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Abstract. DNA damage response and repair genes (DDR genes) are commonly mutated in bladder cancer. The biological
impact of these mutations is an area of intense basic, translational, and clinical interest. As next generation sequencing
increases its foothold in the treatment of localized and advanced bladder cancer, the role of DDR genes will continue to
evolve. We review the inventory and biology of DDR genes in bladder cancer and describe known and candidate roles for
loss of DDR genes to engender therapeutic susceptibilities to various anti-cancer agents.
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Cisplatin-based chemotherapy is the current stan-
dard of care for muscle-invasive bladder cancer
(MIBC) in the neoadjuvant, adjuvant, and metastatic
settings, with emergence of immunotherapy in
metastatic patients who are platinum ineligible
or refractory. Recent insights from multiplatform
genomic analysis has revealed a significant propor-
tion of MIBCs that harbor mutations in DNA damage
and response/repair genes (DDR genes). MIBC is
notable for a relatively high frequency of DDR
gene mutations and the potential for these muta-
tions to impact selection of therapy. Other diseases
such as metastatic castrate resistant prostate cancer
[1] and several familial cancer predisposition syn-
dromes feature DDR alterations, but DDR loss of
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function through genetic alterations is otherwise rare
in primary cancers. Mutations in MIBC driver genes
identified by The Cancer Genome Atlas (TCGA)
which have bona fide DDR roles include ERCC2 and
ATM. Additional DDR genes are recurrently mutated
but with lesser frequency and may also impact tumor
biology and therapeutic sensitivities, irrespective of
their nomination as a common driver gene – the num-
ber of drivers will increase as more cancer genomes
are sequenced. In this review we will compare and
contrast DDR mutations in MIBC with DDR muta-
tions in other cancers, discuss their potential impact
on tumor biology, and highlight the emerging roles of
DDR genes as biomarkers for therapy selection based
on proposed therapeutic vulnerabilities.

INVENTORY OF DDR GENES ALTERED
IN MIBC

DDR genes ERCC2 and ATM are TCGA-
nominated bladder cancer driver genes [2]. Both
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Fig. 1. A Mutations in DDR genes occurring the TCGA BLCA data set (n = 130). Note that only cases with variants present are depicted.
Figures were generated using Cbioportal [62, 63].

have been linked to complete or near complete
pathological response to cisplatin-based neoadju-
vant chemotherapy as measured by pathological
examination of surgical specimens at the time of
radical cystectomy [3–5], highlighting the intense
interest in these genes as biomarkers. We chose to
focus on mutations in DDR genes because most of
the high impact studies focus on mutations as the
mechanism of loss of function or to correlate with
clinical outcomes, as opposed to mRNA or protein
expression, which has not been as well described in
MIBC as it is in other malignancies [6]. Additionally,
we focused on mutations rather than copy number
alterations again because this type of alteration is
what is reported in most studies and because deletion
through copy number alteration does not occur in
ERCC2 or ATM in bladder cancer (Fig. 1). Indeed,
because of ERCC2’s indispensable role in tran-
scription, efforts to generate CRISPR knockout cell
lines have not been successful, though point mutant
variants can be viable (Mouw, Iyer, unpublished

data, personal communication). Interestingly, the
number of amplifications greatly outnumbers the
number of deletions in this set of DDR genes in the
TCGA, which is ‘counter-culture’ for tumor sup-
pressor genes (Fig. 2). The clinical relevance of this
observation is yet to be elucidated, but it is plausible
to hypothesize that these tumors are hyper-proficient
in repairing DNA damage and therefore may be
intrinsically resistant to DNA-damaging chemother-
apy regimens. We are not aware of convincing data
to support this idea and will not speculate further
though it may be a rationale for further study.

The exquisite tissue specificity of ERCC2 muta-
tions is notable. ERCC2 has been found mutated
in multiple bladder cancer cohorts at a rate of
10–18% [2–4, 7, 8] but not significantly in any
other cancer cohort to our knowledge. Although the
provisional TCGA cohort of adrenocortical carcino-
mas seems to have a high rate of D312N variants
(unpublished), this variant is actually a common
SNP with prevalence of 0.38 in the Exome Aggre-
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Fig. 2. Copy number alterations in DDR genes occurring in the TCGA BLCA data set (n = 408). Note that only cases with variants present
are depicted. Figures were generated using Cbioportal [62, 63].

gation Consortium (ExAC), and is nondeleterious
[9]. Germline ERCC2 mutations are associated with
xeroderma pigmentosum cross-complementation
group D [10] (a hereditary skin cancer syndrome
where patients develop normally), and trichothiodys-
trophy (an autosomal recessive condition where
patients have abnormal development but no can-
cer predisposition [11, 12]). Interestingly, ERCC2
has two major functions relating to both transcrip-
tional activation and nucleotide excision DNA repair
(NER), but both xeroderma pigmentosum and tri-
chothiodystrophy seem to be caused by a lack of
DNA repair and not lack of transcriptional activ-
ity [13]. NER is both transcription-coupled and
acts independent of transcription, and repairs a
diverse set of DNA lesions such as cyclobutane
pyrimidine dimers (from UV exposure), inter-strand
and intra-strand cross links (such as by cisplatin),
cyclopurines resulting from reactive oxygen, and
bulky adducts [14]. It appears that the transcription-
coupled NER pathway is most relevant to MIBC
and that the global genome NER pathway may be
less relevant. Liu and colleagues recently showed
that ERCC2-mutant tumors have a specific tri-
nucleotide mutation signature. This signature is
enriched on the + strand of transcribed genes, strongly
implicating transcription-coupled repair as the pri-
mary mechanism lost in ERCC2-mutated cancers
[15]. Along these lines, ERCC2’s role in bladder
cancer seems to stem from its role in transcription-
coupled NER; no defect related to its role in
transcription has been identified yet. Interestingly,

‘ERCC2-ness’ (i.e. the genomic mutation signature
associated with ERCC2 loss of function n [16]) is not
unique to ERCC2-mutated tumors, so it is possible
that other alterations, whether genetic, epigenetic, or
alterations expression or activity level, result in inca-
pacitated transcription-coupled NER. In support of
its critical role in transcription, all point mutations
in the gene are missense and appear to be inactivat-
ing [4]. Often tumor suppressors have truncating or
frame-shifting mutations, suggesting that complete
inactivation of ERCC2 through such a mechanism
(or through deep deletion) results in reduced fitness
and may be selected against.

In contrast to well-characterized hereditary can-
cer syndromes such as Von Hippel Lindau or familial
adenomatous polyposis where the causative genes are
also mutated in sporadic cancers, patients with dele-
terious germline ERCC2 mutations do not develop
bladder cancer, suggesting it may not have a role in
initiation of the disease but possibly in progression.
In support of this hypothesis, ERCC2 is mutated more
frequently in MIBC than nonmuscle-invasive bladder
cancer (nMIBC [17]).

The next most commonly mutated DDR gene in
MIBC is ATM. Like ERCC2, germline mutations of
ATM are causative of a heritable cancer syndrome,
ataxia telangiectasia. Germline mutations of this gene
are also increasingly being recognized in nonsyn-
dromic patients with advanced cancer, especially
those with metastatic prostate cancer [1, 18, 19]. This
kinase works upstream of p53 and acts as a part of
DNA damage sensor pathway, sensing DNA double-
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Fig. 3. Pan-cancer analysis of mutations in DDR genes listed in Fig. 1 as described in >10,000 tumors using MSK-IMPACT. Figures were
generated using Cbioportal [62, 63].

stranded breaks (DSBs) [20–22]. Similar to ERCC2
carriers, ATM carriers also are not known to have
increased risk of bladder cancer, again suggesting a
role in progression but not initiation. ATM mutations
in TCGA [2, 23] and those reported by our group
[5] are also missense substitutions in the majority
of cases. These alterations often affect key residues
that, when mapped onto the three-dimensional struc-
ture of the protein, are found in the core of the
protein that likely result in the inability to fold
properly [5].

ERCC2 and ATM are mutated frequently and
specifically in sporadic MIBC. Mutation of care-
taker genes probably confers a selective advantage
to cancer cells through generation of a diverse tumor
ecology with intratumor heterogeneity, but DDR
mutations are simply not as common in other spo-
radic cancers when compared to MIBC. Although
sporadic DDR mutations have been described in
several cancers, (e.g. BRCA1 and BRCA2 in spo-
radic breast/ovarian cancers) their frequency is <5%
in aggregate in each cancer. For instance, in our query
of the recent MSK-IMPACT study of >10,000 tumors
with targeted sequencing for the genes listed in Fig. 1,

bladder cancer (n = 422) tops the list of >40 tumors
types with mutations in these genes in >30% of cases,
excluding rare cases gestational trophoblastic disease
(n = 11) and penile cancer (n = 7) [24] (Fig. 3). In
terms of individual gene mutations, Hodgkins lym-
phoma had a 20% rate of MLH1 mutation, but very
few cancers had a mutation rate >5% in the other
genes (on a per-gene basis), underscoring the unique-
ness of bladder cancer as a disease of DDR.

One notable DDR mutation in sporadic cancers is
the POLE hotspot mutation which was initially iden-
tified in uterine cancer [25]. These hotspots result
in DNA Polymerase � loss of exonuclease func-
tion. This polymerase mediates DNA backfill at sites
of DNA excision due to damage/repair, and POLE
mutations are associated with accumulation of thou-
sands of mutations per genome – a hypermutated
phenotype – resulting from loss of DDR capacity.
This mutation occurs in 7% of uterine cancers and at
lower frequencies in other cancers.

Mismatch repair genes (MMR genes), germline
mutation of which cause Lynch or Muir-Torre syn-
dromes, are associated with upper tract urothelial
cell carcinomas (UTUCCs [26, 27]) and are prob-
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ably under-recognized in metastatic UTUCC [28].
MMR is a highly evolutionarily conserved process
which was first described in Streptococcus pneumo-
niae [29] and Escherichia coli [30] among other
prokaryotes and yeast. Its most well-studied func-
tion is to repair mismatches and indels which occur
during mostly DNA replication (as opposed to ATM
and ERCC2 proteins which function in repair of
DNA damage). In whole exome sequencing studies,
colorectal tumors which arise in Lynch Syndrome
patients acquire mutations at a rate at least one order
of magnitude higher than sporadic tumors as a result
of the loss of MMR [31, 32]. Although UTUCCs
of Lynch syndrome patients have not been studied
using whole exome sequencing to our knowledge,
it seems likely that they behave in a similar man-
ner. For instance, Lynch syndrome patients with
endometrial tumors (another Lynch-associated can-
cer) form tumors with much higher mutational burden
than non-Lynch endometrial cancers [33]. Given
the evolutionarily conserved role of these proteins
in DDR, a plausible explanation for UTUCC car-
cinogenesis is loss of caretaker function in Lynch
cases with accumulation of mutations leading to
carcinoma.

MMR is clinically measured by quantitating
microsatellite instability (MSI). Microsatellites are
short repeats, most often CA repeats, which occur at
thousands of sites throughout the genome and often
at the 3’ end of genes. The lengths of these repeats
becomes unstable in tumors with MMR deficiency,
and differences between the length of the repeat
in germline (which is constant) and tumor (which
becomes variable) can be measured to assess if MSI
(and MMR deficiency by proxy) is present. Although
likely relevant in UTUCCs, it should be noted, that
MMR deficiency is extremely uncommon in bladder
cancer. A recent study showed that 1/253 cases of
bladder cancer in the TCGA cohort had microsatel-
lite instability [34], in agreement with prior studies
[35, 36].

Mutations in ERCC2, ATM, and MMR genes
are the most well established and studied DDR
alterations occurring in bladder cancer, but addi-
tional DDR mutations occur in bladder cancer that
are not TCGA-nominated bladder cancer genes or
well-known familial cancer genes. Genes involved
in homologous repair such as BRCA1 and BRCA2
are recurrently but infrequently mutated. Similarly,
multiple genes in the Fanconi Anemia pathway such
as PALB2, FANCD2, and FANCC are recurrently but
infrequently mutated in bladder cancer.

BIOLOGY OF DDR GENES ALTERED IN
MIBC

An intuitive and plausible mechanism of
chemosensitivity manifests in the idea that loss of
the ability to sense or repair DNA damage brought
on by cytotoxic chemotherapy results in persistent
DNA lesions which ultimately cause the death of
the cell through intrinsic apoptosis pathways. In
lower eukaryotic organisms, this paradigm is known
as synthetic sickness or lethality [37, 38], where
mutation or loss of either of two pathways or genes
permits the cell to persist but loss of both genes
or pathways results in loss of viability [39]. This
paradigm has led to the successful application of
PARP inhibitors to patients with breast or ovarian
cancer who are BRCA1/BRCA2 carriers [40–42].
BRCA1 and BRCA2 proteins are intimately involved
in homologous repair (HR) of DSBs, so inhibition
of the base-excision repair pathway by PARP
inhibitors will convert single strand breaks (SSB)
to DSBs which cannot be repaired in tumor cells
descendent from BRCA1 or BRCA2 carriers [39,
43]. And recently, PARP inhibitors were shown to
have significant activity in patients with metastatic
prostate cancer but activity was limited to patients
carrying germline or somatic mutation in DDR
genes, most often BRCA1, BRCA2, and ATM [1].
Similar application of PARP inhibitors to BRCA2-
mutant tumors might be feasible, given the rate of
BRCA2 deleterious mutations in urothelial cancer,
mostly via truncating mutations (Fig. 1).

A similar therapeutic relationship is emerging
between cisplatin and ERCC2, ATM, and other DDR
mutations in MIBC with respect to cisplatin sensitiv-
ity. When ERCC2 mutations are present in MIBCs,
the overall mutation rate in each tumor is tripled
[4], reminiscent of a hypermutator phenotype, and
suggesting these mutations do primarily result in
the inability of the tumor to repair DNA damage.
Indeed, tumor-associated somatic ERCC2 variants
lack the ability to rescue viability in fibroblasts
derived from patients with germline ERCC2 loss
when treated with cisplatin [4]. A similar increase
in somatic mutations per tumor occur when ATM,
RB1, or FANCC are mutated in bladder cancers:
chemotherapy responders had 43% more alterations
in a panel of 216 clinically-relevant genes than nonre-
sponders [5]. DDR mutations also strongly associate
with complete or near complete response in multiple
bladder cancer cohorts from independent institutions
[3, 5].
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Table 1
Functional annotation (ClinVar) of germline DDR SNPs reveals that most of these SNPs are

either benign variants or a VUS

Pathogenic Likely VUS Other Total % not known
pathogenic to be

delterious

ATM 464 290 1772 753 3279 77.0%
BRCA1 2445 210 1980 1199 5834 54.5%
BRCA2 2738 222 3265 1557 7782 62.0%
ERCC2 21 4 41 46 112 77.7%

This therapeutic susceptibility may be relevant
more generally. For instance, when a subset of DDR
genes is mutated at a lower frequency as detected
by panel targeted sequencing, there is associated
increase in survival in patients with advanced urothe-
lial cancers who were treated with cisplatin [44].
DDR gene mutations identified in panel targeted
sequencing also associated with prolonged survival
in MIBC patients treated with chemoradiation [45],
suggesting DDR gene mutations may be prognos-
tic markers in this setting. In another study, patients
with somatic DDR gene mutations or carriers of
germline DDR mutations had prolonged recurrence
free survival, again pointing to their potential utility
as prognostic biomarkers. However, this latter study
does not stratify germline variants of unknown signif-
icance from deleterious or likely deleterious variants.
Many of these germline or somatic variants may be
nondeleterious because the majority of SNPs (which
are common in ATM, BRCA1, BRCA2, ERCC2) are
either benign or variants of unknown significance.
We calculated the percentage of variants found in the
ClinVar database [46] not known to be deleterious
for each of these genes (Table 1). In each case, half
to three-quarters of the variants have known benign
or unknown effects. This underscores the importance
of functional annotation against known databases or
experimental validation of variants when identified in
such studies.

It is not clear whether a different set of muta-
tions engenders therapeutic susceptibility to radiation
compared to chemotherapy. The damage from
chemotherapy, particularly cisplatin, causes intra-
and interstrand crosslinks, as compared to radia-
tion which causes DSBs. Other DNA damaging
chemotherapeutic agents used in bladder cancer such
as doxorubicin cause different types of damage as
well. This distinction is critical because each type of
genetic insult requires a specific pathway for repair,
and therefore the mutation causing pathway loss of
function would be expected to dictate the therapeutic

susceptibility. For instance, BRCA2 loss-of-function
mutations would wipeout the cell’s ability to repair
DSBs, potentially resulting in radiotherapy or PARP
inhibitor susceptibility.

Other DDR mutations also associate with
chemoresponse. Whereas studies focusing on ERCC2
mutations used whole exome sequencing, other stud-
ies have used panel next generation sequencing
(NGS). Using a clinical NGS panel, it was shown
that mutation of ATM, RB1, or FANCC associated
with partial response and progression-free and overall
survival [5]. Although in vitro functional validation
was not undertaken to characterize these mutations,
molecular modeling of the 3-D structures of the vari-
ant ATM and RB1 proteins revealed that most of
the mutations fell within residues which were crit-
ical to protein folding or kinase function (for ATM)
or interaction with DP1/E2F transcription factors (for
RB1).

MMR deficiency may require an approach differ-
ent from synthetic lethality though. MMR primarily
repairs DNA replication errors and not DNA damage,
therefore application of DNA damaging therapeutics
might not be expected to elicit a strong apoptotic
response. Some studies in other tumor types have
suggested that loss of expression of MMR proteins
associates with cisplatin resistance [47–50] but the
relationship between MMR status and chemosensi-
tivity status is yet to be borne out in urothelial cancer.

However, another candidate therapeutic vulnera-
bility has been identified in tumors with high mutation
burdens: PD1/PDL1-directed immunotherapy with
monoclonal antibodies [31]. The rationale for such
an approach rests in the finding that patients who
respond to immune checkpoint blockade tend to have
a higher number of mutations per tumor than non-
responders [51–54]. Each mutation can give rise to
one or more than one neoantigen, defined as the
mutant peptide that arises from a nonsynonymous
or frameshifting variant. These can be recognized
as non-self by the immune system. Neoantigen
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burden is directly correlated to mutation load: about
half of nonsynonymous variants give rise to a neoanti-
gen, with almost 40% of those being in an expressed
gene [55]. In this sense, neoantigens are like lottery
tickets – the more tickets one purchases, the more
likely one is to hit the jackpot. Alternatively, many
smaller jackpots may lead to a big payday as well.
To this end, several well-done studies have shown
that indeed anti-neoantigen CD8 T cell responses
can be detected in patients who respond to immune
checkpoint blockade [52–54] and other immune ther-
apies [56] and that the number of anti-neoantigen
T cells increases as patients respond. MMR defi-
ciency, and possibly DDR deficiency more broadly,
therefore may enable successful use of immune
checkpoint blockade in patients with MIBC. In light
of the high response rate to these drugs in clinical tri-
als [57–61] and the high burden of DDR mutations in
patients with advanced or metastatic urothelial can-
cers, it seems likely that there is significant overlap.
DDR mutations could plausibly be seen as a pre-
dictive biomarker of response to these drugs, but
this hasn’t been explored or reported yet. Again,
it is important to note, this approach may be even
more relevant in UTUCCs given the higher inci-
dence of presumed MMR deficiency, the expected
high number of neoantigens arising from frameshifts,
and the potential for increased immunogenicity of
such neoantigens [31, 32].

CONCLUSION

The finding that DDR mutations are associ-
ated with susceptibility to chemotherapies and
immunotherapies is a transformative avenue of
research for clinic trialists and basic and transla-
tional researchers. More effort in this area is likely
to yield numerous benefits to patients with local-
ized or metastatic bladder cancer. It is foreseeable
that the benefit immune checkpoint blockade may
extend outside of MMR deficient tumors to tumors
with any DDR mutation or even a high neoantigen
burden with WT DDR genes. However, the blad-
der cancer research community must be cognizant of
the potential to advance the care of the same subset
of patients repetitively without developing improved
therapies and outcomes for patients with WT DDR
pathways. It is possible that the DNA damaging
agents and immunotherapies benefit the same sub-
set of patients, in which case the argument can be
made that the improvement is more incremental than

transformative. In any case, these findings have added
significant understanding to the fundamental mech-
anisms of how anticancer therapies work as well as
paradigm-shifting rationales for treatment selection
in urothelial cancer. In time, these findings will trans-
late to personalized medicine algorithms for a subset
of patients with DDR mutations, with the hope of
extending these benefits to all patients using the same
or likely yet untested urothelial cancer agents.
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