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Abstract. The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary
care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially
attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to
treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction
treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as
an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning
in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of metham-
phetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors.
The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian
striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in
preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
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INTRODUCTION

For centuries, there has been widespread interest
to understand the importance of physical activity on
the overall quality of life of an individual. The idea
that stress and mental states have adverse effects on
physical health is well accepted, and conversely, it is
suggested that a healthy body will espouse a healthy
mind [3]. Thus, an emerging area of interest focuses
on the mechanisms by which exercise (sustained phys-
ical activity) affects the mammalian brain, particularly
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on cognitive function. One way to conduct research
in this field involves the use animal models to delve
more deeply into cortical connectivity and molecular
and cellular mechanisms involved in exercise and brain
function. This micro-view allows us to see major bene-
fits (and minor pitfalls) of exercise that may otherwise
be easily overlooked.

Addiction or substance dependence is a mental dis-
order that involves the loss of behavioral control over
drug taking and drug seeking which involves impulsiv-
ity and compulsivity. The impulsive and compulsive
features of addiction can be grouped into three stages:
[1] binge/prolonged intoxication, [2] withdrawal neu-
tral/negative affect, and [3] preoccupation/anticipation
(craving); these stages comprise the cycle of addic-
tion. The limited (often recreational) use of drugs with
abuse potential is distinct from the pattern of escalated
drug use and the materialization of a chronic drug-
dependent state [4]. Furthermore, the last stage of the
addiction cycle describes a key element of addiction
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in humans which defines addiction as a chronic relaps-
ing disorder [2]. Understanding the neurobiology of
addiction is critical for identifying therapeutic strate-
gies, and in this regard animal models of addiction have
proved to be an immensely valuable tool for parsing out
the neurobiological adaptations that contribute to the
progression of addiction through these various stages
[2,5, 6].

A recent review detailed the value of exercise as
a potential therapeutic strategy for intervention dur-
ing the various stages of addiction for several drugs
of abuse [7]. The therapeutic value of exercise could
be due to its natural reinforcing effects and it may
contribute to reward interaction, whereby, the pres-
ence of two reinforcing agents (e.g. illicit drug and
exercise) could devalue the alternate reinforcer [8, 9].
The current review focuses on methamphetamine, a
psychostimulant illicit drug with high abuse potential,
with the objective to understand where the interac-
tion between methamphetamine and exercise may be
beneficial. This review discusses the neurobiological
adaptations produced by exercise which contribute to
reversing the negative effects of methamphetamine,
in addition to exploring the theory of exercise itself
eliciting addictive behavior.

METHAMPHETAMINE ADDICTION:
IMPACT ON SOCIETY

The burden of methamphetamine abuse is increas-
ing in the United States; available SAMHSA reports
show 8% of all drug and alcohol treatment admis-
sions involve methamphetamine and treatment studies
report frequent relapses to methamphetamine seeking
among those that are trying to quit [10]. Furthermore,
methamphetamine abuse takes emotional and financial
tolls on society, cutting across ages, races, ethnici-
ties, and genders. It increases mortality, morbidity, and
economic costs. Therefore, successfully reducing risk-
taking behaviors, such as methamphetamine abuse, can
potentially result in large public health gains [11, 12].

According to the recent reports from the National
Institutes on Drug abuse (NIDA) and others, there are
a few treatment options for methamphetamine addic-
tion [1, 13—15]. For example, the best therapy currently
available is the behavioral treatment approach (Matrix
model, an outpatient treatment using psychosocial
protocols, [16]); however, behavioral therapies are
associated with lower beneficial effects on maintain-
ing an individual’s abstinence as well as reducing
drug craving elicited by drug-related context and
cues [17]. Therefore, NIDA is currently conducting

research to seek improved treatment options, includ-
ing investigating the efficacy of non-traditional and
non-pharmaceutical options that may treat metham-
phetamine addiction.

PHYSICAL FITNESS VIA EXERCISE:
IMPACT ON SOCIETY

In the world we live in today, almost everything
we need is available at the click of a mouse. As
an unfortunate consequence, it has become too easy
to avoid physical activity and slip into a sedentary
lifestyle, which has been associated with obesity, dia-
betes mellitus, increased risk of cardiovascular disease,
and direct and indirect socioeconomic costs [18-21].
In recent years, the benefits of exercise on health and
wellness have become increasingly well known. Exer-
cise has been found to reduce the severity and even
reverse the previously stated medical conditions asso-
ciated with physical inactivity, which in turn reduces
the cost of medical needs and other indirect socioeco-
nomic costs [18, 22, 23]. Perhaps more relevant to this
review, exercise can improve mental health by offering
relief from the symptoms of depression and anxiety,
and by improving mood [24-26]; these effects make
exercise a valuable tool in disrupting the vicious feed-
forward loop between mental illness and substance
abuse [27-29].

While regular and regimented physical activity may
be therapeutic, clinical cases of exercise eliciting
addiction-like behavior have been reported with many
sports activities including running, martial arts, weight
lifting and body-building, and have been summarized
in The Exercise Paradox [30]. The latter study used the
Exercise Dependence Scale and the Exercise Addiction
Inventory and reported that between 3.4% and 13.4%
of a sample of university students were at high risk for
“exercise addiction” [30]. Clinical cases have reported
loss of control over exercise behavior and compulsivity
or ‘obligation’ to perform exercise [30], both of which
are hallmarks of addictive disorders [31]. Salience,
withdrawal, emotional dysregulation, negative phys-
ical and psychosocial consequences, tolerance to the
quantity and/or intensity, and relapse to abuse behav-
ior are other phenotypes that support the notion that
exercise may be an addictive behavior [30, 32-34].
However, because exercise is considered a sociolog-
ically normative behavior, addiction to exercise may
be difficult to detect. Thus, partially due to the paucity
of peer-reviewed evidence, “exercise addiction” is not
yet categorized in Diagnostic and Statistical Manual of
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Mental Diseases or International Classification of Dis-
eases [31, 35]. Furthermore, excessive preoccupation
with exercise has been observed with other disorders,
including eating disorders and body dysmorphic dis-
orders [33, 34, 36, 37]. This begs the question whether
addiction-like exercise behavior is manifested due to
vulnerability of specific personality types, or caused
by excessive exposure to exercise. Animal models are
more useful at parsing out such causalities.

EXERCISE AS A TREATMENT OPTION
FOR METHAMPHETAMINE ADDICTION

In the context of substance abuse disorders, such as
methamphetamine addiction, a single pharmacological
intervention may not be sufficient or useful throughout
the progression of addiction because the underly-
ing neurobiology of addiction is continually changing
between the different stages of addiction [2, 38]. Exer-
cise is reported to have negative relationships with the
extent, duration and frequency of drug use throughout
the stages of initiation, prolonged intoxication, with-
drawal, and relapse [7], and thus, has been sought out as
a potential non-pharmacological treatment. Moderate
exercise in methamphetamine dependent individuals
significantly reduced depression symptom scores; in
fact, “individuals with the most severe medical, psychi-
atric and addiction disease burden at baseline showed
the most significant improvement in depressive symp-
toms by study endpoint” [39]. Similarly, group exercise
for substance use disorder patients was found to signif-
icantly improve the physical health and psychological
health domains of quality of life questionnaire; this
intervention was beneficial even to patients with the
most severe health problems [40]. Since depression and
poor mental health are risk factors for relapse to drug
seeking [27-29], these studies suggest that exercise
is a useful strategy for reducing relapse in metham-
phetamine dependent individuals. Most importantly,
the low cost and ease-of-implementation make exer-
cise therapy all the more lucrative as a potential
intervention. Therefore, clinical studies suggest that
exercise can be used as a therapeutic intervention
that may treat methamphetamine addiction, particu-
larly during the relapse stage of addiction. The rest
of the review will focus on the preclinical models of
methamphetamine addiction and of exercise eliciting
addiction like behavior. Furthermore, we hope to pro-
vide a brief overview on the neuroprotective effects of
exercise on methamphetamine addiction in the context
of inhibition of intake.

ANIMAL MODELS OF ADDICTION
TO ILLICIT DRUGS

Drug-taking behavior has been demonstrated in
rodent models of intravenous drug self-administration,
in which rodents are trained to self-administer drugs
by pressing a lever for an intravenous drug infusion in
an operant conditioning chamber [41]. As mentioned
previously, addiction is distinct from limited or recre-
ational drug use. An increase in drug availability or
a history of drug intake has been shown to acceler-
ate the development of dependence in humans [42,
43]. Thus, animal models of addiction should high-
light dependence-like behaviors, such as escalation
of drug intake over time and withdrawal symptoms
when the drug is withheld [41]. In that regard, intra-
venous methamphetamine self-administration with
intermittent (1 h biweekly), limited (1 h daily), or long
(extended; >4 h daily) access has significant clinical
relevance by illustrating a range of different metham-
phetamine seeking behaviors in rats [44]. Extended
access to methamphetamine produces an escalation
of methamphetamine self-administration, suggesting
compulsive drug intake and reflecting dependence-like
behavior. Therefore, the escalation model may provide
a useful approach to understand the neurobiological
mechanisms responsible for the transition from limited
methamphetamine use to compulsive intake. The esca-
lation model may be particularly suitable for testing
the hypothesis that alterations in adult brain plasticity
induced by the methamphetamine are partially respon-
sible for addictive behavior [41].

The reinstatement of drug-seeking behavior in rats
is widely used as a model of craving that mimics
the relapse stage of addiction often observed in the
clinic [45], and is used extensively to uncover the
key brain regions, brain circuitry, neurotransmitters,
and neuromodulators associated with reinstatement
behavior. The paradigm extinguishes learned self-
administration behavior by explicitly not rewarding
(e.g. withholding intravenous methamphetamine infu-
sion) the animal after the correct response is emitted
(e.g.acorrectlever press) and tests the ability of a prim-
ing stimulus to reinstate drug-seeking response [46].
The stimuli can be cues previously paired with drug
self-administration (cue priming) or acute noncontin-
gent exposure to the drug (experimenter delivered; i.e.,
drug priming) or context (spatial location) where the
drug was self-administered. The drug seeking rein-
statement model has been used to mimic an addict’s
drug-response pattern [47], and mimic high rates of
relapse [47, 48].
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An alternative approach for assessing drug
reward involves conditioned place preference (CPP),
which determines the Pavlovian associations between
rewarding effects of a drug and a contiguously pre-
sented stimulus, i.e. the context in which the rewarding
effects of the drug are experienced [49, 50]. This con-
ditioning approach is different from operant behavior,
as it does not involve the animal ‘working’ for the
drug reward (e.g. no lever responses), but rather, it
examines the preference for the context following the
development of the association [S1]. Furthermore, in
this model animals receive passive administration of
the drug (i.e. experimenter delivered), and are tested
(cue/context) in a drug-free state [50, 52]. Although
the operant self-administration and CPP models have
face validity, the operant model of drug reward and
reinstatement is more advantageous. For example,
while CPP behavior fails to demonstrate drug dose-
dependency, the self-administration model is useful for
eliciting distinct drug intake patterns (limited vs. com-
pulsive intake of the drug) to mimic recreational use vs.
dependent use, and to model an addict’s drug-response
pattern, and high relapse rates. Thus, the intravenous
self-administration model of drug exposure appears to
be the best suited for studying the neural mechanisms
of drug reward and relapse.

ANIMAL MODELS OF SUSTAINED
PHYSICAL ACTIVITY

Various animal models of exercise have been utilized
which can be broadly classified as either voluntary or
as forced exercise [53]. One of the most commonly
used exercise paradigms involves the use of running
wheels. In a voluntary wheel running paradigm, a
wheel is placed in the home cage of the animal and
the animal has ad libitum access to the wheel. In con-
trast, forced wheel running isolates the animal with the
wheel and partitions off access to any other area; rota-
tion of the wheel can be controlled remotely (using a
computer or other mechanism) to ensure that the ani-
mal is forced to run while on the wheel [53]. Another
forced exercise animal model is treadmill running,
where the animal is forced to run on a motor-driven
treadmill for a controlled amount of time [53]. Swim-
ming has also been used as an exercise model where
the animal was forced to swim in a tank with access
to a platform for resting (optional) without leaving
the water [54, 55]. Both voluntary and forced exer-
cise paradigms have proven effective animal models;
while voluntary exercise is typically chosen to simulate

human choices for physical activity, forced exercise is
suggested to more closely resemble human exercise
regiments [56]. Environmental enrichment is another
technique that provides greater opportunity for phys-
ical activity compared to standard housing conditions
[53], but is a more complex paradigm with social and
cognitive stimulation additionally involved; thus, envi-
ronmental enrichment will not be discussed in the
present review.

Utilizing these models of sustained physical activ-
ity, there is emerging evidence from animal studies
that exercise is addictive and the behavioral outcomes
can be compared with other drugs of abuse [8]. For
example, the binge/intoxication phase of addiction is
characterized by escalation of drug intake; in voluntary
wheel running paradigms, escalation of running activ-
ity over days of access has been reported by several
groups [57-60]. Such behavior indicates that exercise
is reinforcing and can induce increased use over time.
Additionally, using the CPP task, rats were reported
to prefer the chamber previously paired with running
wheels (wheel-paired context) compared to the cham-
ber without wheel-pairing history [57], suggesting
that access to running wheel is rewarding. Interest-
ingly, physical exercise has been shown to activate
the same mesolimbic reward pathway as illicit drugs;
like methamphetamine, exercise can increase extracel-
lular dopamine in the ventral striatum (Fig. 1), thus
further identifying the neuronal mechanism underly-
ing the rewarding and reinforcing effects of exercise
[57, 61]. Combined, this body of research suggests
that exercise is rewarding, and can illicit behaviors
that correspond to the binge/intoxication phase of
addiction.

The negative affect and withdrawal symptoms that
are typical to drug dependence have also been observed
in humans when experiencing a withdrawal from
physical exercise [30]; some of these behavioral and
physical aspects can also be found in animal mod-
els. For example, in mice that were selectively bred
for high wheel running activity, providing access to
running wheels and subsequently removing wheels
access (withdrawal) lead to reduction of systolic and
diastolic blood pressure, and of body temperatures,
when compared with inbred mice with continued
access to wheels or to control mice [62]. Evidence
for the negative affect in animal models of drug
addiction include behavioral symptoms such as depres-
sion and anxiety [63, 64]. Similar observations were
made in exercise-preferring inbred mice that were
withdrawn from running wheel activity, in whom
behavioral despair or depression, assessed using the
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Fig. 1. Neurobiological Overlap of Methamphetamine and Exercise in the Adult Rodent Brain: A schematic for the overarching effects of
methamphetamine and exercise on the reward, reinforcement and motivational centers of the adult rodent brain, particularly the prefrontal cortex
(highlighted in green), the hippocampus (highlighted in blue), and striatum (highlighted in pink).

forced swim test, was elevated compared to control
mice [65]. Taken together, animals that are geneti-
cally predisposed for high levels of physical activity
and are then not permitted to engage in such activ-
ity, showed classical signs of withdrawal similar to
those seen in drug dependent animals. However, these
effects are not restricted to animals that are selec-
tively bred for high wheel running. Outbred rats that
were given free access to running wheels for 30 days
and then prevented access to wheels for 24 hours
were more likely to ‘relapse’ or binge on running
after the wheels were reintroduced [60]. Because drug-
addiction is a chronic relapsing disorder, the latter
study provides strong evidence that, like drugs of
abuse, running wheels can elicit relapse behavior. In
conclusion, exercise does elicit addictive behavior, and
this effect is enhanced in the genetically vulnerable
strain.

CONVERGENCE BETWEEN EXERCISE
AND METHAMPHETAMINE ADDICTION
IN ANIMAL MODELS

There is an extensive amount of preclinical research
supporting exercise as a treatment for drug addic-
tion where exercise has been repeatedly shown
to reduce the amount of drug intake during self-
administration sessions (for review [7]). With respect
to methamphetamine, exercise regimens have reduced
self-administration during acquisition [58, 66] and dur-
ing escalation of intake [58]. Research conducted in
our laboratory also shows that access to exercise (vol-
untary wheel running) during protracted withdrawal
from methamphetamine self-administration improved
the rate of extinction and reduced both context- and
cue-induced reinstatement of methamphetamine seek-
ing [59]. Exercise also inhibits amphetamine reward
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as evidenced by inhibition of CPP for amphetamine
following forced treadmill running [67]. However,
withdrawal from access to running wheels was found
to increase methamphetamine intake during acquisi-
tion compared to rats with continued access to wheels
as well as compared to exercise naive rats [58]. Further-
more, escalation of methamphetamine intake did not
differ between exercise-withdrawn rats and exercise-
naive rats [58], suggesting that the protective effect of
exercise in methamphetamine addiction may be con-
tingent on continued availability of the running wheel.
This lends further credence to the hypothesis that the
efficacy of exercise depends on its ability to serve
as a strong alternate rewarding and reinforcing agent.
The neurobiological bases underlying the effects of
exercise in methamphetamine addiction as well as the
adaptations underlying the addictive effects of exercise
will be explored in the subsequent sections.

NEURAL CIRCUITRY UNDERLYING
METHAMPHETAMINE AND EXERCISE
ADDICTION

The reward and relapse circuitry in the adult mam-
malian brain has been delineated based on multiple
groundbreaking studies performed in rodent models
of acute and chronic reinforcement schedules and
reinstatement to drug-seeking behavior [45, 68]. The
acute reinforcing actions of stimulants, like metham-
phetamine, has been attributed to the mesolimbic
dopamine pathway that initiates in the ventral tegmen-
tal area and terminates in the nucleus accumbens
(ventral striatum; the brain reward center); however,
it is important to note that for sedative/hypnotics and
opiates, such as ethanol and heroin, these regions
are not critical for the acute reinforcing effects [2].
Furthermore, there is evidence that neurotransmitters
other than dopamine may also play a significant role
in the rewarding effects of stimulants. For example,
the nucleus accumbens receives inputs from several
other brain regions, including the medial prefrontal
cortex and hippocampal regions [2], and notably, the
neurotransmitter glutamate from these regions regu-
lates dopamine release from the nucleus accumbens
and ventral tegmental area [69—71]. These results sug-
gest that illicit drugs dysregulate prefrontocortical and
hippocampal neurocircuitry, and thereby, contribute to
the enhanced dopamine release from the mesolimbic
dopamine pathway, and all of these regions play crit-
ical roles in the acute reinforcing effects of stimulant
drugs [2].

The key brain regions implicated in the reinstate-
ment of drug-seeking behavior include, but are not
limited to, the medial prefrontal cortex, nucleus accum-
bens, bed nucleus of the stria terminalis, central
nucleus of the amygdala, basolateral amygdala, hip-
pocampal regions, and ventral tegmental area [2, 45,
68]. The dorsal striatum, that receives efferent pro-
jections from the mesocortical (the ventral tegmental
area to prefrontal cortex) dopamine pathway, and
the ventral striatum (nucleus accumbens) are con-
sidered the two focal points for reinstatement of
drug-seeking behavior, or relapse centers of the brain
[2, 68]. Most importantly, it is believed that the
release of the neurotransmitters dopamine, glutamate,
and corticotropin-releasing factor in these key brain
regions are essential for the behavioral effects of the
drug during the withdrawal and craving stages of addic-
tion that contribute to relapse [72, 73]. The overlapping
effects of exercise and methamphetamine on this neu-
rocircuitry has been elegantly detailed in a recent
review [7]; this overlap is briefly touched upon here
from the perspectives of exercise addiction and of exer-
cise therapy for methamphetamine addiction (Table 1).

To add to the existing theories on addiction, one
recent discovery that is potentially important for addic-
tionresearch is the ability of the adult mammalian brain
to continuously generate new progenitors throughout
adulthood. Broadly defined, progenitors are a progeny
of stem cells that are characterized by limited self-
renewal and can mature into differentiating cells, such
as neurons and glia in the brain. The discovery [74-76]
and eventual acceptance [77, 78] that adult-generated
progenitors that can mature into neurons or glial cells
in numerous mammalian species, including humans
(for review [79]) has spurred substantial investigation
of the proliferative capacity of brain regions such as the
hippocampus. The role of adult neurogenesis in
the hippocampus in methamphetamine addiction and
the influence of exercise on these neural progenitors
will be discussed in the subsequent sections.

NEURAL PROGENITORS AND
NEUROGENESIS IN THE HIPPOCAMPUS
IS AFFECTED BY METHAMPHETAMINE
AND EXERCISE

Adult neurogenesis in the adult mammalian brain
occurs in only one region of the hippocampus, namely
the subgranular zone, situated on the border of the
granule cell layer and hilus of the dentate gyrus. Stem-
like precursor cells are mitotically active and divide
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Table 1

Exercise and methamphetamine alter neurotransmission in the reward and reinforcement centers of the brain. This contributes to the value of

exercise as a treatment for drug addiction (for review, [7, 245]). Of interest are dopaminergic and glutamatergic systems. The acute reinforcing

actions of stimulants, like methamphetamine, has been attributed to the mesolimbic dopamine system that initiates in ventral tegmental area and

terminates in the nucleus accumbens [2]. The transition of drug abuse behavior to prolonged intoxication and preoccupation/anticipation stage

is accompanied by adaptations of the glutamatergic system [246, 247], which, in part, contribute to negative affect (example, depression and
anxiety) during drug withdrawal [2]

Exercise

Methamphetamine and effect of exercise

Acute exercise activates mesolimbic dopamine pathway [57].

Chronic running as well as predisposition for increased running
induces dopaminergic adaptations [57, 252-254].

A) Some of these adaptations may be beneficial.

B) Some may be detrimental and contribute to escalation of
exercise, particularly when exercise is withdrawn [57, 60].

Increase expression of group II metabotropic glutamate
receptors (mGluR2/3) in striatum, and dampen glutamate
release and signaling in the striatum and the hippocampus
[257-259]

Molecular markers associated with the negative affect and
dependence, like increased AFosB and dynorphin were also
found to be upregulated by exercise [263—265] withdrawal
from exercise may result in the manifestation of negative
affect [8, 62, 266].

Methamphetamine increases extracellular dopamine in the brain by

increasing release and reducing uptake [248, 249].

Exercise blunts the dopaminergic response to initial methamphetamine

experience [250, 251].

Chronic methamphetamine also produces neuroadaptations that lead to

tolerance and hypofunctionalilty in the mesocorticolimbic dopamine
pathway [255, 256]. This contributes to compensatory escalation of
methamphetamine intake, and may further enhance relapse
vulnerability.

A) Chronic exercise experience and continued access to exercise

attenuated escalation of and relapse to methamphetamine
self-administration [58, 59].

B) Chronic exercise sensitized the reward system for other drug

reinforcers, particularly when access to exercise is withdrawn [58,
60]

Dysregulation of glutamatergic signaling, and internalization-mediated

decrease of mGluR2/3 in the prefrontal cortex, nucleus accumbens
and dorsal striatum is evidenced in methamphetamine escalation
[260-262]. Activation of mGluR2/3 reduces methamphetamine
seeking both before and after development of escalation [260]

Activation of mGluR2/3 in the nucleus accumbens during withdrawal

from chronic methamphetamine administration is associated with
depressive behavior [267]. Negative affect markers, AFosB and
dynorphin, were upregulated by chronic methamphetamine [263,
268, 269], all of which may increase relapse risk.

into preneuronal progenitors (while simultaneously
maintaining the stem-like population) which then dif-
ferentiate into mature granule cells [80—82]. There is
strong evidence that these cells not only functionally
integrate into the hippocampal network [82—89], but
also regulate hippocampal-sensitive cognitive func-
tion [90-100]. Further, the neurogenic properties of
the dentate gyrus can be modulated by multiple fac-
tors, including physical activity and drugs of abuse
[101, 102].

REGULATION OF HIPPOCAMPAL
NEUROGENESIS BY
METHAMPHETAMINE

The ability of methamphetamine to modulate prolif-
eration and survival of hippocampal neural progenitors
has not been as prolific of a research focus. Of the few
studies investigating the deleterious impact of metham-
phetamine on dentate gyrus neuronal generation, both
acute administrations [103, 104] and chronic expo-
sures [105] reduce proliferation and survival of neural
progenitors, although intermittent access to the drug

appears to be unique in its enhancement of prolif-
eration of progenitors [105, 106]. Further, findings
from a recent cell cycle kinetic study (where newly
born proliferating cells were sequentially labeled with
mitotic markers to calculate the rate of movement
of progenitors through the cell cycle) determined
that the impairment of proliferation following chronic
methamphetamine self-administration was the result
of a reduction in number of S-phase progenitors (as
opposed to a change in the length of S-phase of
the cell cycle) [106]. With regards to hippocampal
cognitive performance following methamphetamine
self-administration, evidence demonstrates that per-
formance on spatial and working memory tasks
are inversely correlated to the quantity of metham-
phetamine consumed (operant self-administration)
which also negatively correlates with hippocampal
proliferation [107]. Interestingly, the survival of pro-
genitors birth-dated at the start of the abstinent period
was increased and positively correlated with reinstate-
ment of methamphetamine seeking, thus implying a
relationship between the survival of neural progenitors
and the severity of relapse to the drug [107]. One poten-
tial mechanism for the impairments in hippocampal
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granule cell proliferation is the observed dysregulation
of the trophic factor brain derived neurotrophic factor
(BDNF) and its receptor Tropomyosin receptor kinase
B (TrkB), along with compromised glutamatergic sig-
naling [108]. Taken together, these findings serve to
support the theory that the neurogenic dysregulation
caused by methamphetamine is an additional source
of vulnerability to dependence on the drug [109-111].

REGULATION OF HIPPOCAMPAL
NEUROGENESIS BY EXERCISE

Exercise exerts beneficial effects on hippocampal
function and neurogenesis. Extensive evidence has
demonstrated that exercise in animals is correlated
with increases in both the number of neural pro-
genitors as well as the number of surviving neurons
in the hippocampus (for review, [56]). One of the
mechanisms suggested for this increased neurogen-
esis is exercise-mediated increases in hippocampal
trophic factors that are generally believed to sup-
port neuronal proliferation and survival, including
BDNF and its receptor TrkB [112—-128]. Other factors
underlying the increased neurogenesis in the granule
cell layer include increased stimulation and network
activity in the surrounding hippocampus [115, 117,
119, 122, 124, 129-132], immune system regulation
[133-136], and modulation of stress hormones [116,
137-140]. Furthermore, these increases in granule
cell production correspond to improvements in hip-
pocampal sensitive tasks including spatial navigation,
pattern separation, and contextual fear conditioning
(for review, [141]). Interestingly, evidence suggests
that while the proliferative stimulation following exer-
cise is lost relatively soon following cessation of
activity, the increase in survival of granule cells contin-
ues for an extended duration, including into advanced
age [58, 142]. Taken together, physical activity clearly
enhances hippocampal neurogenesis and subsequently,
hippocampal dependent cognition.

EXERCISE-INDUCED REDUCTION OF
METHAMPHETAMINE TAKING AND
SEEKING IS NOT ASSOCIATED WITH
EXERCISE-INDUCED ENHANCEMENT OF
HIPPOCAMPAL PROGENITORS AND
NEUROGENESIS

It has been hypothesized that exercise-induced
upregulation of hippocampal neurogenesis may under-
lie exercise-mediated reduction in the vulnerability

to relapse in methamphetamine addicted animals
[101]. However, recent findings demonstrate that
wheel running-induced reduction in escalation of
methamphetamine self-administration and reduction
in reinstatement of methamphetamine seeking trig-
gered by drug context and drug cues occurred
independent of alterations in the number of neural
progenitors and neurogenesis in the hippocampus [58,
59]. Therefore, while exercise and methamphetamine
exert seemingly opposite effects on hippocampal neu-
rogenesis (Fig. 1), the ability of exercise to regulate
methamphetamine seeking appears to be dissociated
from their effects of neurogenic events. Nevertheless,
these studies have demonstrated that running activity
during methamphetamine-self administration and dur-
ing withdrawal prevented other measures of toxicity
produced by methamphetamine (discussed below) to
inhibit methamphetamine seeking behaviors [59].

METHAMPHETAMINE PRODUCES
TOXICITY IN THE BRAIN

Studies over the past four decades have concep-
tualized that methamphetamine produces significant
toxicity in the striatum, and that the neurotoxic-
ity is responsible for the addictive effects of the
drug. Briefly, methamphetamine reduces the func-
tion of dopamine transporters, vesicular monoamine
transporters, tyrosine hydroxylase and MAO-B, to pro-
duce excessive dopamine release [143, 144] which
leads to striatal neurotoxicity via enhanced reac-
tive oxygen species (ROS) and reactive nitrogen
species [145-157], and via compromised mito-
chondrial function [158, 159]. Methamphetamine
also increases mitochondria-dependent pro-apoptotic
proteins, decreases mitochondria-dependent anti-
apoptotic proteins, and damages the endoplasmic
reticulum, all of which contribute to increased neu-
ronal cell death [159, 160]. Taken together, increased
methamphetamine intake during extended access
schedules of reinforcement leads to striatal neuro-
toxicity, which may be critical for the transition to
compulsive use [161].

Non-striatal mechanisms have also been suggested
for the emergence of the relapse/preoccupation antic-
ipation stage of methamphetamine addiction [2].
Human imaging studies and postmortem studies pro-
vide converging evidence suggesting that chronic
methamphetamine use produces neurotoxicity in the
hippocampus [162, 163], and reduces frontal corti-
cal, amygdalar, as well as hippocampal gray matter
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volumes [164-170], all of which may underlie the
profound deficits in executive function, declara-
tive memory, and impulsivity in methamphetamine
addicts [170-172]. The behavioral deficits observed
in methamphetamine addicts have been demonstrated
in preclinical models of binge methamphetamine
exposure and extended access methamphetamine self-
administration, where methamphetamine exposure
produces cognitive dysfunction and memory impair-
ments dependent on the hippocampus [48, 107,
173-176]. Neurodegeneration and neurotoxicity in
the hippocampus is also observed, and positively
correlated with methamphetamine-induced behavioral
deficits [105, 177-179]. Additional mechanistic stud-
ies show that repeated methamphetamine exposure
(via experimenter delivered paradigms) reduced the
long-term potentiation of hippocampal CA1 pyra-
midal neurons [180, 181], increases excitability of
dentate gyrus neurons [182], demonstrating that
methamphetamine exposure produces synaptic mal-
adaptation in the hippocampus that may mediate
some of the addiction-dependent behaviors. Since
long-term potentiation in CAl and dentate gyrus
regions positively and bi-directionally interacts with
hippocampal neurogenesis [122, 130, 132, 183-185],
methamphetamine-mediated altered plasticity in these
regions may contribute to methamphetamine’s effects
on neurogenesis detailed in the section above.
Inflammation is another mechanism involved
in methamphetamine-induced neurotoxicity, and its
effects are considerably potentiated by oxidative stress
[150]. Methamphetamine releases pro-inflammatory
cytokines via activation of microglia and astroglia
[186-188], which contribute to neuronal damage as
well as behavioral deficits observed with chronic
methamphetamine use [162, 189, 190]. Reduction
in glial cell activation as well as administration
of anti-inflammatory glial modulators have been
found to reduce the sensitization to methamphetamine
and methamphetamine self-administration in rodent
models [191-194]. In conclusion, oxidative stress
and associated mechanisms play a critical role in
methamphetamine induced neurotoxicity and behav-
ioral changes, which in turn further perpetuates
maladaptive methamphetamine taking behavior.

PHYSICAL ACTIVITY REDUCES
TOXICITY IN THE BRAIN

The previous sections have focused on the detri-
mental effects of ROS, however, it is important to

understand that moderate levels of reactive species
are in fact, beneficial and essential for cellular signal-
ing, and epigenetic regulation [195]. Moderate levels
of exercise regulates the body’s redox homeostasis by
improving metabolism and blood flow throughout the
body, and that contributes to the several health promot-
ing effects of exercise (for review [195]). Specifically,
moderate exercise increases both antioxidant capac-
ity and resistance against oxidative stress throughout
the body, thus increasing resistance and tolerance to
oxidative stress. Interestingly, the brain appears to
be particularly protected against the adverse oxida-
tive effects of over (or exhaustive)-exercise [196-199].
Specifically, the brain remained protected while skele-
tal muscles, liver and kidney showed oxidative damage
following a single bout of exhaustive exercise; where
the exercise paradigm involved treadmill running at
24 meters/min until the rat lost its righting reflex
[196, 197]. Also, chronic exercise did not increase
lipid peroxidation in the rat brain [198], although
these effects are modulated by dietary vitamin intake
[200,201]. Compared to moderate training (swimming
1 hr/day for 8 weeks), very hard training (progressively
increasing swim-time to 4.5 hr/day) and over-training
(abruptly increasing swim-time from 1 hr/day to
4.5 hr/day) decreased brain protein oxidation products
and improved performance in an associated rat mem-
ory task [199]; however, this tolerance has its limits
as others report increased ROS and lipid peroxidation
and impaired memory following intense or exhaustive
exercise [202-204]. Exercise has been shown to exert
beneficial effects in rodent models of several brain dis-
orders including, but not limited to, models of ischemic
stroke, stroke-prone spontaneously hypertensive rats
and N-methyl-D-aspartate (NMDA) lesion models for
Alzheimer’s disease [205-207].

Several sub-cellular mechanisms are suggested to
underlie the effects of exercise on brain function.
These include increased expression of brain anti-
oxidants including several superoxide dismutases,
glutathione peroxidase and peroxisome proliferator-
activated receptor-y coactivator la (PGC-1a) in the
striatum and the hippocampus [208, 209]. The latter
transcription factor, PGC-1a, is doubly beneficial as
it can further upregulate other antioxidant enzymes,
and more importantly, increase biogenesis of mito-
chondria to improve the efficiency of ATP generation,
and thereby, reduce oxidative neurodegeneration in
the substantia nigra and the hippocampus [210].
Exercise is also reported to increase the activity of
proteasome complex in the brain [198], which is a puta-
tive mechanism for improved cognition and reduced
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neurodegeneration in Alzheimer’s Disease and Parkin-
son’s Disease [211, 212].

Exercise, via modulation of oxidative pathways as
well as through independent mechanisms, has been
shown to modulate trophic factor signaling in the
brain to promote brain plasticity (for review, [3,
213]). Specifically, exercise increases hippocampal
BDNF expression, activates its downstream signal-
ing pathways, and increases cAMP response element
binding protein (CREB), that subsequently upregu-
lates other inducible transcription factors [214-216].
These molecular changes could manifest themselves
as beneficial neuroplasticity changes such as increas-
ing cell survival [217, 218], formation of new
synapses (synaptogenesis; [219]), and neurogenesis
[220, 221]. Furthermore, because ROS is known to
dose-dependently modulate proliferation of neuronal
progenitor cells in the hippocampus [217, 222], exer-
cise may modulate neurogenesis by regulating ROS in
the dentate gyrus. Modulating the levels of trophic fac-
tors and ROS in regions other than the dentate gyrus
may alter the generation of new glia (gliogenesis), such
as astroglia and oligodendroglia that may contribute
to functional plasticity [222-225]. The medial pre-
frontal cortex, a brain region involved in executive and
impulse control [38, 226, 227], is one region where
this mechanism has been investigated [44]. Specifi-
cally, voluntary wheel running in rats was also shown to
increase in proliferation and survival of progenitor cells
medial prefrontal cortex, and these new cells matured
into new astroglia (~33%) and new oligodendroglia
(~55%) [44]. Thus, exercise-induced gliogenesis may
be a mechanism underlying exercise-induced improve-
ment in cognition and executive function observed in
several disease conditions [228, 229].

EXERCISE-INDUCED REDUCTION
OF METHAMPHETAMINE TAKING
AND SEEKING IS ASSOCIATED WITH
EXERCISE-INDUCED REDUCTION
OF METHAMPHETAMINE-INDUCED
BRAIN TOXICITY

As discussed previously, exercise reduces metham-
phetamine intake when both the reinforcers are
concurrently available, in part, because exercise serves
as an alternative reinforcer ([7]; also see Table 1). How-
ever, the above sections demonstrate that the potential
for overlap between exercise and methamphetamine
extends much deeper and is more complicated than
simply modulating neurotransmission in the brain

reward and reinstatement centers (Fig. 1). Exercise
improves brain function via changes in redox home-
ostasis and contributes to increased resistance and
tolerance to oxidative challenge, and thereby promotes
cell survival. Notably, swimming exercise was found
to attenuate amphetamine-induced CPP and anxiety,
which corresponded with exercise-induced reduction
in ROS and protein oxidation products in hippocam-
pal homogenates [54]. Studies conducted by our group
and others revealed that rats with continued access to
voluntary wheel running attenuated acquisition and
escalation of methamphetamine self-administration
compared to rats without access to running wheels
[58, 66]. Furthermore, access to running wheels
during protracted abstinence from methamphetamine
accelerated extinction and attenuated reinstatement
of methamphetamine seeking [59]. Indeed, volun-
tary running attenuated methamphetamine-induced
damage to dopamine and serotonin terminals in the
striatum, potentially, by promoting repair of the
damaged terminals [230, 231]. Further, attenuated
methamphetamine self-administration in rats with
continued access to voluntary wheel running was asso-
ciated with attenuation of neuronal apoptosis and
decreased neuronal nitric oxide synthase expression in
the nucleus accumbens [58], suggesting that regulation
of oxidative stress mechanisms may be an alternate
or concomitant mechanism which contributes to the
beneficial effects of exercise in methamphetamine
addiction. Future studies should include empirical
validation of these mechanisms in exercise-mediated
modulation of methamphetamine seeking.
Interestingly, withdrawal from wheel running dur-
ing methamphetamine self-administration enhanced
consumption of methamphetamine compared to
exercise-naive rats [58], suggesting that deprivation
from chronic exercise may render subjects vulnera-
ble to methamphetamine. The latter observation further
contributes to the idea that exercise itself is addictive,
however, very little is known about the mechanism
underlying this increased addiction vulnerability. Evi-
dence from studies in mice selectively bred for
increased voluntary wheel running suggests dopamine
is increased in the nucleus accumbens and the dorsal
striatum (the reward and reinforcement centers of the
brain), but is negatively correlated with running sug-
gesting attenuation of sensitivity to reinforcing effects
of running [232]. Furthermore, the dorsal striatum and
substantia nigra were hypo-dopaminergic [233] thus
providing a conducive environment for mechanisms
that can compensate for this reduced dopamine tone
(for example, methamphetamine-induced dopamine
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release; Table 1). Finally, running correlated with
hippocampal activation (increased Fos) in controls
but this correlation was lost in mice selectively
bred for high wheel running activity [234]. Instead,
the high runners showed increased activation (Fos)
of the motivation circuitry, i.e. prefrontal cor-
tex, striatum and lateral hypothalamus along with
increased BDNF in the hippocampus [234,235]. Taken
together, a blunted dopamine reward system, a hypo-
dopaminergic response in the nigro-striatal pathway
(relapse circuitry) together with the activation of neu-
rons in the brain regions involved in motivation in
the exercise-withdrawn animal, may contribute to the
addictive effects of exercise and may provide the ideal
environment for cross-sensitization to other powerful
reinforcers such as methamphetamine. However, these
speculations need to be empirically validated using
animal models.

FUTURE DIRECTIONS AND CONCLUSION

While some information is available regarding the
associated neurobiological changes underlying the
interactions of exercise with methamphetamine tak-
ing and seeking, a lot of the potential mechanisms
have not been empirically evaluated. An example,
is the opposite effects of methamphetamine and
chronic exercise on astrocytes and inflammatory mark-
ers in the brain [186, 187, 236, 237], and yet their
interaction in these avenues remains unexplored. Fur-
thermore, there is a gap in our understanding of
the neurobiological adaptations following exercise
withdrawal and neurobehavioral effects of exces-
sive exercise. An emerging direction in drug abuse
research investigates epigenetic modifications of the
chromatin structure that results in activation or repres-
sion of gene expression in altering the vulnerability
to drug addiction [238, 239]. Epigenetic modification
not only alters the rewarding effects of metham-
phetamine, chronic methamphetamine also produces
epigenetic changes that are permissive for progress-
ing through the different phases of addiction [240,
241]. Particularly, modifications in the genes reg-
ulating BDNF expression and signaling have been
implicated in the initiation-binge/intoxication stage as
well as the relapse-preoccupation/anticipation stage of
psychostimulant addiction (for review, [242]). Exer-
cise is known to increase BDNF expression in the
hippocampus [243], and epigenetic modifications have
been shown to be a part of the underlying mechanism
[244]. It would be interesting to see how epigenetic

modifications by exercise lead to long-term adapta-
tions that promote/inhibit methamphetamine taking
and seeking.

In sum, the identification of the neuroplastic and
neuromodulatory effects of exercise over the past few
decades has shed new light on the therapeutic and,
more recently, the protective effects that are associated
with exercise. Future studies aimed at understand-
ing the potential link between correlative decreases in
illicit drug use and addiction and increase in exercise
output in animal models will allow researchers to deter-
mine whether decreases in neurotoxicity by exercise is
behaviorally relevant to the prevention of addiction to
illicit drugs. This may pave the way for future therapeu-
tic possibilities for treating drug addiction disorders.
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