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Abstract. Several illustrative examples are presented in this tutorial review to demonstrate the utility of 2D correlation spec-
troscopy, especially in life science applications. A set of IR spectra for a model protein system, which is undergoing complex
thermally induced changes in the secondary structures, is analyzed by 2D correlation spectroscopy. The method of constructing
2D correlation maps from temperature-dependent IR spectra and their interpretation procedure are described. The resolution of
overlapped protein IR bands by 2D correlation is demonstrated, and sequential order of spectral intensity changes is determined.
Newly emerging techniques in the field, such as Pareto scaling, positive null-space projection, and 2D codistribution analysis,
are discussed in some detail, in addition to the traditional application of 2D correlation spectroscopy.
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1. Introduction

Two-dimensional (2D) correlation spectroscopy [15–17,29,30] has become a very popular analytical
technique in the last several decades, especially in the field of life science. A series of comprehensive
survey reviews have been tracking the progress of 2D correlation spectroscopy in various applications
[18,20,21,23,25,26,28]. In essence, 2D correlation spectroscopy is a tool to extract useful information
from a set of spectral data, which are obtained from a sample under the influence of some form of
external perturbation. The nature of the perturbation can be a time-dependent phenomenon, like chemical
reactions or physical relaxation processes. Static effects, such as the temperature variation or change
in the concentration of constituents, are also routinely employed as an effective form of perturbation.
Systematic variations in the spectral intensities induced by such perturbations are used to construct 2D
correlation spectra by employing a form of cross correlation analysis [17,29,30]. The technique can be
applied to a number of analytical probes, such as IR, Raman, NIR, fluorescence, NMR, X-ray, and the
like [26]. The basic concept of 2D correlation can also be utilized in the field of applications other than
spectroscopy, such as chromatography or microscopy [30].

Notable features of 2D correlation spectroscopy that have been realized are: simplification of complex
spectra consisting of many overlapped peaks, enhancement of apparent spectral resolution by spread-
ing peaks over the second dimension, establishment of unambiguous assignment through correlation
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of bands selectively coupled by various interaction mechanisms, and determination of the sequence of
events represented by the variations of spectral intensities [16,17,29,30]. Such unique advantages of 2D
correlation spectroscopy are especially attractive in the study of highly complicated biological samples,
like proteins [26,31]. In fact, the very first report on 2D IR correlation spectroscopy on the record was in-
deed based on the study of a protein sample under the influence of mechanical perturbation [14]. Further
future growth in the usage of 2D correlation spectroscopy is expected in the biological and biomedical
applications.

In this tutorial review, several illustrative examples are presented to demonstrate the utility of 2D
correlation spectroscopy, especially in the life science applications. A set of IR spectra for a model
protein system, which is undergoing complex thermally induced changes in the secondary structures,
are analyzed by 2D correlation spectroscopy. The method of constructing 2D correlation maps from
temperature-dependent IR spectra and their interpretation are described. The resolution of overlapped
protein IR bands by 2D correlation is demonstrated, and sequential order of spectral intensity changes
is determined. Newly emerging techniques in the field, such as Pareto scaling, null-space projection and
codistribution analysis, will be discussed in some detail, in addition to the traditional application of 2D
correlation spectroscopy.

2. Background

2.1. Perturbation-induced dynamic spectra

The basic theory of generalized 2D correlation spectroscopy has been described many times in the
past [17,19,29,30], so only a brief summary which is pertinent to practical applications is provided here.
In the so-called generalized 2D correlation scheme, a series of perturbation-induced dynamic spectra are
collected first in a systematic manner. Suppose a set of m spectra A(νj , ti) is obtained as a function of the
spectral variable νj with j = 1, 2, . . . ,n and some perturbation variable ti with i = 1, 2, . . . ,m during
a well-defined observation interval between t1 and tm. The spectral variable ν can be, for example,
IR wavenumber, Raman shift, X-ray diffraction angle, UV wavelength, etc., depending on the specific
analytical probe employed. Perturbation variable t can be one of many reasonable measures of the effect
of perturbation, such as time, temperature, composition, pressure or even electric potential. The spectral
dataset obtained under the influence of a perturbation can be readily transformed into 2D correlation
spectra by applying a form of cross correlation analysis.

The dynamic spectrum Ã(νj , ti) of a system, induced by the application of an external perturbation
within the observation interval between t1 and tm, is formally defined as

Ã(νj , ti) = A(νj , ti) −A(νj), (1)

where A(νj) is the reference spectrum of the system. For most applications, the reference spectrum is
selected as the stationary or average spectrum given by

A(νj) =
1
m

m∑
i=1

A(νj , ti). (2)
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2.2. Synchronous 2D correlation spectrum

Synchronous correlation spectrum Φ(ν1, ν2), which represents the correlation of simultaneous varia-
tions of spectral intensities measured at two different wavenumbers, ν1 and ν2, is given by

Φ(ν1, ν2) =
1

m− 1

m∑
i=1

Ã(ν1, ti) · Ã(ν2, ti). (3)

This quantity is a measure of the similarity among spectral intensity variations along the perturbation
variable ti. A large value of Φ(ν1, ν2) implies that spectral intensities at ν1 and ν2 vary in a coordinated
manner, suggesting the common or coupled origin of the spectral signals. It can be easily seen from
Eq. (3) that synchronous spectrum is a form of covariance of spectral intensity fluctuations observed at
two different wavenumbers, ν1 and ν2.

2D correlation spectrum is often displayed as a contour map of correlation intensity on a spectral
plane defined by two independent wavenumber axes. A synchronous spectrum plotted in this manner is
a symmetric map, i.e., Φ(νa, νb) = Φ(νb, νa), with respect to the main diagonal line of the map located at
the coordinate ν1 = ν2. Correlation intensity at the diagonal position corresponds to the autocorrelation
function of spectral intensity variations. Peaks on the main diagonal line are therefore referred to as
auto-peaks. The intensities of auto-peaks represent the overall extent of dynamic fluctuations of spectral
signals induced by the perturbation.

Cross peaks located at the off-diagonal positions of a synchronous 2D correlation spectrum, in turn,
represent the simultaneous change in signals at two different wavenumbers. The sign of a cross peak
can be either negative or positive. It is customary to indicate negative cross peaks with either shading or
broken contour lines. If the sign of a synchronous cross peak is positive, the two intensities observed at
corresponding wavenumbers increase or decrease together in the same direction. On the other hand, the
sign of a cross peak becomes negative if one of the spectral intensities is increasing while the other is
decreasing.

2.3. Asynchronous 2D correlation spectrum

Asynchronous correlation spectrum Ψ(ν1, ν2) represents the correlation of sequential variations of
spectral intensities measured at ν1 and ν2. This quantity is given by

Ψ(ν1, ν2) =
1

m− 1

m∑
i=1

Ã(ν1, ti) ·
m∑
k=1

NikÃ(ν2, tk) (4)

with

Nik =

{
0 if i = k,

1
π(k − i)

otherwise. (5)

The intensity of asynchronous correlation spectrum can be used as a measure of dissimilarity of spec-
tral intensity variations. A large value of Ψ(ν1, ν2) implies the spectral intensities at ν1 and ν2 vary
independently of each other. This phenomenon, in turn, suggests that corresponding spectral signals are
originating from separate moieties, capable of responding differently to a common perturbation.
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An asynchronous 2D correlation spectrum map consists exclusively of off-diagonal cross peaks. It
is an anti-symmetric map, i.e., Ψ(νa, νb) = −Ψ(νb, νa), such that for every positive peak there is a
negative peak counterpart at the opposite side of the main diagonal line located at ν1 = ν2. Asynchronous
correlation represents sequential changes, instead of simultaneous ones, in spectral intensity variations
measured at ν1 and ν2, which are observed at different points along the perturbation axis. In other words,
asynchronous cross peaks develop only if two dynamic spectral intensities vary out of phase with each
other. This feature becomes especially useful in differentiating overlapped bands arising from different
moieties which are capable of responding independently of each other to a given perturbation.

By comparing the signs of cross peaks, it becomes possible to determine the sequential order of spec-
tral intensities variations by following a simple set of rules. If the signs of both synchronous and asyn-
chronous peaks located at the same spectral coordinate (ν1, ν2) are the same, the intensity change at ν1

is occurring predominantly before that at ν2 along the perturbation axis. On the other hand, if the signs
of cross peaks are different, the opposite becomes true, i.e., intensity variation at ν1 takes place predom-
inantly after ν2. If an asynchronous cross peak is not observed but a sizable synchronous cross peak
appears at a spectral coordinate (ν1, ν2), then the spectral intensity variations observed at ν1 and ν2 occur
simultaneously. And finally, in the rare case of observing a finite asynchronous peak but no synchronous
peak at the same coordinate, the sequential order cannot be determined.

2.4. Matrix representation of 2D correlation spectra

It is often useful to represent a spectral dataset in a form of m by n matrix Ã with it element being
Ãij = Ã(νj , ti). With this notation, the synchronous and asynchronous spectra are conveniently given
in the form of n by n matrices

Φ =
1

m− 1
ÃTÃ, (6)

Ψ =
1

m− 1
ÃTNÃ. (7)

The superscript T stands for the matrix transpose operation. Elements of the so-called Hilbert–Noda
transformation matrix N are defined in Eq. (5) [19]. The matrix notation of 2D correlation spectra be-
comes especially useful in describing the vector projection operation to be discussed later.

3. 2D IR correlation spectroscopy studies of proteins

3.1. Protein secondary structures

IR and Raman probes are very often used in the study of proteins and peptides [1,3,9,10,13,40]. Vi-
brational spectra of proteins, especially in the Amide I and II regions, contain very rich information
about the conformational secondary structure of various proteins. Due to specific transition dipole cou-
pling phenomena, different local conformational structures, such as α-helix and β-sheet moieties, give
bands with characteristic frequencies which can in principle be distinguished from each other. In reality,
however, such conformation sensitive IR bands are substantially overlapped with each other to make the
unambiguous assignment sometimes difficult.
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2D correlation spectroscopy has been extensively used in the IR and Raman study of various proteins
[2,5–8,11,32,34,37,39]. The apparent enhancement of spectral resolution by spreading the overlapped
bands along the second dimension clearly is an advantage in interpreting complex protein spectra. The
assignment of the sequential order of intensity variations of overlapped conformation-sensitive bands
also becomes helpful. It is often used in gaining the mechanistic understanding of the dynamic evolution
of secondary structures of protein, especially during the denaturation and aggregation processes induced
by thermal or chemical perturbation.

In this section, a set of simulated model protein IR spectra, which are meant to somehow mimic the be-
havior of naturally occurring protein undergoing thermal denaturation, is constructed for 2D correlation
study. The temperature-dependent dynamics of individual secondary structures are modeled to follow
the patterns similar to those observed in the actual experimental measurement [40] to make this study as
realistic as possible. The real advantage of using the simulated data instead of the actual experimental
protein IR spectra is that the assumed component spectra and their dynamics are a priori known with-
out any ambiguity. Thus, the performance of various analysis techniques associated with 2D correlation
spectroscopy can be validated without making any further assumptions.

3.2. Simulated protein IR spectra

Figure 1(a) shows a simulated protein IR spectrum in the Amide I region, which reasonably resembles
many known experimental protein spectra with various secondary structures. The spectrum is a compos-
ite of combined contributions from four separate secondary structure component spectra, corresponding
to the α-helix, β-sheet, β-turn and random (disordered) conformation. Such component spectra are also
individually shown in Fig. 1(a) under the envelope of the simulated protein spectrum.

For the simulated component spectrum, each absorption peak is constructed by assuming a Lorentzian
profile

Li(ν) = ai

{
1 +

(
ν − νi
wi

)2}−1

(8)

with appropriate parameters representing the peak i, given by the peak maximum wavenumber posi-
tion νi, maximum intensity ai, and half width at half height wi as listed in Table 1. Peaks of component
spectra are substantially overlapped when combined into the final protein spectrum. In other words,
unambiguous identification of different peaks of component spectra from the protein spectrum is not
always straightforward.

It is now assumed that the conformational structures of this model protein undergo temperature-
induced transformations due to denaturation. Assumed population changes of the secondary structures
are graphically depicted in Fig. 1(b). They are based on the following temperature response functions
Fj(T ) of the jth conformation given by

Fα-helix(T ) =
{

1 − 0.1G1(T )
}{

1 − 0.1G2(T )
}{

1 − 0.9G3(T )
}

, (9)

Fβ-turn(T ) = G1
{

1 − 0.9G3(T )
}

, (10)

Fβ-sheet(T ) = G2
{

1 − 0.9G3(T )
}

, (11)

Frandom(T ) = G3(T ). (12)
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Fig. 1. Simulated typical protein IR spectra, somewhat mimicking the thermally induced changes of naturally occurring protein:
(a) simulated IR spectrum and assumed constituent spectra of individual conformational secondary structures; (b) assumed
temperature-dependent population profiles of the secondary structures; (c) temperature-dependent IR spectra of the model; and
(d) temperature profiles of the spectral intensities at the wavenumbers corresponding to the band positions of conformational
secondary structures.

Table 1

Parameters defining the simulated IR absorption peak profiles of the conformational secondary structures of model protein

Conformation νi (cm−1) ai wi (cm−1) Temperature dependence
α-helix 1654 0.15 12 Fα-helix

High β-sheet 1682 0.07 16 Fβ-sheet

Low β-sheet 1615 0.08 16 Fβ-sheet

β-turn 1670 0.07 12 Fβ-turn

Random 1645 0.12 12 Frandom

The response functions are made of several Gaussian sigmoid transition functions Gk(T ) with the pa-
rameters of the transition temperature Tj and transition interval dj provided in Table 2,

Gj(T ) =

{
1 + exp

(
Tj − T

dj

)}−1

. (13)
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Table 2

Parameters defining the assumed transition functions for the
temperature-induced conformational transformations of model protein

Transformation Transition function Tj (°C) dj (°C)
α-helix → β-turn G1(T ) 50 10
α-helix → β-sheet G2(T ) 65 10
All → random G3(T ) 75 10

Here, G1(T ) represents the assumed transformation of α-helix to β-turn predominantly occurring around
50°C, G2(T ) is for α-helix to β-sheet near 65°C and G3(T ) is for the formation of random or disordered
conformation around 75°C.

Given the spectra and population dynamics of the secondary structures of the model, the evolution
of the temperature-dependent IR spectra of this model protein can be simulated as shown in Fig. 1(c).
The simulated IR spectra are intentionally designed to closely mimic that of the real protein denaturation
process, for example [13]. The protein spectrum shown in Fig. 1(a) actually corresponds to the simulated
spectrum at 75°C in Fig. 1(c). We will use this set of simulated temperature dependent protein IR spectra
to demonstrate the utility of 2D correlation analysis.

Figure 1(d) shows the temperature dependent profiles of IR absorption intensities at 1654, 1682, 1670
and 1645 cm−1. These band positions correspond, respectively, to the peak maximum positions of α-
helix, β-sheet, β-turn, and random conformations of this model protein. Indeed, the curves shown here
are reasonably similar to those found in Fig. 1(b). However, there are clearly some differences in the
detailed shapes of the curves between Fig. 1(b) and (d). For example, the decrease in the intensity at
1654 cm−1 seems to occur at a higher temperature range compared to that for the population of α-helix
conformation. Such discrepancy is due to the influence of contributions from overlapped neighboring
bands. In this case, the contribution from the increasing intensity of the random conformation band cen-
tered around 1645 cm−1 is making the intensity decrease at 1654 cm−1 to occur at a higher temperature.

3.3. 2D correlation analysis

Figure 2 shows the contour map representations of 2D IR correlation spectra constructed from the
temperature-dependent IR spectra of Fig. 1(c). Negative correlation peaks are indicated by the blue
shade. The reference spectrum obtained as the average of temperature dependent spectra is provided at
the top and side of correlation maps. Band locations of the component spectra for individual secondary
structures, i.e., 1654 cm−1 for α-helix, 1682 and 1615 cm−1 for β-sheet, 1670 cm−1 for β-turn, and
1645 cm−1 for random conformation, are also indicated by the color-coded vertical and horizontal bars
placed along with the reference spectrum.

Auto-peaks found along with the main diagonal line and corresponding cross peaks of the synchronous
spectrum (Fig. 2(a)) are all located very closely to the wavenumber positions of the secondary structure
absorption bands of component spectra. Thus, the dynamics of individual components can be resolved
and analyzed, even though the spectral features within the original protein IR spectra are heavily over-
lapped. High intensities of auto-peaks at 1654 and 1645 cm−1 indicate strong susceptibility of these
bands, corresponding to the large population changes of α-helix and random conformations with in-
creasing temperature.

Negative synchronous cross peaks found near the band position of α-helix at 1654 cm−1 indicate
that the direction of intensity change of α-helix conformation is opposite of the behavior of random
conformation at 1645 cm−1. As the intensity at 1654 cm−1 is consistently decreasing with the rising
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Fig. 2. Synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed from the simulated
temperature-dependent IR spectra shown in Fig. 1(c) ranging from 40 to 90°C. Average spectrum is placed at the top and side
of the 2D contour map as a reference. Short color-coded bars are provided with the reference spectrum to indicate the band
position of conformational secondary structures. 2D cross peaks with negative correlation intensities are indicated by the blue
shading.

temperature, these cross peaks correctly reflect the increase in the amount of random conformation
with temperature. The population dynamics of β-sheet at 1670 and 1615 cm−1 may be somewhat more
complicated, as it increases first but then decreases later at a higher temperature. Almost near zero syn-
chronous correlation intensity between α-helix at 1654 cm−1 and β-sheet at 1670 cm−1 indeed suggests
the cancellation of the two competing trends. As discussed later, selecting different observation intervals
focused on either the lower or higher temperature range provides much less ambiguous synchronous
correlation results.

Spectral features observed in the asynchronous spectrum (Fig. 2(b)) are even better resolved than
those in the synchronous spectrum. Cross peaks are observed at every positions of individual absorp-
tion bands of the protein secondary structure conformations. The result immediately reveals that the
secondary structures are evolving asynchronously, i.e., semi-independently with each other, at different
temperatures. This finding is consistent with the fact that the temperature response functions of individ-
ual conformations are all designed to behave differently as described in Eqs (9)–(12).

It is interesting to note that the position of the maximum point of an asynchronous cross peak does not
always match with the position of individual conformation band. This discrepancy is due primarily to
spectral overlap. For example, the maximum point of the asynchronous cross peak at (1676, 1654 cm−1)
is a result of the overlapped contributions from β-turn (1670 cm−1) and β-sheet (1682 cm−1), both
behaving asynchronously with α-helix (1654 cm−1). Yet, the asymmetric shape of the cross peak and the
pointed lobe around (1682, 1670 cm−1) clearly indicate the presence of two overlapped contributions,
and furthermore the possible location of the β-sheet (1682 cm−1) band. Similarly, the location of the
β-turn (1670 cm−1) can be more accurately deduced from the cross peak with random conformation
(1645 cm−1).

Sequential order of the spectral intensity changes can be determined from the signs of 2D correlation
cross peaks. For example, both synchronous and asynchronous correlation intensities observed at the
coordinate (1654, 1670 cm−1) are positive. The result indicates the continuous decrease in α-helix at
1654 cm−1 starts earlier at a lower temperature than the decrease in β-turn at 1670 cm−1. However, the
assignment of the precise order of intensity changes may become a complicated matter, if the temperature
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interval of observation is selected too wide to include multiple competing population dynamics, such as
the increase and decrease in the absorption intensities of β-sheet and β-turn conformations during the
temperature scan.

The initial increase in the population of β-turn conformation observed at 1670 cm−1 obviously hap-
pens before the eventual decrease of the same secondary structure with rising temperature. According
to the assumed model, the creation of β-turn actually occurs at a temperature lower than the overall
consumption of α-helix, which is continuously converted to other structures, like β-sheet and random
conformations, in a higher temperature range. In short, the actual sequential order of intensity changes
can be summarized as: β-turn↑ → α-helix↓ → β-turn↓. The horizontal arrow → denotes the sequence
of occurrence along with increasing temperature, while up or down arrow indicates, respectively, the
increase or decrease in their population.

It should be noted that a simple 2D correlation analysis of the temperature-dependent spectral data,
encompassing the full range from 40 to 90°C, has so far highlighted only the higher temperature process
(α-helix↓ → β-turn↓) which was the most dominant features. In order to capture individual processes
without any ambiguity, it seems more helpful to split the dataset into smaller segments of temperature
ranges.

3.4. 2D correlation analysis of segmented data

Segmentation of dataset into small blocks has been practiced for many years to unambiguously cap-
ture the fine features of population dynamics and assignment of sequential orders of intensity changes
of complex processes [30]. By limiting the observation interval small enough, confusing results arising
from multiple processes, like the one observed above, can be substantially simplified. Here we demon-
strate the utility of such dataset segmentation by splitting the temperature range of the model protein IR
data into two separate blocks: one from 40 to 65°C and the other from 65 to 90°C.

Figure 3 shows the 2D correlation spectra constructed from the simulated temperature-dependent pro-
tein IR spectra for the range from 40 to 65°C. The entire synchronous spectrum (Fig. 3(a)) is dominated
by the strong auto-peaks and positive cross peaks, except for the elongated streaks of negative cross
peaks running at the spectral coordinate of 1654 cm−1 which corresponds to the decrease in the α-helix

Fig. 3. Synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed from the simulated
temperature-dependent IR spectra ranging from 40 to 65°C.
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conformation by heating. The result suggests that contents of all other secondary structures, like β-sheet,
β-turn and random conformation, are increasing. In other words, they are created by the conversion from
α-helix structure, which is consistent with the assumption made during the building of this model pro-
tein system. The merging of features for β-sheet and β-turn at 1682 and 1670 cm−1, arising from the
relative similarity of the pattern of intensity changes, makes the distinction of these bands difficult.

Features of the asynchronous spectrum for the narrower temperature range from 40 to 65°C (Fig. 3(b))
actually is very similar to the result obtained from the dataset (Fig. 2(b)) encompassing the entire tem-
perature range from 40 to 90°C. Development of cross peaks is observed at the spectral coordinates
corresponding to individual conformation bands. Signs of cross peaks also are identical to the ones
found in Fig. 2(b). That means the apparent ambiguity in assigning the sequential order actually arises
from the peak signs of synchronous cross peaks, which are influenced by the direction of signal intensity
variations. The sequential order of spectral intensity changes determined by the signs of cross peaks can
be summarized as: 1670 cm−1 (β-turn↑) → 1682, 1615 cm−1 (β-sheet↑) → 1654 cm−1 (α-helix↓) ∼
1645 cm−1 (random↑). The result is consistent with the lower temperature portion of the model depicted
in Fig. 1(b).

Figure 4 shows the 2D correlation spectra constructed by using the IR spectra obtained at a higher
temperature range from 65 to 90°C. The reference spectrum obtained by averaging the spectra along the
higher temperature range is modified due to the presence of a substantial amount of disordered structure
contribution. Features of synchronous spectrum (Fig. 4(a)) are also noticeably different from the pre-
vious one for lower temperature range (Fig. 3(a)). Signs of cross peaks between α-helix (1654 cm−1)
and β-turn (1670 cm−1) or β-sheet (1682 and 1615 cm−1) are all positive, indicating that the popula-
tions of these secondary structures are changing in the same direction, i.e., decreasing together. Negative
synchronous cross peaks are observed at the spectral coordinate near 1645 cm−1 which corresponds to
the random or disordered conformation. The result is very much consistent with the assumption used in
building the model spectra based on the disordering of the protein secondary structures, which is taking
place at an elevated temperature.

Features of the new asynchronous spectrum (Fig. 4(b)) are again very similar to the previous ones
(Figs 2(b) and 3(b)) obtained from different temperature ranges. However, the distinction between 1682
and 1670 cm−1 bands, corresponding to β-sheet and β-turn conformations, has become clearer in this

Fig. 4. Synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed from the simulated
temperature-dependent IR spectra ranging from 65 to 90°C.
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asynchronous correlation spectrum, indicating much more pronounced difference in the temperature
dependence of these bands in the higher temperature range as observed in Fig. 1(b). The sequential
order of spectral intensity changes from peak signs now become: 1670 cm−1 (β-turn↓) → 1682 and
1615 cm−1 (β-sheet↓) → 1654 cm−1 (α-helix↓) → 1645 cm−1 (random↑). The result is consistent with
the higher temperature portion of the model depicted in Fig. 1(b).

2D correlation analysis of simulated protein IR spectra in this section has clearly illustrated that the
technique is a powerful tool to be able to sort out the evolution of highly overlapped protein secondary
structures undergoing thermally induced transformations. Overlapped peaks of conformation-sensitive
IR absorption bands associated with the secondary structures are readily resolved by spreading the peaks
along the second spectral dimension. The sequence of spectral intensity variations can be determined by
examining the sings of cross peaks appearing at various spectral coordinates of 2D correlation spectra.
The practical utility of this technique has been reflected in the increasing popularity in the use of 2D
correlation spectroscopy for protein research [2,5–8,11,32,34,37,39].

4. New techniques in 2D correlation spectroscopy

In recent years, a number of additional techniques in 2D correlation spectroscopy have been intro-
duced to further enhance the performance of this versatile tool. Some of the new techniques involve
the pretreatment of spectral dataset prior to 2D correlation analysis. Other more recent development is
based on a new methodology which is substantially different from the traditional 2D correlation analysis
approach. Several noteworthy new types of 2D correlation spectroscopy techniques, which should be
useful in the study of biological systems, are now highlighted here. More specifically, scaling treatment
of spectral dataset commonly used in 2D correlation spectroscopy [22], a useful form of projection anal-
ysis to simplify congested 2D spectra [24], and newly introduced codistribution analysis to determine
the sequential order of the presence of constituent species [27] are discussed in some detail.

4.1. Scaling of dataset used in 2D correlation spectroscopy

The remarkable sensitivity of 2D correlation spectra in detecting very subtle perturbation-induced
spectral intensity changes can often reveal features not readily observable in the original set of spec-
tral data. Sometimes it becomes desirable to further enhance subtle features of 2D correlation spectra
by applying additional data pretreatment to selectively enhanced finer spectral details. Scaling opera-
tion, i.e., transformation of spectral data to attenuate or amplify the signals by multiplying the original
spectra with an appropriate wavenumber-dependent weight function, is an effective technique. The treat-
ment often brings out subtle features of spectral intensity variations, which are sometimes obscured by
the dominating strong signals [22]. The merit of 2D correlation analysis of scaled spectral dataset is
discussed here with an illustrative example.

Scaling of spectral data can potentially be a powerful and versatile technique to enhance the quality of
spectra, but only if carried out judiciously [36]. Blind application of some scaling operation to spectral
data may sometimes generate unwanted artifacts. There are many different ways to scale raw spectral
data. The so-called unit-variance scaling or auto-scaling of data prior to 2D correlation analysis is one of
the oldest and well-known techniques in the field. The idea of obtaining 2D correlation spectra by using
the auto-scaled data was first proposed by Barton et al. [4] and later popularized by Šašić et al. [33].

Suppose a set of mean-centered dynamic spectra Ã(νj , ti) are obtained by subtracting the average
spectrum A(νj) from the original perturbation-dependent spectral data A(νj , ti), according to Eqs (1)
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and (2). In the unit-variance scaling operation, dynamic spectra are scaled by the standard deviation σ(νj)
at each wavenumber point. As it has already been pointed out, 2D synchronous spectrum Φ(ν1, ν2) is a
form of covariance of spectral intensity fluctuations observed at two different wavenumbers, ν1 and ν2,
along the perturbation axis. Thus, the standard deviation σ(νj) is readily obtained from the synchronous
correlation intensity observed at the main diagonal position Φ(νj , νj), which directly corresponds to the
variance σ(νj)2 of the spectral intensity fluctuations,

σ(νj) =

√√√√ 1
m− 1

m∑
i=1

Ã(νj , ti)2 =
√

Φ(νj , νj). (14)

A new set of 2D correlation spectra for the unit-variance scaled dynamic spectra Ã(νj , t)/σ(νj) are then
given by

Φ(ν1, ν2)Unit variance = Φ(ν1, ν2)/
[
σ(ν1) · σ(ν2)

]
, (15)

Ψ(ν1, ν2)Unit variance = Ψ(ν1, ν2)/
[
σ(ν1) · σ(ν2)

]
. (16)

It should be noted that the unit-variance scaled synchronous spectrum Φ(ν1, ν2)Unit variance is equivalent
to the Pearson’s correlation coefficient for the pair of spectral intensity fluctuations observed at ν1 and ν2.

Figure 5 shows the unit-variance scaled 2D correlation spectra obtained from the simulated
temperature-dependent IR spectra of the model protein (Fig. 1(c)). The appearance of the unit-variance
scaled 2D spectra is substantially different from that of conventional 2D correlation spectra constructed
without applying any scaling operation (Fig. 2). The auto-peaks prominent in the synchronous spectrum
are no longer observable, as the correlation coefficient intensity at the main diagonal position is now
normalized to unity. Correlation peaks tend to be much broader and have less distinct features. Even
for asynchronous spectrum, it is difficult to identify the existence of two separate bands at 1682 and
1670 cm−1, corresponding to β-sheet and β-turn conformations.

The auto-scaling or unit-variance scaling operation should provide purely correlational or coincidental
aspect of the analysis without being influenced by the magnitude of signals. The expected advantage of

Fig. 5. Unit-variance scaled synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed
from the entire simulated temperature-dependent IR spectra.
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normalizing the data prior to the correlation analysis is to mathematically suppress the overwhelming
effect of strongly varying signals, which tends to dominate and obscure the contributions from equally
important but more subtle spectral intensity variations. Indeed, the feature associated with the relatively
weak spectral intensity variations of β-sheet at 1615 cm−1 has become more visible in Fig. 5, while those
for α-helix and random conformation at 1654 and 1645 cm−1 are less dominating in the auto-scaled 2D
correlation spectra.

One of the major limitations of using unit-variance scaled data for 2D correlation is the unintended
enlargement of the effect of small noise in the spectra, which is not so obvious in a clean simulated
dataset, like the one used here. However, even a small amplitude noise typically present in real-world
experimental spectra can become a very serious issue. The noise effect is especially severe in the spectral
region with little absorption bands, as usually negligible small variations in the measurement can be
dramatically amplified to create wild fluctuations in the resulting correlation intensities. To make the
matter worse, such enlarged noise contributions may partially correlate with the real signals to produce
numerous artifacts. Fortunately, there is an alternative scaling technique to circumvent the apparent
limitation of auto-scaling operation.

Pareto scaling is a pragmatic compromise between somewhat problematical unit-variance scaling op-
eration mentioned above vs. avoiding any scaling pretreatment at all for raw data. The concept of Pareto
scaling was first introduced [38] by Svante Vold in 1993, who also coined this term, named after an
influential Italian economist of the 19th century Vilfredo Pareto. In Pareto scaling, the spectral data are
scaled not by the standard deviation but by the square root of the standard deviation. Thus, Pareto-scaled
2D correlation spectra become

Φ(ν1, ν2)Pareto = Φ(ν1, ν2)/
√

σ(ν1) · σ(ν2), (17)

Ψ(ν1, ν2)Pareto = Ψ(ν1, ν2)/
√

σ(ν1) · σ(ν2). (18)

Pareto scaling avoids some of the annoying limitations of unit-variance scaling operation, such as exag-
geration of the effect of small noise or the complete loss of useful auto-peak information, while achieving
the intended goal of suppressing the overwhelming effect of a few dominant signals to bring out many
other subtle details of weaker signals without being obscured.

Figure 6 shows the 2D correlation spectra constructed from the Pareto-scaled spectral data. Auto-
peaks disappeared by the unit-variance scaling in Fig. 5(a) are now brought back in the Pareto-scaled
synchronous spectrum (Fig. 6(a)). So are the finer and more distinct features of cross peaks. Relative
strength of correlation intensities has been modified. Weaker signal contributions from β-sheet and β-
turn, especially from the band for β-sheet at 1615 cm−1, have become more visible by applying Pareto
scaling compared to the conventional 2D correlation spectra (Fig. 2) constructed without any scaling
pretreatment operation. Although most of the pertinent information can be seen in the conventional 2D
correlation spectra, Pareto-scaled 2D spectra tend to bring out finer spectral features more clearly to
assist easier interpretation of data.

4.2. Projection analysis

Projection 2D correlation analysis [24] is a useful tool to dramatically simplify highly congested 2D
correlation spectra often encountered in practice. As already indicated in Eqs (6) and (7), 2D correlation
spectra can be expressed in terms of matrices Φ and Ψ obtained by the simple matrix multiplications



122 I. Noda / Techniques of two-dimensional (2D) correlation spectroscopy useful in life science research

Fig. 6. Pareto-scaled synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed from the
entire simulated temperature-dependent IR spectra.

of m by n spectral data matrix Ã with m dynamic spectra along the perturbation axis and n wavenum-
ber points for each spectrum. One can apply matrix-based mathematical projection operations as an
effective filtering method to transform spectral data to those containing much simplified features. This
technique is gaining popularity in streamlining 2D correlation spectra for easier interpretation [12,35].
Detailed discussion on the subject is found in the original article [24]. Only a very brief description of
the technique which is pertinent to the specific example is provided here.

Projecting vector used in the projection operation can be obtained from various sources. One of the
most useful sources of a projecting vector actually is a column of the original spectral data matrix. Such a
projecting vector can be used to carry out the so-called positive null-space projection to filter out specific
contributions which are overlapping with other features of 2D correlation spectra. In this operation, a
column y of the data matrix Ã at a target wavenumber is selected that contains the specific feature to be
filtered out. For example, it can be the temperature-dependent spectral intensity variations observed at
1670 cm−1 which should be containing predominantly the contribution from β-turn structure (Fig. 1(d)).

The normalized vector of y is given by

uy = y/
(
yTy

)−1/2
(19)

which can be used to calculate the loading vector vA of the portion of the data of matrix Ã projected
onto the space spanned by the column y,

vA = Ãuy. (20)

Now the positive loading vector v+A is obtained by simply replacing all negative elements of vA with
zero. The positive null-space projected dynamic spectra Ã+N and the corresponding 2D correlation
spectra are then given by

Ã+N = Ã − uyvT
+A, (21)

Φ+N =
1

m− 1
ÃT
+N Ã+N , (22)
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Fig. 7. Synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed from the entire simu-
lated temperature-dependent IR spectra after the positive null-space projection operation with the spectral intensity variation of
β-turn at 1670 cm−1.

Ψ+N =
1

m− 1
ÃT
+NNÃ+N . (23)

It should be noted that the positive null-space projected data matrix Ã+N no longer contains any feature
of spectral intensity variation pattern which is similar (not only in the shape but also in the direction) to
the one represented by the projecting column vector y.

Figure 7 shows 2D correlation spectra constructed from the temperature-dependent IR spectra of
model protein, which has been subjected to the positive null-space projection with the intensity vari-
ation of β-turn at 1670 cm−1 as the projecting vector y. It is clear that features related to β-turn con-
formation are completely removed from the correlation spectra. By removing the overlapping β-turn
contribution, neighboring bands at 1682 and 1654 cm−1 for β-sheet and α-helix in the synchronous
spectrum (Fig. 7(a)) are now much more clearly resolved, as indicated by the appearance of independent
auto-peaks and cross peaks. Similar effect of clear peak separation is also observed in the asynchronous
spectrum (Fig. 7(b)).

Similarly, by applying the positive null-space projection operation with the intensity variation at
1615 cm−1 as the projector vector, the removal of the contribution from β-sheet conformation to the
dataset is achieved. Using this band is preferred to the other option of using 1682 cm−1, which has
substantial overlap with the contribution from β-turn conformation. Figure 8 shows the resulting 2D
correlation spectra, which no longer contains features associated with β-sheet. They clearly depict the
different population dynamics of three remaining components: α-helix, β-turn and random conforma-
tions. Cross peaks at higher wavenumber region extend themselves beyond 1682 cm−1, indicating that
the projection operation removed only the β-sheet contribution but retained the overlapped β-turn con-
tribution.

4.3. Codistribution analysis

Two-dimensional codistribution spectroscopy is a technique designed specifically for the analysis of
population dynamics, such as temporal distribution of conformational secondary structures within a pro-
tein during the denaturation and aggregation process [27]. The technique focuses on the features of
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Fig. 8. Synchronous (a) and asynchronous (b) 2D correlation spectrum of the model protein constructed from the entire simu-
lated temperature-dependent IR spectra after the positive null-space projection operation with the spectral intensity variation of
β-sheet at 1615 cm−1.

spectral signals reflecting the distributed presence of contributing species, instead of the variation pat-
terns of perturbation-induced spectral intensities traditionally analyzed by 2D correlation spectroscopy.
Codistribution analysis utilizes the first moment or the center of gravity of spectral intensity distribu-
tions for the comparison of distributions of intensities observed at two different wavenumbers along the
perturbation axis. The technique is especially useful in identifying intermediate species arising during
the course of a multi-staged reaction process.

Traditional 2D correlation analysis provides the information on the sequential order of spectral inten-
sity variations. For a system involving species which can both increase and decrease in population during
the observation, it is sometimes necessary to segment the dataset into smaller blocks, as already demon-
strated in Section 3.4 of this paper, to obtain the unambiguous assignment of the population dynamics.
In contrast, 2D codistribution spectroscopy, based on the moment analysis of distribution densities of
spectral intensities along the perturbation axis, directly provides the information about the sequential
order of distributed presence of constituent species, such as different secondary structures of a protein.

For a set of m dynamic spectra Ã(νj , ti) with the average A(νj) as the reference spectrum obtained
according to Eqs (1) and (2), the asynchronous 2D codistribution spectrum Δ(ν1, ν2) is given by

Δ(ν1, ν2) =
T (ν1, ν2)
m(m− 1)

m∑
i=1

i

{
Ã(ν2, ti)

A(ν2)
− Ã(ν1, ti)

A(ν1)

}
. (24)

The total joint variance T (ν1, ν2) is given in terms of the standard deviation σ(ν) of the spectral intensity
variation, which in turn is related to the synchronous correlation intensity at the main diagonal position
(Eq. (14))

T (ν1, ν2) = σ(ν1) · σ(ν2) =
√

Φ(ν1, ν1) · Φ(ν2, ν2). (25)

Asynchronous codistribution spectrum has the following properties useful for identifying the sequence
of presence of species [27]. For a cross peak with positive sign, i.e., Δ(ν1, ν2) > 0, the presence of the
species reflected by the spectral intensity at ν1 is distributed predominantly at the earlier stage along
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Fig. 9. Asynchronous 2D codistribution spectrum of the model protein constructed from the entire simulated temperature-de-
pendent IR spectra.

the perturbation axis compared to that for ν2. In contrast, if we have the observation of a negative cross
peak, i.e., Δ(ν1, ν2) < 0, the order of presence is reversed. In the case of Δ(ν1, ν2) ≈ 0, the average
distributions of the spectral intensities observed at two wavenumbers over the course of observation are
similar, that is they coexist together.

Figure 9 shows the 2D codistribution spectrum of the simulated temperature-dependent model protein
IR spectra shown in Fig. 1. The interpretation of this 2D codistribution spectrum is straightforward. The
population of α-helix secondary structure represented by the band centered around 1654 cm−1 is most
predominantly present at the earlier stage on the perturbation axis, i.e., at a lower temperature region.
As the temperature is raised, the population of α-helix is diminished. In turn, the population of β-turn
conformation (1670 cm−1) arises followed by that of β-sheet (1682 and 1615 cm−1) structure. Finally,
the steady increase in the population of random structure (1645 cm−1) at a higher temperature range
is observed. The picture depicted on the population dynamics here is very much consistent with the
assumed behavior of constituents in the simulation model (Fig. 1(b)).

5. Concluding remarks

2D correlation spectroscopy has become a very popular tool in the field of life science due to its
versatility and relative ease of use. The technique can be utilized with a number of spectroscopic and
other analytical probes, such as IR and Raman spectroscopy, for a very broad range of sample systems,
including proteins and other biomolecules, by employing different types of external perturbations, like
temperature change or chemical stimuli, to induce spectral variations. 2D correlation analysis of sim-
ulated temperature-dependent IR spectra of protein clearly demonstrated that this technique can yield
valuable information. Segmentation of dataset becomes helpful in assigning the sequence of spectral
intensity variations when the dynamics of some species involve both increase and decrease in the popu-
lation during the observation.

A number of new types of techniques have lately become available to enhance the performance of
2D correlation spectroscopy. Scaling of spectral data, especially the use of Pareto scaling, brings out
the finer details of 2D correlation spectra sometimes obscured by the dominant contribution of strongly
varying signals. Projection approach can be a powerful tool in simplifying congested 2D correlation



126 I. Noda / Techniques of two-dimensional (2D) correlation spectroscopy useful in life science research

spectra constructed from highly overlapped spectral data by selectively filtering out the contribution of
particular species. Newly introduced 2D codistribution analysis provides the simple determination of the
sequence of the presence of constituent species during a complex series of transformation processes, like
denaturation and aggregation of a protein. Many other techniques potentially useful in the applications
for life science research are also mentioned in the recent review article [25].
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