucose levels, pulse rate and blood
pressure in obese subjects [64].

In vitro studies report an inhibitory effect of met-
formin on TNFa-mediated inflammatory processes
in vascular smooth muscle cells [65]. In addition,
in rat cultures, metformin inhibited expression of
inflammatory chemokines and cytokines such as
ICAM-1, CCS-2, TGFB 1 and NF-kB [66]. In vivo, a
Spanish study reports obese diabetic patients treated
with metformin showed reduced levels of C-reactive
protein (hsCRP), TNFa and TLR 2/4 [67]. Moreover,
a meta-analysis over five different studies reports
that serum levels of pro-inflammatory IL-6 cytokine
might be reduced by metformin, although not con-
sistently throughout the analyzed studies [68]. It
seems metformin may modulate inflammatory and
immunological responses similar to exercise. How-
ever, more studies are necessary to evaluate the
anti-inflammatory role of metformin.

Effects of metformin on the brain

Interestingly, some indications that beneficial
effects of exercise on the brain might be inducible
by metformin treatment are starting to appear. Treat-
ment with metformin for 38 days in female mice
increased hippocampal neurogenesis and improved
spatial memory performance [69]. In mouse mod-
els of ischemia, metformin increases angiogenesis
and neurogenesis via AMPK activation, and regulates
macrophages and microglia in the recovering brain
[70]. Such findings were confirmed by another study

using mouse stroke models, which showed increased
hippocampal neurogenesis in an AMPK-dependent
fashion [71]. Interestingly, nitric oxide synthase
(NOS) pathways have been implicated as well, sim-
ilar to the beneficial effects promoted by AICAR in
mice [43, 71]. Metformin was also reported to act as
a neuroprotective drug in neurodegenerative diseases
such as Alzheimer’s and Parkinson’s disease. For
instance, metformin-induced AMPK activation was
beneficial in a mouse model of Alzheimer’s disease,
resulting in a protective effect on memory retention,
albeit only in females [72]. Furthermore, in a Parkin-
son’s disease mouse model treatment for 21 days
with oral metformin (500 mg/kg) increased levels of
BDNF in substantia nigra pars compacta, reduced
oxidative stress markers, and improved performance
in motor skills [73].

Long-term metformin treatment may eventually
induce cognitive impairments. Indeed, a study of over
125 diabetic patients showed that those who took met-
formin had more cognitive decline [74]. This is of
interest, since diabetic patients are more at risk for
Alzheimer’s disease. Another study of over 14,000
patients also linked long term metformin treatment to
increased risk of Alzheimer’s disease [75]. It has been
proposed that the mechanisms underlying negative
effects might be related to interference of metformin
with absorption of circulating levels of vitamin B12,
important for memory function [76]. However, sup-
plementation of vitamin B12 was not effective in
counteracting cognitive decline in symptomatic, non-
anemic older people with moderate vitamin B12
deficiency [77].

GW501516

The compound GW501516 is a selective ago-
nist of Peroxisome Proliferator-Activator Receptor §
(PPARSY). Interestingly, GW501516 was developed
for its possible beneficial effects on metabolic disor-
ders and cardiovascular diseases, but the discovery
of its carcinogenic properties in pre-clinical stud-
ies on animals led to GW501516’s abandonment
[78]. Nonetheless, in the last decade, several studies
have linked this drug to exercise-mimetic properties
[79-81]. Like AICAR, the drug has now been listed
as an illegal substance by the World Anti-Doping
Agency [27].

Peripheral effects of GW501516
GW501516 has been show to affect expression
of endurance-related genes and metabolic pathways.
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Interestingly, GW501516 has a synergistic effect
with exercise. Indeed, combined with a running reg-
imen it improved endurance performance by 70%
[79]. More recently, a metabolomic study compar-
ing 3 weeks of exercise alone and in combination
with GW501516 confirmed the synergistic effect
of the compound, with an endurance increase of
70%. Moreover, in sedentary conditions, the com-
pound elicited an endurance increase of nearly 50%.
These new data highlight the possibility that exer-
cise and GW501516 exert beneficial effects through
two different mechanisms. Although both treatments
increased mitochondrial fatty acid oxidation and fat
metabolism in skeletal muscle, exercise acts by pro-
moting catabolism, glycolysis and gluconeogenesis,
while GW501516 regulates branched chain amino
acid and ketone body pathways [80]. It is also worth
mentioning that another PPARS activator, GW0742,
recently administered for 4 weeks in combination
with AICAR (5 mg/kg and 500 mg/kg, respectively)
to 7-week-old male Balb/c mice, increased running
both in training and sedentary cohorts (138—-179%
and 355% increase), along with a shift to fat as main
energy source [82].

Numerous in vitro and in vivo studies report a
strong connection between GW501516, skeletal mus-
cle fat metabolism, insulin sensitivity and circulating
glucose levels, showing that this compound could
potentially be beneficial in treating obesity and dia-
betes [83-85]. For instance, through activation of
fatty acid metabolism, this drug reduced weight gain
rate by almost 50% in high fat diet-induced obese
mice, without an anorexigenic effect and therefore
did not reduce food intake. This study reported a
reduction of fat mass and a significant increase in oxy-
gen consumption after GW501516 administration,
reduced liver lipid accumulation, and significantly
affected circulating insulin levels, ameliorating diet-
induced insulin sensitivity [86]. Moreover, in a
transgenic mouse model of obesity, circulating glu-
cose levels are reduced by this compound [86].

As seen for the previous compounds and similar
to exercise, GW501516 can also affect the inflam-
matory response. In fact, in vitro studies showed
that GW501516 can prevent IL-6 release by inter-
fering with NF-kB activity in both human [87]
and murine [88] skeletal muscle cells. Furthermore,
daily oral administration of 3 mg/kg reduced lipid-
induced endoplasmatic reticulum stress in high-fat
diet mice as well as in myotube cultures via crosstalk
between PPARS and AMPK pathway activation,
thereby reducing levels of inflammatory markers like

NF-kB, TNFa and IL-6 [89]. However, activation of
PPARS is not always beneficial. In a murine asthma
model, the compound did not inhibit airway inflam-
mation [90].

Effects of GW501516 on the brain

Administration of GW501516 has also been
shown to affect the central nervous system. Inter-
estingly, when aggregating rat brain cells were
treated in vitro with IFNvy and LPS to induce
inflammation, the compound induced both anti- and
pro-inflammatory properties, reducing TNFa and
inducible NOS (iNOS) levels, but also upregulat-
ing pro-inflammatory cytokines such as IL-6 [91].
Increased neuronal levels of IL-6 have been linked
to in vivo excitotoxic damage, both in damaged
and proximal gray matter, as well as in astrocytes
[92], and are associated with neurodegeneration and
microglial activation [93].

GW501516 treatment may also produce positive
effects on the brain. Indeed, in vitro and in vivo studies
reported that direct infusion might have a neuropro-
tective effect against neuronal damage, reducing both
ischemia-induced brain damage in rats and MPTP-
induced dopaminergic neuronal death in Parkinson’s
disease mouse models [94]. Moreover, in young
female C57Bl/6 mice spatial memory and dentate
gyrus neurogenesis are enhanced by GW501516
treatment [6]. Similar to AICAR, GW501516 hardly
crosses the blood brain barrier [94]. Therefore, cog-
nitive improvements are possibly induced by indirect
exercise-mimetic effects on skeletal muscle [6, 9, 79].

DIETARY SUPPLEMENTS

Nutrition is increasingly recognized as a crucial
player in proper brain development and function.
Providing the very fundamental materials for brain
structure and connections, dietary components can
affect cognition, neuronal activity and synaptic plas-
ticity on a cellular level. In particular, plant-derived
polyphenols, may positively affect brain function and
induce metabolic effects similar to those induced by
exercise (Table 2).

Resveratrol

The stilbene-structured compound named resvera-
trol is a polyphenol naturally occurring in plants [95].
Resveratrol sources are abundant in the human diet,
including peanuts, blue- and blackberries. Ultimately
its main dietary source in the Mediterranean diet is
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When tested in parallel with an exercise regimen,
resveratrol attenuated exercise-induced oxidative
stress damage in young and old rodents. In 3 and
27 month old C57Bl/6] mice, after 10 days of
resveratrol-supplemented diet, the compound vastly
reduced oxidative stress damage to muscle fibers
[110]. Resveratrol exerts its effect both in combi-
nation with and in absence of exercise regimens.
A resveratrol-enriched diet (146 mg/kg/day), via
activation of the SIRT1/AMPK pathway, increased
running endurance in rats trained on treadmills for
12 weeks [111]. Resveratrol failed, however, to
improve endurance in rats in the absence of exercise
training. Similarly, a resveratrol-enriched diet paired
with regular exercise improved endurance in aged
mice [112]. Interestingly, young C57B1/6] and KKay
male mice fed with a 400 mg/kg resveratrol-enriched
diet showed almost twice the running endurance of
their controls, both in the standard and high-fat diet
paradigm [102]. The actual efficacy of resveratrol
alone still requires further studies, as there is con-
tradictory evidence. In aged humans, 8 weeks of
250 mg/day resveratrol intake alone and in combi-
nation with high-intensity exercise training showed
that resveratrol alone fails to improve muscle resis-
tance and endurance in healthy aged men [113]. It
has indeed been postulated that resveratrol might be
more apt as a performance enhancer in the presence
of exercise, rather than as a substitute for exercise
entirely [111].

Effects of resveratrol on the brain

Resveratrol, possibly via its direct effect on the
SIRT1-AMPK pathway, shows beneficial effects on
neuronal activity and brain functions. Old male
C57Bl/6 mice, which received 150 mg resveratrol/kg
food up to 12 months before testing, improved
their spatial memory performance on a Y-maze
test and displayed more stress-free behavior in the
open-field test. Also, resveratrol was reported to
improve vascular density in the hippocampus [114].
Resveratrol has additionally been shown to pro-
mote developmental neurogenesis via SIRT1- and
AMPK-dependent mechanisms in vitro [115]. In vivo
the compound increased adult hippocampal neu-
rogenesis and neuronal survival in conditions of
hippocampal neuro-inflammation in a mouse model
of chronic fatigue [116]. In prenatally stressed rats,
increase in new neuron number and hippocampal
BDNF expression was reported postnatally in the
offspring of rats exposed to restraint stress and resver-
atrol during gestation [117]. See, however, a recent

paper that shows that the compound inhibits adult hip-
pocampal neurogenesis in wildtype C57B1/6 under
standard conditions [118].

Resveratrol shows promising neuroprotective
capabilities. For instance, up to 10 g/kg intravenous
resveratrol solution administered before and after
induction of brain ischemia in rats reduced brain
infarct area and edema, and benefited brain mito-
chondrial function [119]. In addition, in a variety
of neurodegenerative disorders such as Parkinson’s
[120], Alzheimer’s [121], Huntington’s [122] disease
and Amyotrophic Lateral Sclerosis [123], resveratrol
had direct neuroprotective ability, both in vitro and in
vivo (for a dedicated review, see Tellone et al., 2015
[124]).

Although resveratrol intake reflects exercise-like
effects in improving mitochondrial function and
insulin sensitivity in obesity, and has neuro-protective
functions in neurodegenerative models, it is still nec-
essary to elucidate the mechanisms of action and to
determine the adequate intake dosages.

Epicatechin

(-)Epicatechin is a monomeric flavanol commonly
found in fruits: primarily apples, berries, grapes, and
cocoa. Belonging to the broader class of flavonoids,
(-)epicatechin is a polyphenolic molecule, linking
two aromatic carbon rings with a carbon bridge [125],
(Fig. 1).

Despite its relatively low bioavailability, epicate-
chin has been extensively studied and shown to be
biologically active on a different number of metabolic
and structural processes.

Effects of (- )epicatechin on peripheral systems
Similar to exercise, (-)epicatechin has aremarkable
effect on regulation of cardiovascular processes and
oxidative stress management. In vitro, (-)epicatechin
improved NO production by affecting the eNOS
pathway in human coronary artery endothelial cells
[126]. Similarly in vivo, 10 days of pretreatment with
1 mg/kg/day (-)epicatechin in Sprague-Dawley rats
conferred cardiovascular protection against epithelial
damage induced by ischemia, via reduction of tissue
levels of oxidative stress [127]. Also, vasodilation and
blood pressure are regulated by oral (-)epicatechin
consumption in human subjects in a dose-dependent
manner. This effect has been linked to NO lev-
els as inhibition of NO synthase reduces effects of
(-)epicatechin on the vasculature [128].
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Endurance is affected by (-)epicatechin as well.
(-)Epicatechin alone can elicit an improvement,
albeit this is magnified upon combination with exer-
cise. Treatment with 1 mg/kg (-)epicatechin for two
weeks improved treadmill performance and time
to fatigue in mice, as well as increased mitochon-
drial protein expression, both by (-)epicatechin alone
and in combination with exercise [129]. More-
over, (-)epicatechin combined with treadmill exercise
induced an increase in vascularization and mito-
chondrial biogenesis in mouse muscle, improving
exercise-induced fatigue tolerance [130].

In humans, (-)epicatechin benefits peripheral sys-
tems as well. A randomized double blind study in
elderly sedentary human subjects showed a direct
effect on the AMPK-SIRT1-PGC-la pathway in
skeletal muscles: after three months of daily intake
of 20 g (-)epicatechin-rich cocoa, protein levels of
LKBI and activated AMPK and PGC-1« increased.
In addition, VO, and exercise performance improved
in the (-)epicatechin group [131]. Moreover, dia-
betic patients with affected skeletal muscle structure
and performance, showed improvement in mus-
cle growth and differentiation markers compatible
with myofiber regeneration, after chronic consump-
tion of (-)epicatechin-rich cocoa (approximately
100 mg/day for 3 months) [132].

(-)Epicatechin consumption in elderly sarcope-
nia patients (25 mg for 7 days) improved the ratio
of plasma follistatin/myostatin levels, as well as
increased hand strength [133]. In addition, vasodila-
tion and blood pressure were shown to be affected
by oral consumption in human subjects in a
dose-dependent manner. This effect was linked to
NO levels as inhibition of NO synthase reduces
(-)epicatechin’s vascular effects [134].

Effects of (-)epicatechin on the brain

(-)Epicatechin is a lipophilic compound that
crosses the blood brain barrier and has been shown
to elicit a direct effect on brain function and neu-
ronal activity. Indeed, studies in both animal models
and humans reported a promising link between
(-)epicatechin consumption and cognition. Daily
oral administration of up to 30 mg/kg epicatechin
to female C57Bl/6] mice improved spatial mem-
ory, increased dentate granule cell spine density,
enhanced hippocampal vascularization and expres-
sion of genes important for synaptic plasticity [135].
Comparable observations were made in mouse mod-
els of aging [136-138]. Furthermore, three months
of (-)epicatechin consumption in C57Bl/6J male

mice reduced anxiety in the open field and ele-
vated plus maze tests, possibly via hippocampal and
cortical monoaminergic (monoamine oxidase) and
neurotrophic (BDNF) systems [139].

The dentate gyrus of the hippocampus is crucial
for cognition and its functional decline is strongly
linked to age-related memory loss [140]. After 3
months of daily administration of a cocoa drink rich
in flavanols, including (-)epicatechin, elderly subjects
were tested for cognitive, dentate gyrus-dependent
tasks and showed reversal of memory decline com-
parable to a shift to a three decades younger group
[141], highlighting the potential of (-)epicatechin to
counteract age-related cognitive decline. Even more
s0, epicatechin has shown promising neuroprotective
effects in preventing the onset of neurodegenerative
diseases [142], in mouse models of Parkinson’s [143]
and Alzheimer’s disease [144].

CONCLUSIONS

An active lifestyle, despite the promising of com-
pounds currently under study, remains the preferred
choice for improving body and brain function.
Indeed, the mechanisms of action of exercise-
mimetics still require further investigation, and the
possibility of a treatment capable of replacing exer-
cise in its entirety is remote. In order to achieve an
artificial exercise regimen, potential adverse effects
of prolonged treatment with exercise-mimetics have
to be overcome. Nonetheless, a possible use of this
class of compounds could be envisioned in paral-
lel with light training paradigms, as “crutch-drugs”
helping to achieve a more complete exercise-induced
benefit, both on brain and on peripheral functions.
This is especially poignant for conditions, such as
morbid obesity or neurodegenerative diseases, which
may preclude exercise.
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