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Abstract. Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become
more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent
vulnerability to relapse.

Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system
where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the
regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including
alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with
alcohol use disorders.

This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the
alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic
neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The
second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood
and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third
section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally,
we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours

demonstrated by clinical trials, with an emphasis on current and potential treatments.

Keywords: Serotonin, alcohol-related disorders, alcohol addiction, anxiety, stress, depression

Serotonin (5-hydroxytryptamine, 5-HT) is present
in almost all organisms from plants to vertebrates.
In mammals, 5-HT has been found throughout the
body, including the brain, gut, lung, liver, kidney,
skin, and platelets. Such a wide distribution indi-
cates that 5-HT is an essential chemical for cell
signalling and function in all living animals. In the
brain, 5-HT-synthetising neurons are located in the
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brainstem raphe nuclei, and the distribution of 5-HT
projections is widespread, regulating the activity of
almost all brain regions. Thus, 5-HT signalling has
been implicated in a variety of brain functions, such
as sleep-wake cycle, appetite, locomotion, emotion,
hormonal regulation, and as a trophic factor. Fur-
thermore, 5-HT is involved in cognitive functions,
including attention, control of impulsivity, coping
with stress, social behaviour, value-based decision
making, learning and memory.

Serotonin exerts its action via 14 classes of
receptors (5-HT1-7). With the exception of 5-HT3
receptors, which gate a cation-permeable ion channel,
all 5-HT receptors are coupled to G proteins. The
core features of transduction via 5-HT receptors
are well established: the 5-HT1-5 receptor subtypes
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are inhibitors while 5-HT2, 4, 6 and 7 receptor
subtypes are activators of neuronal activity. Thus,
5-HT can exert a complex effect on the neuronal
output of different brain regions, depending on
which 5-HT receptors are expressed, and whether
they are expressed by glutamatergic (excitatory) or
GABAergic (inhibitory) neurons. Additionally, some
receptors, such as the 5-HT1A and 1B receptors, have
been shown to be also located presynaptically on
5-HT neurons to negatively regulate 5-HTergic neu-
rotransmission [1, 2]. Another main actor in 5-HT
signalling is the serotonin transporter (SERT), which
is essential to terminate the action of 5-HT in the
synapse by reuptaking 5-HT into the terminals.

Hence, serotonin homeostasis is finely regulated
and, in humans, alterationin the 5-HT system has been
associated with various neuropsychiatric disorders,
including stress disorders [3, 4], anxiety [5, 6], depres-
sion [7-13], bipolar disorders [14] and substance
abuse (cocaine [15, 16]; MDMA [17, 18]). These
observations suggest that neurochemical adaptations
occur in 5-HT neurons in response to environmen-
tal or pharmacological stressors. This is supported by
studies in rodents showing that both acute and chronic
exposure to stress during early life or adulthood
alter the functional responses in serotonergic neu-
rons [19], reduce the density of 5-HT innervation in
the central, basolateral amygdala and the hippocam-
pus [20], increase the density of 5-HT 1A receptors in
the basolateral amygdala [21], reduce the expression
of 5-HT1A and 5-HT1B receptors in the prefrontal
cortex [22] and the hippocampus [23, 24], increase
the expression of the 5-HT transporter, SERT, and
the 5-HT synthetizing enzyme, TPH2 in the dorsal
raphe nucleus (DRN) [25, 26]. Interestingly, compa-
rable neuroplastic changes in brain 5-HT pathways
have been observed in alcohol dependence, suggest-
ing that similar mechanisms are involved. Indeed, a
growing body of evidence reveals that alcohol use dis-
orders show a high comorbidity with stress, anxiety
and depression, in particular during alcohol absti-
nence following chronic long term exposure.

In thisreview, we will describe the changes in 5-HT
signalling in limbic brain regions induced by pre-
natal, acute and chronic alcohol exposure, as well
as the changes in 5-HT signalling in stress, anx-
iety and depression pathways induced by alcohol
withdrawal. We will then focus on the 5-HTergic
adaptations and changes in stress/anxiety-related
behaviours observed in various genetically-selected
ethanol preferring rodent lines. Finally, we will dis-
cuss the involvement of the 5-HTergic system in

ethanol- and anxiety/stress-related behaviours, with
an emphasis on current and potential treatments.

ANIMAL MODELS OF ALCOHOL
CONSUMPTION

Over several decades, many animal models have
been developed to study alcohol dependence. Early
studies have employed a “two-bottle choice” proce-
dure in which the animals have continuous access
to water and ethanol. Although a slight preference
for ethanol develops over drinking sessions, rodents
usually limit their consumption to sub-intoxicating
levels. Indeed, the taste of ethanol is primarily aversive
and rodents do not naturally drink enough ethanol to
attain blood ethanol concentration (BEC) equivalent
to human alcoholics (0.8 g/L). Therefore, different
strategies have been used, such as water deprivation,
intragastric administration or systemic injection, to
allow for the administration of large doses of ethanol,
near lethal, that also produce toxicity and do not
reflect the neurochemical process of voluntary drink-
ing. Consequently, studies have tried to enhance the
motivation to drink ethanol by adding sweeteners
which allows for the addition of gradually increas-
ing concentrations of alcohol in ways that avoid the
aversiveness of ethanol. However, studies using this
“sucrose-fading” procedure failed to produce stable
BECs >0.8 g/L. Later, studies in rats have shown
that removal of the ethanol bottle after 24 hours of
exposure increases their consumption when ethanol
is reintroduced 24 hours afterwards. This “chronic
intermittent model” has been shown to produce high
drinking patterns of 5-6 g/kg over 24 hours but the
BECs were rarely higher than 0.6 g/L. Based on the
observation that rodents ingest most of their daily
food and water during the dark phase of their circa-
dian cycle, the “Drinking In the Dark” (DID) model
was developed. In this model, animals have a limited
access to ethanol, 2 hours per day, 3 hours after the
onset of the dark period, 4 days per week and on
the Sth day, animals are given 4 hour access. This
restricted access, alternating between exposure and
withdrawal phases, allows for “binge’ ethanol intake
in mice (3.5-5 g/kg/2 hrs) and BECs over 1 g/L, espe-
cially in the C57B16 strain, known as alcohol preferrer.
Although the mice chronically exposed to the DID
for quite a long term (4—6 weeks) reach high BECs,
they do not manifest signs of dependence nor ethanol
withdrawal symptoms, such as seizures. However,
a recent study reported that following 6 weeks of
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exposure, mice exhibit increased anxious/depressive
behaviours up to 3 weeks after alcohol withdrawal. To
induce ethanol dependence in rodents, the “chronic
intermittent exposure” (CIE) model has been used
for many years. Animals are acutely or chronically
(3 to 4 cycles) exposed to ethanol for 14-16 hours
using vapour chambers and clearly reach high BECs
(1-2 g/L) and show subsequent escalation of ethanol
drinking. However, this procedure requires the co-
administration of pyrazole, an inhibitor of the alcohol
dehydrogenase, to obtain stable blood EtOH concen-
trations (BECs) during the entire induction course.
Because alcohol vapours are passively administered to
the animals and ethanol metabolism is inhibited in this
procedure, the validity of thismodel toreproduce brain
neuroplastic changes induced by ethanol dependence
in human is questionable.

CONSEQUENCES OF PRENATAL
ALCOHOL EXPOSURE ON 5-HT
SIGNALLING, STRESS AND ANXIETY
DURING EARLY LIFE AND ADULTHOOD
(TABLE 1)

Foetal alcohol spectrum disorders, caused by
maternal alcohol consumption during pregnancy,
were first described as foetal alcohol syndrome [27].
These disorders are associated with central nervous
system malformations (see [28, 29] for review),
mental retardation [30, 31], cognitive impairments,
mood disorders and behavioural dysfunctions that
can vary in severity, depending on the amount of
alcohol consumption, duration, and timing of prenatal
alcohol exposure. Because of its important role in
brain development, cognition and the regulation of
mood, the 5-HT system has received much attention
in the neuroplastic adaptations following prenatal
alcohol exposure.

5-HT signalling

Incomplete neural tube fusion and missing roof and
floor plate tissue in the midline have been observed
in vivo in foetuses exposed to alcohol, as a result of
delayed or prevented formation of the midline and the
floor plate tissue [32]. Neurons producing 5-HT are
among the earliest to be born in the developing brain
and the germinal cells of 5-HT neurons expressed in
the raphe adjacent to the midline have been known
to rely on trophic factors in midline tissue to dif-
ferentiate [33]. Thus, alteration in midline formation
following prenatal alcohol exposure is likely to alter

the development of 5-HT neurons in the offspring’s
brain. The effect of alcohol on 5-HT neurons begins
at neurogenesis (see [29] for review). Animals pre-
natally exposed to alcohol show reduced density and
retarded migration of 5-HT immunoreactive neurons
as early as the 13th embryonic day (E13) in the DRN
and median raphe (MRN) nuclei in mice [34] and
through midgestation (E15) in rats [35] and mice
[34, 36, 37]. In vitro studies using a 24 hour treat-
ment of foetal rhombencephalic neurons with ethanol
have established that the reduction of 5-HT neurons
was probably caused by ethanol-associated apoptosis
[38—40], a decreased activity of the phosphatidyli-
nositol 3-kinase (PI3K)/pAkt pro-survival pathway
[39] and reduced downstream expression of several
NF-«B dependent anti-apoptotic genes [40, 41].

The deficit in 5-HT neurons persists into late ges-
tation (E18) [42], in neotates (P5) [43], adolescent
(P19-21) [44, 45] and into young adulthood (P35-45)
[42, 46] in rats and mice, suggesting a long-lasting
neuroplastic effect of ethanol on the 5-HT system
[45]. Accordingly, reduced levels of 5-HT, its syn-
thesis enzyme TPH2 (Tryptophan hydroxylase) and
its degradation product 5-Hydroxyindoleacetic acid
(5-HIAA) have been observed in the brain of embryos,
neonates and adult animals exposed to ethanol in-
utero [45, 47-53]. As a consequence of fewer 5-HT
neurons in the raphe, embryos in-utero exposed to
ethanol show a reduction of 5-HT projections into
the medial forebrain bundle (MFB) [36] and fewer
5-HT fibres growing into the ascending pathway in the
hypothalamus septal nucleus, frontal and parietal cor-
tices [54]. The forebrain is known to actively develop
upon the arrival of 5-HT innervation, this reduction
of 5-HT fibre density in ethanol exposed animals
likely results in altered growth of brain regions along
the ascending 5-HT pathway (hypothalamus, septal
nucleus, cortices, and subiculum/hippocampus) [54].

The serotonin transporter (SERT), responsible for
the reuptake of 5-HT into presynaptic neurons and
nerve terminals, has been shown to be a reliable
marker of 5-HT neuron fibres [55]. Short and/or long-
lasting alterations in SERT expression and function
have been demonstrated in the cortex, hippocam-
pus, medial and lateral amygdala, substantia nigra,
DRN, and hypothalamus of offspring of dams that
consumed alcohol [56—59]. A study in children with
foetal alcohol syndrome (FAS) and foetal alcohol
effects (FAE) found a similar reduction of SERT
expression in the medial frontal cortex [60].

Along with changes in SERT levels, alterations in
5-HT1A receptor expression have been observed in
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offspring prenatally exposed to alcohol, showing a
reduction in the density of binding sites in the motor
and somatosensory cortices, lateral septum and an
increase in the hippocampus and brainstem of young
rats (P5-P35) [35, 61, 62]. Additionally, increased
hypothermic and anxiolytic responses to the 5S-HT1A
receptor agonist 8-OHDPAT as well as increased “wet
dog shake” response to the 5S-HT2A receptor agonist
DOI have been observed in young adult female rats
prenatally exposed to alcohol [63-65], revealing a
female-specific increase in 5-HT1A/2A receptor sen-
sitivity, which is consistent with the ability of alcohol
to upregulate oestrogen levels in females (see [66] for
review) that in turn, could upregulate 5-HT1A/2A
receptor signalling [67, 68].

Since the 5-HT 1 A receptor is expressed both presy-
naptically, as an autoreceptor in the dorsal raphe to
regulate 5-HT neuronal activity, and postsynaptically
in limbic brain regions, alterations in 5-HT1A recep-
tor expression and function could play a pivotal role
in the pernicious effects of prenatal alcohol expo-
sure on 5-HT pathway. Indeed, in vitro and in vivo
treatments during pregnancy with the 5-HT1A recep-
tor partial agonist buspirone or ipsapirone prevent
the loss of 5-HT or rhombencephalic neurons [38,
43], the reduction in 5-HT and 5-HIAA levels [53],
the alteration in 5-HT1A receptor [62] and SERT
expression [59] and the decrease of pAkt [38, 39].
Ipsapirone was also able to increase the expression
of NF-«B dependent genes in foetal rhombencephalic
neurons treated with ethanol [41, 69]. As the 5-HT
system has been extensively implicated in the regula-
tion of stress and anxiety, the neuroplastic changes in
5-HT signalling seen with foetal alcohol exposure
could alter the regulation of stress- and anxiety-related
behaviours, potentially resulting in the development
of neuropsychiatric disorders later in life.

Stress and anxiety

Prenatal ethanol exposure has been shown to
induce long-term effects on an organism’s ability
to respond and adapt to stress, as measured by
alterations in hypothalamic—pituitary—adrenal (HPA)
function [70-76]. In rodents prenatally exposed to
ethanol, altered HPA activity can be observed through-
out their lifespan. At birth, basal levels of brain,
plasma [77-79], and adrenal [79] corticosterone
(CORT), as well as stress-induced increased in plasma
CORT levelsareaugmented [79]. From approximately
postnatal days 4 to 14, which corresponds to the
“stress hyporesponsive period” (reviewed in [80]),

prenatally exposed animals displayed an even greater
HPA hyporesponsiveness, with reduced adrenocorti-
cotropin (ACTH) and CORT responses following a
variety of stressors [77, 79, 81, 82]. In contrast, in
adulthood, prenatally exposed animals exhibit HPA
hyper-responsiveness, with increased HPA activity
following stress [70, 73, 76, 83, 84] and show delayed
or deficient recovery to basal levels following chronic
or repeated stress [70, 82, 85]. Similarly, HPA hyper-
responsiveness is also observed in human infants [15,
86] and in nonhuman primates [87] following prenatal
exposure to alcohol.

Although dysfunctions in the HPA axis have been
implicated in the pathogenesis of anxiety disorders
(reviewed in [88]), studies of basal anxiety in animals
prenatally exposed to alcohol have yielded inconsis-
tent results. Some studies have shown an increased
basal anxiety in both males and females [64, 89, 90],
in other studies only in females [91] or only males
[92-94] while others have demonstrated a reduction
[95, 96] or no difference [97]. However, increased
anxiety in prenatally ethanol-exposed animals has
been observed in a sex-independent manner follow-
ing stress exposure [93, 94].

Serotoninisakey neurotransmitterinvolved in HPA
regulation [98—101], primarily through 5-HT1A/2A
receptors [102], and reciprocal interactions between
central 5-HT systems and the HPA axis [103, 104].
Additionally, a direct effect of 5-HT on corticotropin
releasing hormone (CRH), ACTH, and CORT release
[103, 105] have been observed and activation of
5-HT1A/2A receptors activates CRF neurons [106]
andincreases ACTH and CORT secretion[107]. There
is a reciprocal regulatory relationship between 5-HT
and the glucocorticoid receptors (GR) [108, 109] and
stress induced increases in mineralocorticoid recep-
tor and GR immunoreactivity in the hippocampus
are 5-HT dependent [110]. Therefore, changes in
5-HT1A/2A receptor expression and function are
likely to be involved, at least in part, in the dysregula-
tion of the stress response [46, 111] and the subsequent
predisposition to anxiety-like behaviours following
prenatal alcohol exposure.

NEUROADAPTATIONS IN 5-HT
SIGNALLING FOLLOWING ALCOHOL
EXPOSURE (TABLE 2)

The 5-HT system is not only plastic during
embryonic development but also during early life
and adulthood (see [112] for review). Therefore,
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acute stressors that impact 5-HT signalling could
lead to long lasting neuroplastic adaptations after
chronic exposure. Here, we review the involvement of
5-HT signalling in alcohol dependence in the tran-
sition from acute to chronic exposure, following
alcohol withdrawal and in relation with alcohol
withdrawal-induced stress/anxiety.

Acute exposure

Microdialysis experiments in rodents have shown
that acute systemic injection of ethanol elevates
the extracellular levels of 5-HT and/or its metabo-
lite 5-HIAA in multiple brain regions including the
nucleus accumbens (NAc), ventral tegmental area
(VTA), prefrontal cortex (PFC) and hippocampus
(HIP) [113-125]. Similar increases in 5-HT/5-HIAA
levels have been observed in the NAc of mice follow-
ing acute ethanol drinking under the SHAC paradigm
[115].

Since 5-HT potentiates alcohol-induced excitation
of the dopamine neurons in reward areas of the brain
including the NAc and VTA [126], changes in 5-HT
neuron activity might be involved in early neuro-
chemical adaptations that promote the reinforcing
effects of alcohol and lead to alcohol addiction [115].
However, electrophysiology experiments have shown
that acute systemic injection or bath application of
ethanol decreases the firing rate of 5-HT neurons by
increasing the inhibitory drive in the DRN [124, 127,
128], suggesting that the stimulatory actions of alco-
hol on synaptic 5-HT release appear to be mediated
by local circuits in the projection areas rather than
direct activation of 5-HT neurons.

Chronic alcohol exposure and withdrawal

Short term chronic alcohol exposure (1 week) dur-
ing the early phase of postnatal development (first
7-10 days in rat, corresponding to the human third
trimester) has been shown to increase the hypothala-
mic and septal concentration of 5-HT, with a greater
effect in females [129, 130].

Chronic alcohol exposure leads to adaptive changes
within the brain, presumably to re-establish nor-
mal cell function, or homeostasis, in response to
continuous alcohol-induced alterations in the mesoac-
cumbens reward pathway. These neuroadaptations are
thought to be involved in the development of tolerance
and addiction [131]. Chronic studies have shown that
5-HT levels in the NAc, PFC, globus pallidus, VTA
and substantia nigra, are no longer elevated after 1 to

7 weeks of alcohol exposure in comparison to acute
ethanol exposure [132—134]. Additionally, reduced 5-
HT/5-HIAA turnover rate in the NAc suggests 5-HT
signalling is decreased [132]. In alcohol dependent
rats, 5-HT levels in the NAc, cortex and striatum
rapidly decrease during withdrawal [135-137] and
are restored by alcohol self-administration [136]. In
humans decreased plasma 5-HT levels have been
observed in abstinent alcoholics up to 14 days fol-
lowing alcohol withdrawal [138]. Thus, reduced
5-HT neurotransmission after alcohol-withdrawal has
beenassociated withincreased stress-induced anxiety,
which drives alcohol craving and relapse [139-141].

One study [142] showed the basal activity of 5-
HT neurons from the DRN is not altered in mice
voluntarily drinking alcohol for 3 weeks, suggest-
ing that alteration in 5-HT signalling is not related
to changes in 5-HT neurons activity but could rather
involve changes in 5-HT receptor signalling. Indeed,
the same study demonstrated that 5-HT 1A autorecep-
tors are hypersensitized and their activation by the
partial agonist ipsapirone produced a greater inhi-
bition of 5-HT neuron firing in alcohol exposed
animals compared to alcohol naive animals [142].
Similarly, increased 5-HT1 A autoreceptor expression
and function has been observed in the DRN of rats
and primates following chronic ethanol comsumption
[143—-145]. On the other hand, 5-HT1A postsynap-
tic binding sites were downregulated in the cortex
[143], while 5-HT1B/2A/2C receptors were upregu-
lated in the globus pallidus [143], NAc [146-148],
bed nucleus of stria terminalis (BNST) [149] and
hippocampus. Similar alterations in postsynaptic 5-
HT1A and 1B receptors have been reported the cortex
and the hippocampus in monkeys [150] or human
alcoholics [151-153].

Consistent with a reduced 5-HT neurotransmis-
sion, a decreased expression and function of SERT
has also been observed in the hippocampus in monkey
[154] and in various brain regions in human alco-
holics, including the amygdala, the cortex, the dorsal
and the ventral striatum[155-161].

Studies on the consequences of withdrawal from
chronic alcohol exposure on 5-HT neuron activity
have led to inconsistent results. Pistis and co-workers
found that 5-HT neuron basal firing was dose-
dependently reduced in rats, 12h after withdrawal
of 6 days of intragastric administration of 1-5 g/kg of
ethanol, every 6 hours [127]. On the contrary, by using
vapour chambers in DBA2/J mice, Lowery-Gionta
and co-workers recently found that 16 hours/day
of ethanol vapour exposure for 6 consecutive days
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enhances the activity and the excitability of DRN
neurons 1 to 7 days after the last exposure [162].
Howeyver, the exact nature of the recorded neurons
was not demonstrated in this study. Because ethanol
is known to increase glycinergic and GABAergic sig-
nalling in the DRN [128, 163] the increased neuronal
excitability observed by Lowery-Gionta et al. could
be attributed to the recording of interneurons in the
DRN, which in turn could reduce 5-HT neuron activ-
ity. Further work is then needed to understand how
5-HT neuron activity is modulated by withdrawal
from chronic alcohol exposure.

5-HT signalling and alcohol withdrawal-induced
stress/anxiety

A complex relationship exists between alcohol-
drinking behaviour and stress/anxiety. Alcohol has
anxiety-reducing properties which can relieve stress,
while at the same time acting as a stressor and activat-
ing the stress response systems. In particular, chronic
alcohol exposure and withdrawal can profoundly dis-
turb the function of the HPA axis, which contributes
to the sensitization of anxiety-like behaviour, craving
for alcohol, and relapse (see [164] for review).

Compelling evidences reveals that CRF neurons
within the HPA axis as well as in extrahypothala-
mic sites, such as the central nucleus of amygdala
and BNST, play a pivotal role in the negative
emotional processes associated with alcohol with-
drawal/craving (see [164—169] for review). Indeed,
extracellular CRF levels are elevated in these regions
during ethanol withdrawal [170-172] and restored to
basal levels by subsequent ethanol intake [173].

The CRF-immunoreactive fibres arising from the
amygdala [174] densely innervate the DRN in a
topographically organized manner [175-177] and the
behavioural effects induced by CRF are thought to be
mediated, in part, by CRF actions on 5-HT systems
within the brain [175, 178-181]. Both exposure to
a stressor and local infusion of CRF into the DRN
have been shown to modulate 5-HT release in fore-
brain regions, including the PFC, NAc and amygdala
[182-185].

Later, studies have shown that both CRF1 and
CRF2 receptors are detected in the dorsal raphe
nucleus [186—188] and have opposing effects on 5-
HT release [175, 189, 190]. Corticotropin-releasing
factor has a higher affinity for CRF1 receptors when
compared to CRF2 receptors [191, 192], and acti-
vation of the former normally inhibits 5-HTergic
activity in the dorsal raphé [189, 193] and 5-HT

release in the NAc, striatum and lateral septum
[194-196]. In contrast, higher levels of CRF are
believed to be required for CRF2 receptor activation.
Activation of these receptors normally facilitates 5-
HTergic activity in the dorsal raphé [175, 189] and the
release of 5-HT in the NAc, basolateral amygdala,
striatum and lateral septum [194-197]. Combined,
these studies suggest that CRF has a dual effect in the
dorsal raphé nucleus that depends on both CRF1 or
CRF?2 receptor activation and the CRF concentration.

Alteration in CRF receptor signalling following
chronic exposure to a stressor (or alcohol) can impact
the regulation of the 5-HT system. In rats chroni-
cally exposed to a stressor, relatively high doses of
CREF produce a greater increase in the firing rate of
5-HT neurons [198], suggesting a downregulation of
CRF1 and/or upregulation of CRF2 signalling fol-
lowing a sustained CRF release induced by chronic
stress exposure. Interestingly, similar downregulation
of CRF1 receptor expression in various brain regions
and upregulation of CRF2 receptor expression in the
DRN have been observed in transgenic mice over-
expressing CRF [199]. This CRF-5-HT regulation is
likely to play an important role in alcohol addiction,
as well as in the negative emotional effects of alcohol
withdrawal. Systemic injections of both CRF1 antag-
onist, CRF2 agonist and the 5-HT1A partial agonist
buspirone have been shown to reduce ethanol con-
sumption [200-203], ethanol withdrawal-induced
sensitization of anxiety-like behaviours [204-210]
and stress induced reinstatement of alcohol seeking
[211]. Additionally, the infusion of a CRF antagonist
into the DRN reduced ethanol drinking [207] and both
infusion of a CRF antagonist into the central amyg-
dala (CeA), DRN, and dorsal-BNST and the 5-HT1A
partial agonist buspirone into the raphe reduced
ethanol-induced anxiety-like behaviours [212, 213]
and stress-induced reinstatement of alcohol seek-
ing [214, 215]. Furthermore, 5-HT2C and 5-HT3
receptors also appear to modulate the mood-altering
effects of chronic ethanol intake, as antagonists of
these receptors blocked ethanol withdrawal-induced
anxiety and stress-induced reinstatement of alcohol
seeking [204, 212, 216-218].

NEURONAL ADAPTATIONS IN THE 5-HT
SYSTEM IN ALCOHOL PREFERRING
RODENT MODELS (TABLE 3)

To further study alcohol drinking behaviours in
rodents, high and low alcohol consuming rodent
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lines have been developed through selective breeding.
Some of these rat lines include the alcohol-preferring
(P) or non-preferring (nP) rats, Sardinian alcohol
preferring (sP) or non-preferring (sNP) and alcohol
preferring Fawn-Hooded (FW). Here we present the
neuroadaptions in the 5-HT system observed in these
rat lines following extensive breeding for alcohol
preference.

The alcohol-preferring (P) or non-preferring
(nP) rats

The P and nP rats have been the most extensively
characterised behaviourally and neurochemically
(see [219-221] for review). These rats were selec-
tively bred from a colony of Wistar rats selected for
preference or non-preference for 10% ethanol over
water under a 24 hour free choice drinking protocol.
The P rats are capable of consuming 8-10 g/kg of
ethanol per day and achieve blood ethanol concen-
trations (BECs) of 2 g/L.

Interestingly, marked deficiencies in the 5-HT sys-
tem have been observed in P rats, as compared to nP
rats. Decreased 5-HT positive neurons in the DRN
and MRN [222] as well as reduced 5-HT positive
fibres in the prefrontal cortex, NAc, striatum, hip-
pocampus, and hypothalamus [223-225] were shown
in P rats. Hence, ethanol-naive P rats show lower 5-
HT contents in the NAc, frontal cortex, hypothalamus
and hippocampus [226, 227].

These alterations in basal 5-HT signalling are
likely to be independent of any compensation on the
spontaneous activity of 5-HT neurons [228]. Inter-
estingly, 5-HT levels were further decreased in the
NAc and 5-HT3 receptor function was downregu-
lated following 12 weeks of alcohol consumption
compared to water-exposed animals [229]. The same
study showed that, following 2 weeks of withdrawal,
5-HT turnover was increased in deprived animals
as compared to water-exposed or non-deprived ani-
mals, suggesting an increased 5-HT clearance which
may be due to a compensatory response to higher
serotonin release during ethanol withdrawal [229].
Similar effects were observed after intraperitoneal
(IP) administration of ethanol in chronically exposed
animals: 5-HT levels in the NAc were decreased in P
rats but increased in nP and wistar rats [226, 230] and
higher basal 5-HT levels in the NAc were observed
after withdrawal [230]. However, 5-HT levels are ele-
vated in the hippocampus in the P but not the sP
rats following an acute IP ethanol challenge and this
ethanol-induced increase in 5-HT overflow in the HIP

did not show tolerance after a second challenge [231],
as was the case in Wistar rats [113].

Such alterations could be associated with changes
in 5-HT receptor signalling. Autoradiography studies
have demonstrated an increase of 5-HT1A receptor
expression in PFC, NAc and HIP [226, 232, 233]
and 5-HT2C receptors in the hippocampus, amyg-
dala, and choroid plexus [234]. Whereas expression
of 5-HT1A receptors is upregulated in the DRN and
MRN [232], 5-HT1B receptors in the cortex, lateral
and medial septum and lateral nucleus of the amyg-
dala [235], 5-HT3 receptor in the amygdala [229,
236], 5-HT2A receptors in the PFC, NAc and striatum
[237, 238] is downregulated. Interestingly, all these
neuroadaptations in 5-HT signalling were associated
with a greater degree of anxiety in the P compared to
the nP rats [239].

The Sardinian alcohol-preferring (sP) and
non-preferring (sNP) rats

Sardinian alcohol-preferring (sP) and alcohol non-
preferring (sNP) rats were selected from a large initial
population of Wistar rats individually exposed to a
two-bottle free-choice regimen, on the basis of ethanol
preference or aversion. The sP rats consistently show
a high preference for a 10% ethanol solution, with
their daily ethanol intake averaging ~6 g/kg but never
reaching an intoxicating level [240, 241].

Similar alterations in the 5-HT system have been
reported in the Sardinian alcohol-preferring (sP) and
non-preferring (sNP) rats. A significant reduction in
the number of 5-HT neurons in the DRN was accom-
panied by a lower density of 5-HTergic fibres in the
cortex and NAc shell [242] and reduced 5-HT and
5-HIAA levels in the PFC of sP rats, compared to
sNP and Wistar rats [243, 244]. Lower density of 5-
HT2A binding sites were also observed in the PFC
of sP rats [245, 246]. The sP rats have higher basal
levels of CRF in the CeA [247] and a higher innate
degree of anxiety than sNP rats, which is reduced to
the level of sNP animals after the consumption of
alcohol [248, 249].

The Fawn-Hooded (FH) rats

The FH rats are a Wistar-derived inbred strain
originally selected for deficiencies in platelet sero-
tonin storage. Later, these rats were reported to drink
high amounts of alcohol, 6 g/kg/day of 10% ethanol
[250,251] and exhibit high depression-like behaviour
[250, 252, 253], making this strain a good model
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to study comorbidity of alcoholism and depression
[254].

These peripheral abnormalities in the 5-HT sys-
tem are accompanied by central alterations, including
reduced 5-HT levels in the DRN with higher 5-HT/5-
HIAA turnover in the hypothalamus and striatum
but lower in the HIP [255]. Also, SERT binding is
increased in the NAc, lateral septum, ventral pal-
lidum, VTA, cortex, HIP, brainstem and striatum but
decreased in the hypothalamus [256, 257]. 5-HT1A
binding is increased in the frontal cortex and HIP
but decreased in the striatum [256] and 5-HT1A
function is upregulated in the raphe nuclei [258].
Interestingly, following chronic ethanol consump-
tion, 5-HT1A receptor binding is decreased in the
frontal cortex but increased the HIP, and, after with-
drawal, HIP 5-HT1A receptor binding was restored
to the level of alcohol naive FH rats [257].

Furthermore, reduction in 5-HT3 receptor expres-
sion was also observed in the frontal cortex, HIP, and
amygdala [259] while 5-HT?2 receptors displayed a
greater binding in the striatum and the frontal cortex
but lower in the HIP [256, 260].

CONCLUSION

It is clear that the neuroplasticity of the 5-HT sys-
tem is altered in alcohol dependence, which is likely
playing a pivotal role in negative emotion-driven
craving and relapse. However, alcohol use disor-
ders are complex and multidimensional [261] and the
extent of potential abnormalities in 5-HT signalling
is likely to vary across patients [262]. A subclas-
sification of alcohol severity has been proposed by
Babor and colleagues [263], where type A alcoholism
(lower risk/severity) develops during adulthood and
is characterized by binge drinking from mild to
severe and type B alcoholism (high risk/severity)
generally starts during adolescence/early adulthood
with severe alcohol abuse remaining stable over time
[264].

Study of 5-HT medications for the treatment of
alcohol use disorders have led to inconsistent results.
Although selective serotonin reuptake inhibitors
(SSRIs), antidepressants (Sertraline, Citalopram,
Fluvoxamine) have shown promising efficacy for
attenuating alcohol consumption [265-270], craving
[265, 266] and preventing relapse to alcohol con-
sumption [271], other studies have observed that
SSRIs were mostly effective in type A patients [262,
272] or in patients with comorbid depressive disor-

der and alcohol dependence [273-275], with limited
efficacy in type B alcoholics [272].

Clinical trials with buspirone have revealed a
promising efficacy of the 5-HT1A partial agonist in
reducing alcohol consumption, craving and relapse in
alcoholic patients with persistent anxiety [276-280],
which could be a useful pharmacological adjunct in
the treatment of the psychological symptoms associ-
ated with alcohol abstinence. Similarly, the atypical
antipsychotic aripiprazole which, aside from its affin-
ity for dopamine receptors, displays a 5-HT1A/2A
partial agonist/antagonist activity, was shown to
reduce heavy alcohol drinking and craving [281,
282], probably by decreasing visual alcohol-related
cue-induced brain activation in alcoholic patients
[282, 283]. Additionally, ondansetron, a 5-HT3
receptor antagonist, was shown effective for reducing
craving in early onset alcoholics (type B) [284, 285].

Recently, a new class of SSRI antidepressant,
namely vortioxetine and vilazodone, has been devel-
oped for the treatment of major depressive disorders.
This novel class of antidepressant, called serotonin
partial agonist-reuptake inhibitor (SPARI) has not
only an inhibitory action on 5-HT reuptake (like
the classic SSRIs) but also a partial agonist activity
at 5-HT1A/1B receptors and an antagonist activity
5-HT2A and 5-HT3 receptors. Accordingly, medica-
tions acting concurrently on 5-HT reuptake, 5-HT1A,
5-HT2A and 5-HT3 receptors represent great poten-
tial for reducing alcohol consumption, craving and
relapse in both type A and type B alcoholic patients.
However, further work is still required to determine
the efficacy of SPARI medications in the treatment of
alcohol use disorders.
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