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Abstract. In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely ap-
plied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically
by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable.
Based on one revised Nowak et al’s virus infection model, this study introduces a discrete virus infection model (DVIM) . Two
equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the
basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells
of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0 < 1 then the virus free
equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model
(SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an
application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with
drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.
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1. Introduction

Hepatitis B is one of the serious infectious diseases which threaten to the global human health, and
has become an important social and public health issue. Chronic hepatitis B virus (CHBV) infection can
cause liver inflammation and fibrosis, and severe cases may develop into cirrhosis or liver cancer. HBV
has infected nearly 2,000,000,000 people around the world, and no less than 240,000,000 persons become
lifelong infection of HBV [1]. A chronic infection in liver, which probably develops into cirrhosis of the
liver or liver cancer afterwards, can also be given rise to by HBV. Because of the acute or chronic effects
of hepatitis B, approximately 780,000 people die every year [1].
In a series of previous researches on modeling virus infection dynamics, there exist two different kinds

of mathematical models: the differential description of continuous time models [2-7] and the difference
description of discrete time models [8-11].
Clinical-based mathematical dynamic modeling has an important significance for the study of the HBV

infection. Reasonable HBV infection mathematical model can help to understand the virus infection,
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clearance and evolution mechanism and laws, reveal some of the new features of HBV infection, evaluate
new medical programs and make long-term efficacy prediction.
In previous researches [6,7,12-15], the mechanisms of virus infections have been described via differ-

ential equation models. Based on an HBV-infected patient’s clinical data [2] with cell division mecha-
nism, this study proposes a discrete HBV infection model, analyzes the stability of the disease free equi-
librium, models and simulates the dynamics of the HBV-infected patient’s anti-HBV infection treatment
[2].
The structure of this paper is as follows: Section 2 presents the basic virus infection model and an

amended model. Section 3 sets up the discrete virus infection model, and analyzes the first equilibrium of
this model. Section 4 simulates the HBV-infected patient’s dynamics of anti-HBV infection. Conclusions
are made in Section 5.

2. The basic and amended models

Nowak and his colleagues’ basic viral infection mathematical model (BVIM) has been widely used
in learning the mechanisms of infection by some viruses [2], such as Human Immunodeficiency Virus
(HIV) and hepatitis B, C virus:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= λ− d1x− βvx

dy

dt
= βvx− ay

dv

dt
= ky − uv

(1)

here x, y and v represent the amount of uninfected target cells, infected target cells, and free virus,
respectively. The constant producing rate of uninfected target cells is λ, death rate is d1x, and the rate
of uninfected target cells getting infected is βvx. The producing rate of infected target cells is βvx, and
death rate is ay. The rate of free virus produced from infected target cells is ky, and death rate is uv.
All parameters of Eq. (1) are all nonnegative numbers. Eq. (1) has an infection free equilibrium and an
endemic persistent equilibrium. The basic virus reproduction number of Eq. (1) is R0 = λβk/ad1u.

Leenheer and Smith [14] have provided a global analysis approach and proved that if the basic virus
reproduction number R0 < 1, the infection free equilibrium is globally attractive and the virus will be
cleared; ifR0 > 1, the endemic persistent equilibrium is globally attractive and the virus will be persisted
in the target organs.
Observe that the terminology λ/d1 is included in the basic virus reproduction numberR0 = λβk/ad1u

of Eq. (1), which represents the sum of the cells of the organs. This can be understood that a person who
has a larger target organ will be more likely to be infected by the virus. Therefore the basic virus infection
Eq. (1) needs to be modified. In previous research [6,7,15], aiming at this irrationality, the authors use
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the standard incidence rate instead of the simple occurrence rate, and propose a modified model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= λ− d1x−

βvx

x + y
dy

dt
=

βvx

x + y
− ay

dx

dt
= ky − uv

(2)

This model can deduce a reasonable basic virus reproduction number. It can be expressed as R0 =
βk/au, which does not relevant to the total number of cells of a patient’s infected organ. In our previous
researches [5,6] ,we have already proved that if the basic virus reproductive number R0 < 1, then the
infection free equilibrium is globally attractive; if R0 > 1, then the endemic persistent equilibrium is
globally attractive.

3. Discrete virus infection model

3.1. Model

Biological evolution dynamic may be described more practically by discrete events rather than con-
tinuous ones. Based on the differential equation virus infection given in [6,7], this study proposes the
following assumptions.

(1) Liver cells live for h days.
(2) The constant producing rate of uninfected liver cells is λ, the death rate is d1x, and the rate of

uninfected liver cells getting infected is bvx/(x + y).
(3) The producing rate of infected liver cells is bvx/(x + y), and death rate is ay.
(4) The rate of free virus produced from infected liver cells is ky, and death rate is uv.

Denote that the amount of uninfected liver cells on the n-th day is x(n), the amount of infected liver
cells on the n-th day is y(n) , and the amount of free virus on the n-th day is v(n), respectively. Then the
amount of variable x, y and v on the (n + 1)th day are described by the following discrete model.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n + 1) = x(n) + h[λ− d1x(n)−
bv(n)x(n)

x(n) + y(n)
]

y(n + 1) = y(n) + h[
bv(n)x(n)

x(n) + y(n)
− ay(n)]

v(n + 1) = v(n) + h[ky(n)− uv(n)].

(3)

The parameters in this Eq. (3) have the same meanings as those in Eq. (2). These seven parameters of
Eq. (3) are all nonnegative numbers.
Model (3) possesses two equilibriums E1 and E2:

E1 = (
λ

d1

, 0, 0) (4)
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represents the disease free steady state. E1 is called virus free equilibrium.

E2 = (
λ

d1 + a(R0 − 1)
,

λ(R0 − 1)

d1 + a(R0 − 1)
,

λk(R0 − 1)

μ[d1 + a(R0 − 1)]
) (5)

represents the steady state of persistent infection. E2 is called endemic equilibrium (persistent infection
equilibrium). Here

R0 = bk/au. (6)

3.2. Analysis the stability of equilibrium

The local stability of the virus free equilibrium will be discussed in this section. Now we present some
definitions and known results which will be useful in our investigation of Eq. (3).

Preliminaries

Let F : R
n → R

n be a continuous function, where n is a non-negative integer. Consider the difference
equation

X(k + 1) = F (X(k)), k = 0, 1, ... (7)

X(k + 1) =

⎛
⎜⎜⎜⎜⎝

x1(1 + 1)
.
.
.

xk(k + 1)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

f1(X(k))
.
.
.

fk(X(k))

⎞
⎟⎟⎟⎟⎠

.

with initial conditions X(0) ∈ R
n. Let X̄ be an equilibrium of Eq. (7), that is, X̄ = F (X̄).

Denote

J =

⎛
⎜⎜⎜⎝

∂f1(X)

∂x1

...
∂f1(X)

∂xn

... ...
∂fn(X)

∂x1

...
∂fn(X)

∂xn

⎞
⎟⎟⎟⎠

X=X̄

. (8)

the Jacobi matrix of Eq. (7) at the equilibrium X̄.
The characteristic equation of Eq. (8) can be represented as

λn − an−1λ
n−1 − an−2λ

n−2 − · · · − a1λ− a0 = 0 (9)
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Theorem 3.1 (The Linearized Stability Theorem. For example see [11,16]).
(1) If all the absolute value of the eigenvalues of Eq. (9) are less than the unit 1, the equilibrium point x
of Eq. (7) is locally stable.
(2) If at least one eigenvalue’s absolute value of Eq. (9) is not less than the unit 1, the equilibrium point
x of Eq. (7) is unstable.

Theorem 3.2 If R0 < 1, then there exists a constant h1 > 0 such that the virus free equilibrium point
Q1 of Eq. (3) is locally stable for all h ∈ (0, h1).

Proof of Theorem 3.2 By using the mathematical software (MATLAB), we get the Jacobian matrix of
the Eq. (3).

J =

⎡
⎣
−hd1 + 1 + h(a11 − a12) h(a11) −h(a13)

−h(a11 + a12) −ha + 1− (a11) h(a13)
0 hk −hu + 1

⎤
⎦ ,

where

a11 =
bxv

(x + y)2
, a12 =

bv

x + y
, a13 =

bx

x + y
. (10)

Hence

JE1
=

⎡
⎣

1− hd1 0 −hb
0 1− ha hb
0 hk 1− hu

⎤
⎦ . (11)

So that

λE − JE1
=

⎡
⎣

λ− 1 + hd1 0 hb
0 λ− 1 + ha −hb
0 −hk λ− 1 + hu

⎤
⎦ . (12)

Then the eigenvalues of Eq. (12) are

λ1 = 1− hd1,

λ2 = 1−
h

2
((a + u) +

√
(a− u)2 + 4bk),

λ3 = 1−
h

2
((a + u)−

√
(a− u)2 + 4bk).
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When bk/au < 1, we can prove (a + u)−

√
(a− u)2 + 4bk > 0 holds.

Case 1.
If the following inequality holds, 0 < hd1 < 2, that is, h < 2/d1. Then we can obtain | λ1 |< 1.

Case 2.
If the following inequality holds,

0 <
h

2
((a + u) +

√
(a− u)2 + 4bk) < 2, (13)

that is,

h <
4

(a + u) +
√

(a− u)2 + 4bk
. (14)

Then | λ2 |< 1.
Case 3.
If the following inequality holds,

0 <
h

2
((a + u)−

√
(a− u)2 + 4bk) < 2, (15)

that is,

h <
4

(a + u)−
√

(a− u)2 + 4bk
. (16)

Then | λ3 |< 1.
Consequently, when R0 = bk/au < 1, then we can obtain −1 < λ1,2,3 < 1, if

0 < h < h1 = min(
2

d1

,
4

(a + u)±
√

(a− u)2 + 4bk
). (17)

Therefore, E1 is locally stable and this completes the proof.
In the process of actual calculation, since a = d1 = 3.79 × 10−3, u = 0.67, bk = auR0 < R0 <

200, h ≈ 1.6 × 10−4[17], we conclude (see the next section) that the following inequality holds:

h < min(
2

d1

,
4

(a + u)±

√
(a− u)2 + 4bk

). (18)

P. Zhang et al. / Discrete virus infection model of hepatitis B virusS2192



Table 1
Evolution of the selected patient’s plasma HBV DNA loads (log copies/ml). Here VL represent the practical virus levels, and
SM represent the numerical simulations.

Week 0 2 4 6 8 12 16 20 24 28 32 36 40 44 48
VL 7.90 6.08 6.02 6.03 6.02 6.03 6.02 6.03 6.02 7.90 7.90 7.90 7.90 7.90 7.85
SM 7.90 6.14 6.11 6.10 6.07 6.03 5.99 5.94 5.90 7.76 7.83 7.87 7.89 7.90 7.90

4. Dynamics simulation of one patient’s anti-HBV infection treatment

This section will simulates one HBV infected patient’s dynamics for anti-HBV infection therapy with
drug lamivadine [2]. The experiment consists of a 24-week treatment and a 24-week follow-up without
treatment.
The selected patient’s (numbered by 2) plasma HBV DNA data are presented from Figure 1 (B) in [2].

Observe that when withdrawing the drug, the patient’s plasma HBV DNA loads reduce quickly (also see
Table 1 and Figure 1 in this paper). Since the patient’s ALT levels are not abnormal in the treatment [2],
it suggests that his immune system is not fully activated.
Therefore one can assume, from Eq. (3), that the discrete anti-HBV infection dynamic model of the

patient treated with drugs can be described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n + 1) = x(n) + h[λ− d1x(n)− (1−m)
bv(n)x(n)

x(n) + y(n)
]

y(n + 1) = y(n) + h[(1 −m)
bv(n)x(n)

x(n) + y(n)
− ay(n)]

v(n + 1) = v(n) + h[(1 − n)ky(n)− uv(n)]

(19)

here m,n are the effectiveness of the treatment. Before the patient’s anti-HBV infection treatment, one
assumes thatm = n = 0, and his HBV DAN level is in the virus persistent state E2. Consequently

k = uv(0)[d1 + a(R0 − 1)]/[λ(R0 − 1)], b = auR0/k. (20)
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Fig. 1. Blue circle dots represent the clinical data points. And the red solid line means the dynamic numerical simulation of the
treatment model.
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The detail steps in relation to the calculation of model’s coefficients are as follows.

1) A human liver has about 2× 1011 liver cells [17], and contains about 3000ml plasma in total. In this
paper, the qualities of tested virus per milliliter are in copies. This suggests

λ/d1 ≈ 2× 1011/3000. (21)

2) Because the half-life of a liver cell is around 6 months, one may hypothesize

d1 = − ln(0.5)/183 ≈ 0.00379. (22)

3) Choose μ = 0.67 [17], which equals to hypothesis that around one day is the half-life of a virus.
4) We select stepsize

h =
1

1× 1011

183 × 24× 60× 60

≈ 1.6× 10−4, (23)

which is equivalent to assume that the half-life of a hepatocyte is around 183 day.
5) Hypothesize that prior to the lamivudine therapy, the patient is in the state of stable virus persist
infection , which is,

(x̄, ȳ, v̄) = E2 = (
λ

d1 + a(R0 − 1)
,

λ(R0 − 1)

d1 + a(R0 − 1)
,

λk(R0 − 1)

u[d1 + a(R0 − 1)]
). (24)

6) With the clinical data and numerical simulation, one is able to determine the parameters below.

{d1, a, u,R0,m, n} = {0.00379, 0.003.79, 0.67, 9, 0, 0.982}. (25)

Substituting the above parameters into Eq. (19), the numerical simulating of Eq. (19) is presented in
Figure 1. The simulated data are provided in Table 1. Observe that the simulated results agreed well
to the patient’s clinical data (see the circles shown in Figure 1). Before the lamivudine treatment , the
baseline basic virus reproduce number is R0 = 9 (when m = 0, and n = 0). R0 will drop to 0.162
during the therapy. After stopping the therapy, the patient’s plasma HBV DNA load returned quickly to
the state prior to the treatment.
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5. Conclusions

Virus infection is a primary global health issue. Building mathematical virus infection models is im-
portant for the understanding of complicated phenomena in scientific terms. The cell fissions and virus
replications should be discrete events rather than continuous ones. The evolution dynamics of virus in-
fection may be described more reasonablely by discrete models rather than continuous models.
Based on previous researches [6,7], this study proposes a discrete difference equation model to de-

scribe virus infection dynamics. Theorem 3.2 in this paper gives the condition that the virus free equi-
librium point of our model is locally stable. The basic virus reproductive number is independent on
the number of total cells of the infection target organ. Therefore, it is more reasonable than the model
proposed by Nowak et al.[2].
An instance shows that the theoretical analysis and numerical results are capable to facilitate compre-

hending HBV infection and anti-HBV infection treatment. The research on global attractivity of equilib-
rium point is the further issue on the study of virus infection dynamics.
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