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Abstract. One medical challenge in studying the amyloid-� (A�) peptide mechanism for Alzheimer's disease (AD) is 
exploring the law of beta toxic oligomers’ diffusion in human brains in vivo. One beneficial means of solving this problem is 
brain network analysis based on graph theory. In this study, the characteristics of A� functional brain networks of Healthy 
Control (HC), Mild Cognitive Impairment (MCI), and AD groups were compared by applying graph theoretical analyses to 
Carbon 11-labeled Pittsburgh compound B positron emission tomography (11C PiB-PET) data. 120 groups of PiB-PET 
images from the ADNI database were analyzed. The results showed that the small-world property of MCI and AD were lost 
as compared to HC. Furthermore, the local clustering of networks was higher in both MCI and AD as compared to HC, 
whereas the path length was similar among the three groups. The results also showed that there could be four potential A� 
toxic oligomer seeds: Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and Parietal_Inf_R. These four seeds are 
corresponding to Regions of Interests referred by physicians to clinically diagnose AD. 
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1. Introduction 

Alzheimer's disease (AD) is one of the most common dementia diseases, and as such, it has swiftly 
become a serious health problem for aging populations around the world. Moreover, the main 
pathological feature of AD is the amyloid-� peptide (A�) mechanism. In this mechanism, A� plaques 
are generated and deposited in neural cells due to a gene mutation in the Beta Amyloid Precursor 
Protein and Presenilin. Consequently, an accumulation of these plaques results in brain oxidative 
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stress and vascular barrier and, eventually, in damaged white matter and neural cell death. In particular, 
the generation of toxic oligomers during the aggregation of the amyloid-� (A�) peptides into amyloid 
fibrils and plaques has emerged as a central feature in the onset and progression of AD [1, 2]. 
However, the pattern of beta toxic oligomers’ diffusion in human brains in vivo is unknown due to a 
lack of real-time functional imaging techniques at the cellular and fiber level [3].   

The A� mechanism is commonly explored by employing the functional imaging technique, carbon 
11-labeled Pittsburgh compound B (11C-PiB) Positron emission tomography (PET) imaging. 
Moreover, 11C-PiB can specifically bind to �� deposition in human brains and provides quantitative 
information on �� burden in vivo [4, 5]. Although the transmission of toxic oligomers at the cellular 
level cannot be recorded by 11C-PiB-PET images in real-time, it is possible to hypothesize a diffusion 
model by deep-learning from a huge quantity of PiB-PET images with statistical methods.  

Brain network analysis based on graph theory, which provides a mathematic model for discovering 
the structural and functional connections of cells and fibers in human brains, has been a popular issue 
in the neuroscience field in recent years [6, 7]. It is widely applied to the exploration of neurological 
diseases, such as AD, Schizophrenia, and Attention deficit and hyperactivity disorder (ADHD), by 
analyzing neural images like MEG, DTI, MRI, fMRI, and FDG-PET. However, this method has not 
yet been applied to the analysis of PiB-PET images.  

This study centers on two main objectives: (1) to explore whether the brain network analysis based 
on graph theory method can be used to analyze PiB-PET images and to verify the physiological 
significance of �� brain networks, and (2) if (1) is verified, to identify the functional hubs of the �� 
brain networks. These hubs can be assumed as �� toxic oligomer seeds in the A� mechanism. 

2. Materials and methods 

2.1. Subjects 

120 groups of PiB PET Data used in the preparation of this article were obtained from the 
Alzheimer’s disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and neuropsychological  
 

Table 1 

Basic information of the 120 groups of PiB-PET images 

Groups AD 
(N=16) 

MCI 
(N=67) 

HC 
(N=37) 

P-value 
AD vs MCI AD vs HC MCI vs HC 

Gender (M/F) 8F 8M 13F 54M 17F 20M 0.93 b  0.445 b 0.242 b 
Age (years) 74.7±12.8 75.5±7.3 76.8±6.9 0.004a,** 0.01 b,*  0.002 a,* 
Weight (kg) 76.0±16.8 77.7±14.3 74.7±14.2 0.541 a 0.711 a 0.197 a 

MMSE score 21.5±2.53 26.0±3.6 28.4+1.3 <0.001 a,** <0.001 a,** <0.001 a,** 

CDR value 0.93±0.36 0.66±0.46 0.15±0.42 <0.001a,** <0.001 a,** <0.001 a,** 
Note: Data is presented as the mean ± standard deviation. 
AD, Alzheimer´s disease; HC, healthy control; MCI, Mild Cognitive Impairment; MMSE, Mini mental state examination; CDR, Clinical 
Dementia Rating; F, females; M, males. 
a P-value was obtained by the two-sample two-tailed t-test. b P-value was obtained by the two-tailed Pearson X2 test. * P-value is less than 
0.05. ** P-value is less than 0.001. 
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assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). All of the images were in the Digital Imaging and Communications in 
Medicine (DICOM) format. Furthermore, the participants’ enrollment was conditional based upon 
certain eligibility criteria, and the general inclusion/exclusion criteria may be found in Table 1. 

2.2. PET image pre-processing  

The imaging data was pre-processed by using Statistical Parametric Mapping 8 (SPM8) implemented 
in Matlab2014a. Each PET image was registered to the Montreal Neurological Institute (MNI, McGill 
University, Montreal, Canada) space. Then, they were normalized according to its window width W 
and window level L. Finally, the images were transferred to gray level images with a grayscale of [0, 
255]. 

2.3. Brain regions extraction and normalization 

Standardized AAL (automated anatomical labeling) brain anatomy marker template in SPM8 [8] 
(total of 90 brain regions with 45 regions in each hemisphere) was used to extract the brain regions. 
All of the images were divided into 90 nodes (one region as one node), and the average pixel value of 
each region was calculated as node values. Moreover, to eliminate differences among the individual 
images, every node value was normalized by subtracting the average pixel value of images.  

2.4. Constructing the brain network  

In this research, graph theory is used to construct the brain network. 90 AAL brain regions were 
considered as nodes. As the statistical method most frequently employed in analyzing the brain 
networks of medical images [6, 9, 10], the Pearson correlation method was used to calculate the 
interregional correlation coefficient, as is shown in Eq. (1): 
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where r refers to the Pearson correlation coefficient, and n refers to the number of participants in each 

group (in this paper, n is 16 for AD, 67 for MCI, and 37 for HC). Furthermore, 
−
X  and 

−
Y refer to the 

mean values of each of the two nodes, and Sx and Sy refers to the standard deviations of nodes Xi and 
Yi, respectively.  

Figure 1 shows three Pearson correlation matrices (90*90) with AD, MCI, and HC data. To analyze 
above connectivity matrix, the density threshold method was used. According to [10], the density 
threshold range 15% � D � 50% was chosen with an interval of 1%. 

2.5. Network analysis 

Four fundamental network parameters were used in this study: the clustering coefficient, C; 
characteristic path length, L; small world index, �; and betweenness centrality of nodes, Bi. The 
parameters were calculated by the open toolkit, The Brain Connectivity Toolbox (BCT,  
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Fig. 1. Three correlation matrices obtained from Pearson correlation coefficients (indicated by color bar, ranging 
from -1.0 to 1.0) between 90 regions of interests controlled for age. From left to right: AD group, MCI group, and 
HC group. 

 
http://www.nitrc.org/projects/bct/). The clustering coefficient Ci of node i indicates the degree to 
which the nodes in a graph tend to cluster together, and C is the average Ci value from all the nodes in 
the network. The characteristic path length L is defined as the average number of steps along the 
shortest paths for all possible pairs of network nodes. It is a measure of the efficiency of information 
or mass transport on a network [11]. Furthermore, the small world index � presents the small-world 
property of brain network. Normally, a brain network has small world property when � >1. The � was 
calculated by Eq. (2):  

 
( ) ( )�= (2) 

 
where Lram and Cram refer to the corresponding random network path length and clustering 
coefficient, respectively. In this study, random networks were repeated 50 times in order to calculate �. 

Finally, the betweenness centrality Bi is an indicator of a node's (node i) centrality in a network, and 
it is equal to the number of shortest paths from all vertices to all others that pass through node i. Bi is 
normally used to determine the candidate hubs in a network. In this study, the normalized parameter bi 
was defined by bi= Bi/averaged Bi. According to [11], all nodes with high bi values (>1.5 in HC, MCI, 
or AD groups) were considered as candidate hubs of the �� brain networks. To calculate bi, a fixed 
density was determined by including all 90 nodes with minimal false-positive paths [12]. Finally, a 
density of 43% was chosen as the suitable density threshold in the present study. 

2.6. Statistical analysis 

To test differences of parameters among three diagnostic groups, a nonparametric permutation test 
was used [6]. Using the randomization procedure, each participant’s node values were randomly 
reassigned, and the interregional correlation matrix was calculated again; additionally, a set of binary 
matrices was also obtained over the same density threshold range. Then C, L, �, and bi at certain 
sparsities were computed separately for the three diagnostic groups. In this research, the whole 
procedure was repeated 500 times. 

3. Results 

3.1. The clustering coefficients C and characteristic path length L 
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(a) (b) (c) 

Fig. 2. Results of clustering coefficients C, characteristic path length L, and small-world index � in the three groups. (a) 
The clustering coefficients C, (b) The characteristic path length L, and (c) The small-world index � in the HC (red line), 
MCI (black line), and AD (blue line) groups. *p<0.05 for HC vs AD; ^p<0.05 for MCI vs AD. 
 
The results of the clustering coefficients C and characteristic path length L for the three diagnostic 

groups (AD, MCI, and HC) are given in Figure 2. In Figure 2(a), the clustering coefficients C increase 
with increasing density. Furthermore, the density changes only slightly from group to group 
(15%~19%). In addition, the AD group has the highest C values, whereas the HC group has the lowest 
C values over a wide density range (20%~39%). For a density of 40%~50%, the AD group again has 
the highest C values; however, the MCI group has C values near those of the HC group. Furthermore, 
statistical analysis revealed that there are significant differences between the AD and HC groups at 
densities of 31%~36%, 38%~43%, and 50%, as well as significant differences between MCI and AD 
at densities of 40%-43%, 36%, 46%, 47%, and 49% (p<0.05). 

In contrast to the clustering coefficients, it can be seen from Figure 2(b) that the characteristic path 
length L decreases with increasing density. Moreover, there are only slight differences among the three 
diagnostic groups. For example, when the density is 0.17, the L values of AD, MCI, and HC are 2.37, 
2.36, and 2.26 respectively. Statistical analysis revealed that there is a significant difference between 
the AD and MCI groups at a density of 30% ~ 49% (p<0.05). 

3.2. Small world index 

Figure 2(c) exhibits the small world indexes of the three groups. It can be seen that for the HC group, 
the � value is greater than 1 at all densities. As for the MCI group, � is greater than 1 at a density of 
20% ~ 50%, but � is less than 1 at the other densities. However, for the AD group, � is less than 1 at 
most densities. Statistical analysis revealed that there are significant differences between the AD and 
HC groups at densities of 20%~32%, 35%~39%, 18%, and 44%, as well as significant differences 
between MCI and AD at densities of 20%~44% and 46%~48% (p<0.05). 

3.3. Functional hubs 

Table 2 lists all of the bi values in the 90 brain regions of the 120 subjects in the three diagnostic 
groups. Figure 3 shows the related alterations in the hub regions. As a result, four particular regions, 
the Frontal_Sup_Medial_L and Parietal_Inf_L of the left hemisphere as well as the 
Frontal_Med_Orb_R and Parietal_Inf_R of the right hemisphere, were identified as functional 
candidate hubs in the process of network information transmission (AD&MCI>HC). They are 
potentially A� toxic oligomer seeds in brains. 
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Table 2 

The bi results of 90 brain regions in the 3 diagnostic groups (n refers to the sample number of each group) 

Brain regions  HC 
(n=37) 

MCI 
(n=67)

AD (n=16) Brain regions HC 
(n=37) 

MCI 
(n=67) 

AD 
(n=16)

 Precentral_L 0.51  0.85  0.79  Cuneus_R 0.85  0.85  0.77  
Precentral_R 0.98  0.12  0.66  Lingual_L 1.42  1.51  0.18  
Frontal_Sup_L 0.88  0.96  0.91  Lingual_R 0.51  0.69  0.99  
Frontal_Sup_R 0.62  0.95  1.17  Occipital_Sup_L 0.61  1.19  0.75  
Frontal_Sup_Orb_L 1.50  1.14  0.73  Occipital_Sup_R 1.03  0.78  0.55  
Frontal_Sup_Orb_R 1.39  0.81  1.07  Occipital_Mid_L 2.14  0.09  0.31  
Frontal_Mid_L 1.17  0.93  1.05  Occipital_Mid_R 1.06  0.69  0.44  
Frontal_Mid_R 1.38  1.49  1.34  Occipital_Inf_L 0.77  0.99  0.67  
Frontal_Mid_Orb_L 1.51  0.97  0.82  Occipital_Inf_R 1.41  0.84  1.29  
Frontal_Mid_Orb_R 1.73  0.73  0.70  Fusiform_L 0.64  0.54  1.46  
Frontal_Inf_Oper_L 1.40  0.95  1.12  Fusiform_R 1.12  1.20  2.05  
Frontal_Inf_Oper_R 1.03  0.83  0.09  Postcentral_L 0.42  0.76  0.60  
Frontal_Inf_Tri_L 2.05  1.12  0.88  Postcentral_R 0.27  0.69  0.68  
Frontal_Inf_Tri_R 1.83  0.88  0.52  Parietal_Sup_L 1.54  1.44  1.93  
Frontal_Inf_Orb_L 1.23  0.85  1.87  Parietal_Sup_R 1.58  1.11  0.92  
Frontal_Inf_Orb_R 1.09  0.77  0.78  Parietal_Inf_L 1.22  1.64  1.70  
Rolandic_Oper_L 0.61  0.55  1.64  Parietal_Inf_R 0.55  1.62  1.74  
Rolandic_Oper_R 0.28  0.41  0.48  SupraMarginal_L 1.37  0.73  1.21  
Supp_Motor_Area_L 0.27  0.94  1.56  SupraMarginal_R 1.19  0.94  1.03  
Supp_Motor_Area_R 0.67  0.92  1.15  Angular_L 1.59  1.13  0.81  
Olfactory_L 0.42  2.06  0.21  Angular_R 0.92  1.23  1.30  
Olfactory_R 0.73  1.03  0.36  Precuneus_L 1.23  1.48  2.05  
Frontal_Sup_MedialL 0.36  1.57  1.58  Precuneus_R 0.74  1.41  1.71  
Frontal_Sup_MedialR 0.78  0.71  1.15  Paracentral_LobulL 0.91  0.29  0.50  
Frontal_Med_Orb_L 0.86  1.64  1.01  Paracentral_LobulR 0.78  0.66  0.84  
Frontal_Med_Orb_R 1.08  3.35  2.14  Caudate_L 0.20  1.99  0.06  
Rectus_L 1.19  0.75  1.28  Caudate_R 1.28  0.82  0.47  
Rectus_R 1.20  1.41  1.55  Putamen_L 1.52  0.18  0.70  
Insula_L 0.56  0.26  0.46  Putamen_R 1.16  0.59  0.62  
Insula_R 0.45  1.14  0.96  Pallidum_L 2.03  0.32  1.02  
Cingulum_Ant_L 0.83  1.88  1.40  Pallidum_R 0.09  0.67  2.03  
Cingulum_Ant_R 1.34  2.52  0.27  Thalamus_L 1.12  0.85  0.86  
Cingulum_Mid_L 1.46  0.69  4.21  Thalamus_R 0.80  1.14  0.65  
Cingulum_Mid_R 0.99  1.24  1.10  Heschl_L 0.07  0.15  0.43  
Cingulum_Post_L 1.01  0.77  0.84  Heschl_R 0.20  2.22  0.24  
Cingulum_Post_R 0.80  1.08  1.01  Temporal_Sup_L 1.17  0.79  0.64  
Hippocampus_L 1.10  1.64  0.89  Temporal_Sup_R 1.29  0.87  1.85  
Hippocampus_R 1.19  1.02  2.04  Temporal_PoleSupL 0.65  0.51  0.58  
ParaHippocampal_L 1.95  1.45  1.11  Temporal_PoleSupR 0.98  1.20  0.68  
ParaHippocampal_R 1.79  1.59  2.71  Temporal_Mid_L 1.17  1.21  0.79  
Amygdala_L 0.63  0.90  0.03  Temporal_Mid_R 1.50  0.72  0.95  
Amygdala_R 0.13  0.78  0.42  Temporal_PoleMiL 1.06  0.36  0.01  
Calcarine_L 1.40  0.59  0.49  Temporal_PoleMiR 0.76  0.40  0.51  
Calcarine_R 0.19  0.45  0.98  Temporal_Inf_L 0.98  1.42  1.14  
Cuneus_L 0.03  0.24  1.05  Temporal_Inf_R 1.49  1.19  0.66  
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Fig. 3. Results of related alterations in hub regions.     AD>HC;      MCI>HC;       AD&MCI>HC. The results were visualized 
by BrainNet Viewer. 

4. Discussion and conclusion 

� The results demonstrated that in A� functional brain networks, the HC group has a small world 
property (� >1), and this property decreases through the course of AD (HC>MCI>AD). These 
results are similar to results from other brain network analyses that were based on other 
functional imaging analyses [6, 7, 10]. This means A� functional brain networks have 
physiological significance.  

� The results revealed that the Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and 
Parietal_Inf_R are AD- and MCI-related alterations in A� functional brain networks. Moreover, 
these four regions are potentially A� toxic oligomer seeds in brains. It is important to note that 
these results are similar to results claimed in previous medical literatures [4, 5], and these four 
regions are also ROIs referred by physicians to clinically diagnose AD [4]. Table 3 lists 
comparisons between the findings of the present study and findings from previous literature. 

 
Table 3 

Comparison between findings in the present study and literature 

Objectives Findings in this paper Image approaches in 
literature (samples) 

Findings in Literature Comparison 

Small-
world 
property 
among the 
AD, MCI 
and HC 
groups 

The HC group has 
small world property, 
which decreases 
through the course of 
AD (HC>MCI>AD). 
(HC=37, MCI=67, 
AD=16) 

FDG-PET images 
(HC=94, MCI=183, 
AD=216) 

“The overall small-world 
property as seen in the CN 
whole brain network was 
preserved in MCI and AD 
(HC>MCI>AD)” [6]. 

The transformation of 
the small world 
property during the 
course of AD is 
similar in the three 
different image 
approaches. 

fMRI  images 
(HC=14, MCI=15, 
AD=12) 

“Small-worldness were 
significantly lower in aMCI 
and AD compared to NC in 
both low and high parcellation 
scales (HC>aMCI & AD)” 
[10]. 

Definition 
of ROIs 
(A� seeds) 
in clinics 

Four ROIs 
(Frontal_Sup_Medial_
L, Parietal_Inf_L, 
Frontal_Med_Orb_R, 
and Parietal_Inf_R) 
that are AD- and MCI-
related alterations 
(AD&MCI>HC). 

PiB-PET images 
(HC=5, MCI=5, 
AD=5) 

5 anatomical brain areas are 
identified as A� ROIs, 
including PCG, PAR, FRT, 
LTC, and CAU [4]. 

The findings of this 
paper are the same or 
close to results from 
literature from the 
brain anatomy 
viewpoint.  

PiB-PET images 
(HC=15, AD=11) 

11 ROIs are identified as A� 
ROIs, including CER, SWM, 
PON, CAU, SMC, FRT, PCG, 
LTC, MTC, and OCC [5]. 
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