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Abstract. In pandemic times, like the one we are witnessing for COVID-19, the discussion about new efficient and rapid
techniques for diagnosis of diseases is more evident. In this mini-review, we present to the virological scientific community the
potential of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy as a diagnosis technique. Herein,
we explain the operation of this technique, as well as its advantages over standard methods. In addition, we also present
the multivariate analysis tools that can be used to extract useful information from the data towards classification purposes.
Tools such as Principal Component Analysis (PCA), Successive Projections Algorithm (SPA), Genetic Algorithm (GA) and
Linear and Quadratic Discriminant Analysis (LDA and QDA) are covered, including examples of published studies. Finally,
the advantages and disadvantages of ATR-FTIR spectroscopy are emphasized, as well as future prospects in this field of study
that is only growing. One of the main aims of this paper is to encourage the scientific community to explore the potential of this
spectroscopic tool to detect changes in biological samples such as those caused by the presence of viruses.
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1. Introduction

Diseases caused by viruses are among the main public health problems. There is an incalculable
number of viruses circulating in our environment, many already known by the scientific community and
several still unknown. The Human Immunodeficiency Virus (HIV) [8] and arboviruses such as Dengue
[44], Zika [38], Chikungunya [13] and Yellow Fever [26,27] are examples of well-known viruses that
cause great damage to society, either because of their severity or because of their ability to change, giving
rise to new serotypes. The Dengue virus, for example, is found in four different serotypes (DENV-1, -2,
-3 and -4), so the same individual can contract the dengue virus up to four times [44]. In the case of new
viruses, the most important case in the world is currently the new Coronavirus (COVID-19), responsible
for the outbreak that began in December 2019 in Wuhan, China, and which is already in a pandemic
situation, given the seriousness in which it occurs. As of March 11, 2020, more than 118,000 cases have
been confirmed for COVID-19 in 114 countries, of which 4,291 people have died. [15,21,36,60,62,63]

Outbreaks such as COVID-19, currently in evidence, as well as other recent outbreaks, such as the
Ebola Virus outbreak in Guinea in 2014 [3], the various outbreaks of arboviruses (Dengue, Zika, Chikun-
gunya, Yellow Fever) in tropical countries at times of the year due to transmitting mosquitoes, and the
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constant public health problem with the various influenza viruses [54], such as the H1N1 virus that
emerged in Mexico and the United States of America in the first half of 2009, being also declared a
pandemic state by the World Health Organization (WHO) [12], make evident the importance of reliable,
accurate and fast diagnostic methods. It is evident that fast response (diagnosis) means fast treatment
and less damage caused by the illnesses.

The most commonly available methods in diagnostic clinics or hospitals are serological methods.
These methods are based on the detection of antibodies produced against the viruses. Once a certain
antibody is detected, there is evidence of which virus is present. [5] This is the case, for example, of the
widely used enzyme-linked immunosorbent assay (ELISA) method. [30] The big problem with using
techniques based on the detection of antibodies is that, generally, for viruses of the same family as
Dengue, Zika and Yellow fever, for example, cross reactions can occur. That is, the immune system
produces antibodies to a virus different from the virus that is present in the body. Studies also show that
the production of specific antibodies to Dengue can worsen the condition of patients infected with Zika
virus. [9] This suggests that the same can occur for other viruses and from different families.

Spectroscopic techniques are based on the interaction between electromagnetic radiation with the
sample. This interaction can provide valuable information from the sample compositional point of view.
The technique of attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) is one
of the most well-known spectroscopic techniques, which works in the mid-infrared region. [24] This
region of the electromagnetic spectrum comprises the 4000 to 400 cm−1 range. In biological samples,
the range between 1800 to 900 cm−1 is known as the biofingerprint region because it has a high den-
sity of information regarding important biomolecules. The field of study where spectroscopic tools are
used to analyze biological samples has become known as biospectroscopy [4,17], and has been widely
used in chemometric approaches involving the identification of bacteria [22,23], viruses [42,43], cancer
diagnosis [56], forensic entomology [2], among others.

The infrared spectra obtained using ATR-FTIR are an example of multivariate data. This is because
in each spectrum there are several variables (wavenumbers) that inform the absorbance for a sample. To
better interpret this type of data, multivariate analysis techniques can be used; this comprises statistical
and mathematical tools capable of analyzing the data and provide reliable quantification or classification
responses. [17,24]

In this mini-review, we will address the use of ATR-FTIR in conjunction with multivariate analy-
sis techniques for classification and detection of viruses. We will highlight the operation of ATR-FTIR
and some multivariate classification techniques, such as Principal Component Analysis (PCA), Succes-
sive Projections Algorithm (SPA), Genetic Algorithm (GA), Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA). The potential of this approach, the limitations and future per-
spectives in the field are discussed in order to disseminate to the medical and virological community this
methodology that has great potential in detecting viruses in a quick, accurate and reliable fashion.

2. General structure of viruses

It is important to know the biomolecular structure to be able to associate spectral information with
the presence or absence of viruses. Viruses can vary in structure, size and even composition, however,
in most cases there are similarities. Viruses are mainly made up of proteins. A general structure can be
described as an outer membrane formed by a lipid bilayer, which is called a viral envelope (in the case of
enveloped viruses); surface proteins responsible for the first contact of the virus with host cells are usu-
ally found encrusted in the viral envelope; and more internally, there is another protein membrane called
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Fig. 1. General structure of a flavivirus with its identified parts. For viruses such as Dengue, Zika, Chikungunya and Yellow
Fever, the viral genome is a positive single-stranded RNA according to the Baltimore Class IV classification.

a capsid (or nucleocapsid), which is responsible for protecting genetic information (RNA or DNA).
[14,19,40] Fig. 1 shows a scheme for the general structure for viruses such as Dengue, Zika, Chikun-
gunya, Yellow fever, among others. For these viruses, the viral genome is a positive single-stranded RNA
according to the Baltimore Class IV classification.

3. WHO methods for detecting Dengue, Zika and Chikungunya

In the literature, several research articles and review articles that address the main methods of virus
diagnosis can be found for Influenza [59], Ebola [7,11], Hepatitis B [33], Dengue [5,60], Zika [16,37,49],
Chikungunya [1,32], among others. In view of the large number of existing viruses, here we will focus on
the arboviruses Dengue, Zika and Chikungunya, since they are viruses that cause very similar symptoms
and coexist in the same geographic regions. Viruses that coexist and exhibit similar symptoms are very
common worldwide, and since the ELISA and PCR diagnostic methods are used for the vast majority,
the discussion in this topic can be used for other viruses as well.

In 2017, the WHO published a document entitled “Tool for the diagnosis and care of patients with
suspected arboviral diseases” where methods are provided that can be used in differential diagnosis
by laboratories with installed capacity to identify Dengue, Chikungunya and Zika viruses antigenically,
molecularly and serologically. [57] In Fig. 2, we can see the methods for the differential diagnosis
using RT-PCR (Fig. 2a), and for differential diagnosis using ELISA (Fig. 2b), according to WHO. As
demonstrated in the figure, it is necessary to repeat the analysis several times for both RT-PCR and
ELISA method. This is because each analysis is specific to each virus. Thus, it is necessary to rule out
co-infections. Still, for the ELISA technique, the diagnosis is not accurate. At best, infection with a
particular virus can only be presumed.

4. ATR-FTIR spectroscopy

ATR-FTIR spectroscopy can be an advantageous alternative both from the point of view of time con-
sumed for analysis and financial, since the use of reagents is not required. When interrogating biological
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Fig. 2. Algorithm for laboratory diagnosis for (a) RT-PCA: suspected cases of arbovirus: acute phase; (b) ELISA: suspected
cases of arbovirus: convalescent phase. Inspired by reference [57]. aA urine sample is also recommended for PCR ZIKV.
bConsider dengue NS1 antigen for determining DENV infection. cIsolation is not required in order to confirm infection; it is
considered complementary information for identifying serotypes, genotypes, and strains of the arbovirus in question.

samples with radiation in the mid-infrared region (4000–400 cm−1), the region of greatest interest is that
between 1800–900 cm−1. This region is called the “biofingerprint” because it provides a large amount
of information and representation of the composition of interrogated samples based on the vibrational
modes of chemical bonds. Figure 3 shows a typical biological spectrum showing biomolecular peak
assignments from 1,800 to 900 cm−1, where biochemical assignments are shown. [17] Since nucleic
acids are specific to each virus, differences in nucleic acid content are expected to be a key factor for
an accurate assessment of ATR-FTIR. In addition, the complexity and dynamics of cellular and viral
epitranscriptomes must be taken into account during infection. This has been studied in depth by McIn-
tyre et al. [25], where the diversity of the viral epitranscriptome was first observed, which far exceeds
the few modifications reported so far. All these possible changes that occur during infection by the virus
+ssRNA must be taken into account, and may even be potential markers to identify the stage of infection.
A characteristic IR spectrum can be derived by ATR-FTIR spectroscopy, FTIR microspectroscopy, or
photothermal microspectroscopy. [24] Here, we will focus on the ATR-FTIR technique.

When acquiring spectra using an ATR-FTIR, a crystal (e.g., diamond size 250 μm × 250 μm) is used
to cause total reflection. The sample (e.g., 10 μL) is then placed on this crystal and the infrared beam
is passed through the crystal and fully reflected internally (without refraction). Samples can measured
in either liquid or dry state. Preferably, samples should be allowed to dry before measurement to reduce
the water content, hence, reducing OH interfering in the IR spectrum. Nevertheless, ATR also allows
samples to be measured as liquid; in this case, one must be careful with OH absorptions at 3650–
3600 cm−1 (free O-H stretching) and 3400–3300 cm−1 (hydrogen-bonded O-H stretching). [29] In liquid
state, the bands are broaden, which might mask the lipids region at around 3000 cm−1; therefore, the user
must focus on analyzing the spectra on the fingerprint region (1800–900 cm−1) only. In this region, the
Amide I and Amide II bands tend to merge, where the Amide II band becomes an arm in the right-hand
side of the Amide I peak at around 1650 cm−1. The protein phosphorylation band at around 900 cm−1

also tends to be wider for liquid samples.
The process of total reflection generates an evanescent wave that can penetrate for a few micrometers

in the sample. The sample then absorbs part of this radiation, attenuating it, so that the instrument
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Fig. 3. Example of a biological sample spectrum in the biofingerprint region of the mid infrared range. Reprinted (adapted) with
permission from reference [17] (J.G. Kelly, et al., Biospectroscopy to metabolically profile biomolecular structure: a multistage
approach linking computational analysis with biomarkers, Journal of Proteome Research 10 (2011), 1437–1448). Copyright
(2011) American Chemical Society.

Fig. 4. Illustration of the operation of the ATR device in spectral acquisition. An evanescent wave is generated by the total
reflection of the incident radiation. This evanescent wave can penetrate through a few micrometres in the sample, which absorbs
part of the radiation. This absorption can be detected by the instrument, generating the spectrum. Inspired by reference [35].

detects when it has been absorbed (or transmitted) and provides a spectrum. [4,17,24,35] Fig. 4 shows the
process taking place on the ATR crystal. It is important to note that, as absorption is related to vibrations,
the spectra provide compositional information for the analyzed sample in terms of vibration signals.
This means that the presence or absence of viruses can translate into spectral variations. However, these
variations are subtle, and generally cannot be detected just by viewing the spectra. For this reason, it is
necessary to use mathematical tools capable of finding spectral features that best differentiate one class
from another (e.g., infected vs. uninfected).
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5. Viral contribution to the FTIR spectra during cell infection

Infections caused by viruses involve complex processes, with changes in the structures of biomolecules
and consequent spectral variations. These changes, of course, could make it difficult to detect these viral
infections by ATR-FTIR; however, if properly investigated, they may provide specific information on
the infection stage. As an example, we can analyze what happens to viral RNA during the infection
phase. As mentioned here earlier, recent studies have demonstrated the dimensions and diversity of the
viral epitranscriptome, demonstrating that they are much larger than formerly believed. It was observed
that the Zika, Dengue, hepatitis C, poliovirus and human immunodeficiency type 1 viruses significantly
altered the global PTM landscape. Direct comparison of viral epitranscriptomes identified specific and
MTPs common to all viruses. This suggests that the study of MTPs, that is, the study of changes involv-
ing the genetic material of the virus during infection, may be an important way to detect viral infections
by ATR-FTIR. Specific modifications of dimethylcytosine were present only in the total RNA of virus-
infected cells and in the intracellular RNA of HCV and viral RNA of Zika and HCV virions. On the other
hand, ZIKV and DENV encode a methyltransferase responsible for introducing this modification into
viral RNA, which helps to guarantee the efficient translation of viral proteins and camouflages the viral
RNA from cellular defense mechanisms against foreign RNA. In contrast, HCV and PV have no methyl-
transferase activity and are known to achieve similar goals by different means. [25] These are just one
of several processes that are involved in the complex dynamics of a viral infection. The characteristics
of each virus can be a differential for spectral discrimination between one virus and another.

Although ATR-FTIR is a non-target technique greatly affected by the sample environment and the
virus type, spectral changes after viral infection will primarily occur due to protein, cell DNA, and RNA
changes (Fig. 3). [46] Blood compounds such as total cholesterol, high-density lipoprotein (HDL) and
low-density lipoprotein (LDL) cholesterol, triglycerides, albumin and total protein has been reported to
decrease in concentration in patients infected with hepatitis B and C, while immunoglobulin G (IgG),
A (IgA) and M (IgM) increase in concentration in infected patients when compared to controls. [41]
Moreover, for hepatitis, several spectral features change for infected patients. [41] Table 1 summarizes
these main spectral biomarkers that change after viral infection.

6. Computational procedure

After spectral acquisition, the spectra are imported into some suitable software in order to carry out
pre-processing and multivariate analysis. Among the available software options, MATLAB (MathWorks,
Inc., United States) stands out. However, other interesting options are The Unscrambler (Camo Analyt-
ics, Norway), Pirouette (InfoMetrix, Inc., United States), and freely available software such as GNU
Octave (https://www.gnu.org/software/octave/) and R (https://www.r-project.org/). We will discuss the
computational procedure from pre-processing techniques that can be used to extract information with
high potential to discriminate classes.

6.1. Preprocessing

One of the main steps after spectral acquisition is data pre-processing. Pre-processing can be applied
to improve the signal-to-noise ratio of the data, adjust the baseline, among other reasons related to
the physical nature of the samples, instruments and environment. In short, pre-processing works by
eliminating physical interferences and highlighting the signal of interest.

https://www.gnu.org/software/octave/
https://www.r-project.org/
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Table 1

Main spectral markers associated with hepatitis infection. [41]

Class Assignment Wavenumber (cm−1)
Infected A-DNA backbone ν(C-C) 966
Infected RNA, ν(C-O) ribose 1015, 1018
Infected Proteins (Ig) 985, 988, 989, 1074
Infected DNA, RNA νs(PO−

2 ) or phospholipid νs(PO−
2 ) 1078

Infected RNA, ν(C-O) ribose 1067
Infected Valence vibration of CC and CO in glucose from

polysaccharide
1093, 1096, 1100

Infected RNA, ν(C=O) ribose 1119
Infected RNA, ν(C=O) ribose 1037
Infected νas(CO-O-C) of glycan and nucleic acids (DNA and

RNA)
1145, 1148

Infected A-DNA, νas(PO−
2 ) and RNA, νas(PO−

2 ) or
phospholipid phosphodiester bond (lipid bilayer) or
protein (IgG), Amide III

1223, 1226, 1234, 1249, 1286

Infected Amide I, protein, β pleated sheet 1635, 1631
Infected νa(C2=O) vibration in RNA 1691
Infected, Uninfected Lipids, ν(C=O) ester carbonyl 1732, 1747
Uninfected Ester C-O-C asymmetric stretching from phospholipid,

triglyceride and cholesterol esters
1167, 1174, 1182, 1186

Uninfected Proteins, lipids, symmetric δ(CH3) 1379
Uninfected Proteins, Amide II 1501, 1542, 1591
Uninfected Proteins, Amide III 1308
Uninfected Amide I, protein, α-helical or DNA (C=O and C=N) 1650, 1654

The main pre-processing technique used to eliminate noise is Savitzky-Golay smoothing. However,
attention must be taken and the correct parameters must be used since this technique can introduce
distortions in the spectra and also “smooth” important information. As a result, parameters need to be
chosen so that noise is reduced and peaks are valued. [48,58]

For removal of physical distortions in the data, differentiation techniques can be applied to correct
baseline problems and solve band overlapping problems. Differentiation works by improving the dif-
ferences between the spectral bands of interest and the existing baselines. First-order differentiation
has been widely used in pre-processing steps, however, second-order differentiation provides symmetry
which the absorption value. However, it is important to be careful when using second-order differentia-
tion, as each order of differentiation greatly increase the noise. To reduce this effect, a Savitzky-Golay
differentiation can be used which has the implicit smoothing. [48,58] Physical phenomena can also
translate into distorted baselines. Rubberband baseline correction is one of the techniques capable of
solving this problem. In this approach, a convex polygonal line whose edges are ‘valleys’ within the
spectrum are found. Another possibility is to use manual point baseline correction. In this case, the user
chooses the regions of wavenumbers of the polygonal line to be subtracted from the absorption spectra.
[17,50] Manual baseline correction has been successfully applied by Zucchiatti et al. [64] In this study,
the contribution of ribonucleic acid (RNA) to Fourier transform infrared (FTIR) spectra of eukaryotic
cells was investigated. [64]

When analyzing biofluids such as plasma or serum, samples usually contain differences in the con-
centrations of some species. These concentration differences are one of the main sources of spectral
variations between samples, thus affecting information of structural biochemical differences of interest
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(i.e., molecular structural changes caused by the presence or absence of viruses) in the spectrum. To
minimize this problem, the spectra can be scaled through normalizations using some specific criteria.
Two examples of widely used normalization are normalization by the peak of Amide I (1650 cm−1) and
normalization by the peak of amide II (1550 cm−1) that can be applied when these peaks are present in
all spectra dataset and are not a distinguishing criteria. However, it is not recommended to apply the two
normalizations together. [4,58] Other common example of normalization is vector normalization, which
is applied after 1st or 2nd derivatives pre-processing. [4,58] It is important to keep in mind that f pre-
processing can greatly modify the signal, changing the spectral shape and even physical interpretation.

6.2. Multivariate analysis

After the pre-processing step, the mathematical tools capable of finding features in the data that dif-
ferentiate samples can be applied. Since mid-infrared spectra are multivariate data (each spectrum is
composed of many wavenumbers associated with their respective absorbance intensities), the analysis
of these data can be done using multivariate analysis techniques. There are numerous techniques that
can be used for this purpose, here we will describe some that have been used in studies involving virus
analysis.

Principal component analysis (PCA) is an unsupervised analysis technique widely applied in chemo-
metric studies. Undoubtedly, among unsupervised multivariate analysis techniques, PCA is the best
known. This technique is called unsupervised because it does not work with training-labelled informa-
tion, that is, no information is given about the spectra that are provided. Therefore, PCA is used mainly
for exploratory analysis where similarities and dissimilarities can be observed between the samples in
the principal components space. The principal components are those that have the greatest observed vari-
ance in the data after applying a linear transformation to the original data. This transformation provides
new variables, which are the principal components (PCs). The PCs are composed of scores, represent-
ing the variance on sample direction, and loadings, representing the variance on wavenumber direction.
The PCA scores are used to assess similarities/dissimilarities between the samples and the loadings to
identify important wavenumbers responsible for the scores distribution pattern. PC1 is the component
with the largest amount of information (largest observed variance), PC2 is the one that has the second
largest observed variance, and so on. [35] Fig. 5 explains the structure of the PCA model in mathe-
matical terms, where X is a I × J matrix with the rows (I ) being the spectra and the columns (J ) the
variables (wavenumbers); T is the scores vector, which are numerical values for each sample present on
the selected components; P is the loadings vector, which informs the most important variables for the
respective component; and E is the residual matrix. [6]

Fig. 5. Matrixial representation of the PCA model, where X is a matrix with rows representing spectra and columns representing
spectral variables (wavenumbers). T is a matrix containing the PCA scores, P is a matrix containing the PCA loadings, and E
is a residual matrix. Superscript T represents the matrix-transpose operation.
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PCA has been applied in the exploration of data for studies involving virus, where, for example, plasma
samples with and without HIV virus have been discriminate by PCA [34]. However, this technique is
not much efficient in distinguishing samples based on biofluids’ spectra in the presence or absence of
viruses due to the large sample complexity in some cases. [40,45–47,52] This probably happens due
to the high similarity observed in the samples and, consequently, in the spectra. Viruses represent the
smallest part of the sample, therefore, spectral differences are minimal. That is, the similarity of the data
is high, so that, is not possible to identify differences only by exploring the data in a unsupervised way.
For this type of problem, a supervised approach is often necessary.

The term “supervised” refers to the fact that sample label information is provided in the training stage,
where a pattern classification or recognition model is trained to recognize and associate information
with their respective classes, for later, be proven in a test step where new samples (MIR spectra, in
this case) are provided “blindly”. In the construction of this model, the samples can be separated into a
training and test set randomly, or using sampling algorithms such as Kennard–Stone [18] or MLM [28].
Two of the most common supervised techniques are Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA).

LDA is one of the most used supervised techniques in chemometric and multivariate classification
studies. LDA is based on a Mahalanobis distance calculation between the samples that fits a linear
plane of separation perpendicular to the main direction of data variance. [55] In order to obtain the
discriminant profile, the LDA calculates the classification score (Lik) for a given class considering that
the classes covariance matrices are the same for all classes (Eq. (1)):

Lik = (xi − xk)
T

−1∑

pooled

(xi − xk)(xi − xk)
T − 2 loge πk (1)

where xi represents a measurement vector for a sample i; xk represents an average vector of class k;∑
pooled is the pooled covariance matrix; and πk is the prior probability of class k. [51]
QDA works similar to LDA; however, in QDA the covariance matrices are not considered equal (if

they are really equal, the decision limit will be linear and the QDA will be reduced to LDA). [51] The
classification score for QDA is found based on Eq. (2):

Qik = (xi − xk)
T

−1∑

k

(xi − xk) + loge |
∑

k

| − 2 loge πk (2)

where
∑

k is the variance-covariance matrix of class k; loge |∑k | is the natural logarithm of the
variance-covariance matrix

∑
k. The prior probability (πk), pooled covariance matrix (

∑
pooled) and

variance-covariance matrix (
∑

k) are calculated as follows:

πk = Nk

N
(3)

∑

pooled

= 1

N

k∑

k=1

Nk

∑

k

(4)
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∑

k

= 1

Nk

Nk∑

i=1

(xi − xk)(xi − xk)
T (5)

with Nk represents the number of objects of class k, N the total number of samples in the training set,
and K the total number of classes. [10,61]

Based on the principle of using covariance matrices that are similar for all classes in LDA, and different
in QDA, we can assume that, normally, for more complex data where the variance between the classes
is highly different, QDA will obtain a better response. On the other hand, for simpler data sets with
unique variance structure, LDA should get better results. Therefore, both LDA or QDA can be applied
for supervised classification purposes. However, for big multivariate data such as spectra of biological
samples, where the number of spectra variables is often larger than the number of training samples and a
high degree of spectral overlapping features is present, a previous method is generally applied to reduce
the sample size before applying LDA or QDA. This assists the LDA or QDA in the classification work,
since the dataset is reduced and a large amount of redundant information is eliminated. A method widely
used for dimensional reduction is precisely the PCA previously described. Therefore, PCA with LDA or
QDA can be used together, which is called PCA-LDA or PCA-QDA, respectively.

Other techniques can be used instead of the PCA for feature extraction/selection. For example, tech-
niques of variables selection, such as the Successive Projections Algorithm (SPA) and the Genetic Al-
gorithm (GA). The SPA considers each variable present in the training set as a vector. These vectors are
subjected to projection operations resulting in the creation of K chains of variables. A given chain starts
with a variable and progressively increases with variables that have the least redundancy in relation to
the previous ones (least collinearity) [46], and the collinearity is assessed based on the projections.

GA selects variables based on a computational approach following Darwin’s natural selection pro-
cess. In the process, GA creates an initial population formed by subsets of variables. Each variable is
initially randomly assigned a value of 0 (variables not initially selected) or a value of 1 (variables ini-
tially selected). Each subset of variables is assigned a fitness value based on a fitness function. Based on
this fitness criterium, the selection stage takes place where the subset of lesser fitness is eliminated, and
those of greater fitness can be duplicated. In a second step, the mutation and crossover genetic operators
can change selected variables to unselected (or the opposite), and cross two subsets of variables, respec-
tively. This whole process is called generation. This process is repeated for a number of generations, and
in the end, the subset of the best fitness is that of the selected variables. [53] Finally, it is also possible
to associate SPA and GA with LDA or QDA for classification. In this case, we call these algorithms
SPA-LDA, SPA-QDA, GA-LDA or GA-QDA.

7. Calculations for quality measurement

To measure the predictive capacity of the model, we rely on true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). Based on these values, quality measures such as sensitivity
and specificity can be calculated. Sensitivity (SENS) represents the portion of positive samples correctly
classified and specificity (SPEC) represents the portion of negative samples correctly classified. Equa-
tions (6) and (7) show how to calculate sensitivity and specificity, respectively. Other figures of merit
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Fig. 6. Flowchart summarizing the fundamental steps of a multivariate classification study based on ATR-FTIR spectra.

can be found easily in the literature. [46]

SENS(%) = TP

TP + FN
× 100 (6)

SPEC(%) = TN

TN + FP
× 100 (7)

In Fig. 6 we can see a flow chart summarizing the fundamental steps for a study based on the funda-
mentals presented here.

8. Applications of ATR-FTIR spectroscopy in virus identification

Detection and quantification of poliovirus infections using FTIR spectroscopy and cell culture has
been done by Lee-Montiel and collaborators. [20] In this study, the authors explain the problems found
in current virus detection methods. They are complex and time-consuming, making detection at the
point-of-care difficult. For this, they suggest the use of ATR-FTIR spectroscopy as a fast, sensitive
and highly specific method to quantify potentially dangerous viral pathogens and to determine whether
suspicious materials contain viable viral particles. Therefore, poliovirus (PV1) was used to evaluate
the usefulness of FTIR spectroscopy with cell culture for rapid detection of infectious viral particles.
For this, buffalo green monkey kidney cells (BGMK) infected with different virus titers were studied
from 1 to 12 hours after infection (h.p.i.). It was concluded that this approach for the detection and
quantification of poliovirus has the potential to be extended to other viruses, and can be adaptable to an
automated scheme for use in water safety monitoring, medical diagnosis, among others. [20]
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In another study, Santos et. al. [45] used ATR-FTIR spectroscopy in conjunction with multivariate
analysis techniques to detect different viral loads of dengue serotype 3 (DENV-3) in blood and serum.
In this study, 40 blood and serum samples were infected with four different viral loads of DENV-3 (10
samples for each viral load). Then, spectra in the 1800 to 900 cm−1 range were imported into MATLAB
where they were pre-processed and separated into training, validation and test sets. The multivariate
classification models used in this study were PCA-LDA, SPA-LDA and GA-LDA. Among the figures
of merit used to assess the capacity of the models, sensitivity and specificity were used, where it was
seen that the best results were obtained for blood samples, where all models obtained 100% sensitivity
and specificity. Among the variables selected by SPA and GA, wavenumbers that are related to proteins
and variables related to RNA were observed refereeing to important structures in the composition of
the virus. This suggests that the technique was able to identify the virus in the blood. The authors
conclude by stating that although the results were encouraging, it would be necessary to carry out more
in-depth studies with a larger number of samples for greater reliability. However, the study shows that
this field of research is worth exploring and, in the near future, we will be able to rely on portable
spectroscopic instruments in clinical diagnostic environments. [45] Santos et. al. [47] also used ATR-
FTIR spectroscopy in conjunction with PCA-LDA, SPA-LDA and GA-LDA to discriminate clinical
samples from patients infected with dengue, zika and chikungunya and samples from healthy volunteers
(without the presence of these diseases). The main objective of this study was to evaluate the specificity
of the technique in discriminating blood samples based only on the presence or absence of these viruses
and to compare the results with some standard diagnostic methods. The results of this study showed
sensitivity and specificity values of 100% for the healthy, dengue and chikungunya classes and values
close to 90% for zika, suggesting that this methodology has the potential to detect biochemical variations
caused by the presence of the virus in the blood. [47]

Naseer et. al. [31] also studied ATR-FTIR spectroscopy in the diagnosis of dengue. In this study, they
sought to identify biochemical marks differentially expressed in lyophilized human blood sera infected
with dengue and healthy. They used a total of 77 samples, where 57 were infected with DENV and 20
were healthy. As multivariate analysis algorithms, they used principal component analysis (PCA), linear
discriminant analysis (LDA) and partial least squares regression (PLSR) in the differentiation between
classes based on the region between 1601 and 1501 cm−1. The PCA-LDA model showed sensitivity and
specificity of 89% and 95%, respectively. While the PLSR model has successfully found biochemical
changes, with an R2 = 0.9980. The authors conclude by emphasizing that ATR-FTIR spectroscopy in
conjunction with multivariate classification algorithms can be used as an effective tool for diagnosing
dengue. [31]

ATR-FTIR spectroscopy was also employed in the diagnosis of hepatitis C and B viruses. [41] In
this study, the capacity of the technique was evaluated together with multivariate analysis techniques
in the classification of human serum samples based on the presence of HBC and HCV infections. The
classification technique used by them was the partial least squares discriminant analysis (PLS-DA),
which is a variation of the PLS algorithm used in the discriminant analysis. The samples were separated
into training (70%) and test sets (30%). The positive spectra for HBC and HCV showed an intense
band observed at 1631 cm−1 attributed to the protein marker immunoglobulin (Ig). A 1093 cm−1 band
was observed only in the spectra of samples infected with HBV, and was attributable to the C-C and
CO- modes of the hepatitis B surface antigen (HBsAg) N-glycan polysaccharide. However, the authors
should also consider vibrations that overlap with C-C and CO- stretching, such as a PO−

2 symmetrical
stretching vibration that is related to the dsDNA of HBV. Finally, the authors conclude by stating that
ATR-FTIR spectroscopy has great potential in the study of blood composition and in the identification
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of possible disease markers. However, they emphasize that care must be taken so that modeling does not
influence inflammation markers, which could confuse the diagnosis. [41]

9. Advantages and disadvantages of the technique

Among the advantages of ATR-FTIR spectroscopy we can highlight the high signal-to-noise ratio,
reduced dispersion, good spatial resolution, non-destructiveness, no sample preparation (or minimal
preparation), low relative cost, and automated analysis. Among the disadvantages, we can highlight that
the analysis can be destructive if too much pressure is applied on the sample, CO2 interference, and
sample thickness problems that can lead to systematic spectral shifts. [4,46] A disadvantage in the use
of ATR-FTIR in the detection of viruses is a possible overlapping of spectral bands between the virus
(capsid protein, proteins released during infection, genetic material) and the host cell. In the region
between 1800 to 900 cm−1 we will find peaks related to proteins, and genetic material, however, since
these biochemical structures can be found in both cells and viruses, it is expected an overlapping of
spectral bands. This can make discrimination difficult.

10. Future perspectives

As has been seen, viral diagnostic techniques that are used nowadays are a double-edged sword, where
advantages and disadvantages are mutually observed. Direct methods are more specific, however, they
take time and are more expensive. Indirect methods are faster and cheaper, but are less specific. Based on
this assessment, ATR-FTIR spectroscopy emerges as a tool with the potential to solve the deficiencies
found by standard techniques. ATR-FTIR spectroscopy is known to have a fast response and provide
reliable information about the sample composition, and has been used in several virological applications
for screening or diagnosis of viral infections.

Knowing that vibrational spectroscopy is fast, non-destructive and has a low-cost, we can imagine
that, with new studies developed in this area, soon we can count with spectroscopic tools in clinics and
hospitals, being used for routine diagnostic or acting as a reliable diagnostic aiding tool. For this, only
a minimal amount of collected biofluid would be needed. Spectral acquisition of this biofluid would be
done by an instrument coupled to a computer where this spectral information would be automatically
imported into software that would perform all computational procedures in real time (pre-processing and
multivariate classification), based on a previously constructed and optimized model.

11. Conclusions

It cannot be denied that ATR-FTIR spectroscopy has several advantages that attribute to this technique
a great potential towards viral diagnostic routines. This technique cannot be overlooked, and must be
considered an possible alternative for viral diagnosis especially when experiencing global problems such
as the one caused by COVID-19. Several people die every day for lack of a quick, reliable and relatively
inexpensive diagnosis. In conjunction with spectroscopic analysis, multivariate data analysis provides
powerful support for interpretation and pattern recognition. Finally, spectroscopy approaches combined
with multivariate analysis provide a powerful weapon in studies for development of rapid diagnostics,
which can be extended to several viruses of different types and strains. With that, we encourage the
scientific community to explore this field of study.
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