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Abstract. Epigenetic computational analyses based on Markov chains can integrate dependencies between regions in the 
genome that are directly adjacent. In this paper, the BED files of fifteen chromatin states of the Broad Histone Track of the 
ENCODE project are parsed, and comparative nucleotide frequencies of regional chromatin blocks are thoroughly analyzed 
to detect the Markov property in them. We perform various tests to examine the Markov property embedded in a frequency 
domain by checking for the presence of the Markov property in the various chromatin states. We apply these tests to each 
region of the fifteen chromatin states. The results of our simulation indicate that some of the chromatin states possess a 
stronger Markov property than others. We discuss the significance of our findings in statistical models of nucleotide 
sequences that are necessary for the computational analysis of functional units in noncoding DNA. 
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1. Introduction 

Recent technical advances in computational epigenetics have allowed for junk DNA to be converted 
into highly annotated functional areas [1, 2], and the chromatin architecture has been described via 
genome-wide maps of histone modifications that reveal that a large portion of the genome has 
different chromatin states. However, since epigenetics is the study of traits not caused by changes in 
the DNA sequence, little has been published to explore nucleotide sequence patterns associated with 
genome-wide chromatin maps, except for several studies that analyze a collection of putative human 
boundary elements [3-5]. 

To the best of our knowledge, the Markov property of nucleotide sequences associated with 
genome-wide chromatin maps has never been tested in the literature. Thus, the aim of this paper is to 
construct comparative nucleotide frequency profiles of the different chromatin states and to investigate 
whether the nucleotide sequences in the published chromatin maps possess the Markov property. A 
series of tests are conducted for Markovian dynamics across the chromatin states of the entire human 
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genome to investigate whether these nucleotide frequency profiles can be used as discriminative 
signatures to classify the fifteen chromatin states while checking for a coincidence with the existing 
chromatin-assay profiles.  

We briefly explain how we extracted the nucleotide sequences of the fifteen chromatin states by 
parsing the BED files (.bed) of the Broad Histone Track, which is the source of our input data [1, 2, 6]. 
The BED files of ChromHMM [6] are parsed, and the comparative nucleotide frequencies of the 
regional chromatin blocks are thoroughly analyzed to detect the Markov property in them. We show 
that some of the DNA regions that differ in chromatin states also differ in nucleotide frequencies. 
Then, we check the predictive accuracy of the Markov chain classifiers according to the nucleotide 
frequency profiles. We also test for homogeneity in the spatial dimension of each of the chromatin 
states.  

2. Parsing the BED files of ChromHMM to extract the nucleotide sequences of the fifteen 
chromatin states 

The human genome contains several genomic maps that contain locations for numerous histone 
modifications as well as binding sites for various proteins. Of the numerous sources of chromatin 
annotations from epigenomic studies, we used the ChromHMM dataset, which converts biological 
assays into discrete annotation maps of fifteen chromatin elements across the human genome. Since 
our input data source consists of the nucleotide sequences based on the start and end field of the 
ChromHMM dataset, we explain the dataset in more detail in this section. 

2.1. Parsing the bed files of ChromHMM 

Ernst, et al. applied unsupervised learning methodologies to convert the ChIP-seq dataset from the 
Broad Histone track into discrete annotation maps of fifteen chromatin elements across the human 
genome [6]. The combinations of histone modifications that are biologically meaningful were 
discovered by taking an approach that was drastically different from previous approaches in 
computational epigenetics, particularly in two aspects: hidden states were automatically determined 
and a massive amount of multivariate data was used for the observed sequences.  

Figure 1A summarizes the four steps to build the ChromHMM bed files, including genomic 
profiling, binarization, model learning, and annotation. The initial input datasets for ChromHMM 
consist of a list of aligned reads for each chromatin mark (ChIP-seq assays) that were converted into 
presence calls for each mark across the genome at a 200-base-pair resolution according to a Poisson 
background model [6]. Finally, each 200-base-pair interval was assigned to its most likely state under 
the model. The model assumes a fixed number of fifteen distinct hidden states. Figure 1B shows the 
files resulting from their work hosted on the ENCODE Analysis Data Hub for public download under 
the ENCODE Data Release Policy (http://genome.ucsc.edu/ENCODE/downloads.html). We 
downloaded the BED files for the chromatin signal tracks of the ENCODE cell types. Finally, as in 
Figure 1C, we parsed the BED files and built various nucleotide frequency profiles (with the human 
genome GRCh35/hg19), which is explained in more detail in the following section. 

2.2. Building comparative nucleotide frequency profiles of the 15 chromatin states 

The advent of numerous chromatin annotation projects and recent advances in computational  
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Fig. 1. An overview of our input data processing and the resulting nucleotide frequency profiles. A. Four Steps of Building 
ChromHMM BED Files [6]; B. The Format of a Bed File (chr1:10,000-25,300): each BED line has three required fields and 
nine optional fields; C. Building Nucleotide Frequency Profiles. 
 
epigenetics provide a new opportunity to revisit n-gram statistics. Sequence-level comparisons of the 
fifteen chromatin states can be valuable resources to investigate whether or not n-gram preferences are 
conserved across different chromatin states of the human genome [7] since large numbers of integral 
parameters can be obtained through statistical analyses [8, 9]. We built various nucleotide frequency 
profiles based on n-gram counts to explore the existence of the Markov property or of genomic 
signatures in order to enable the classification and grouping of chromatin states purely based on 
nucleotide sequence information.  

It is possible that for the spatially uneven distribution of the nucleotide frequencies in the chromatin 
states to be inconsistent with the model of a nucleotide sequence that we will be building as a uniform 
Markov chain. For this reason, it is convenient to profile the nucleotide frequency tables in 200bp 
units in order to build various combinations of transition tables and to test the various Markov 
properties of these. For example, if we want to select common regions where chromatin states are not 
altered in all nine cells, we can simply combine the 200bp regions where all chromatin states of the 9 
cell lines are identical. Likewise, we could always combine the pre-built 200bp frequency tables in 
different combinations to produce the necessary databases or tables to test the population homogeneity 
of the Markov chains in this way. An indexing technique was used to reduce the preprocessing time 
and the number of comparisons. To join each of the frequency tables in an efficient manner, hashes of 
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the array subscript values were used.  
In summary, we constructed 120,570,489 (13,396,721 units of 200bp frequency tables, multiplied 

by the 9 cell lines) nucleotide frequency profiles together with information of different chromatin 
annotations of the 9 cell lines (H1ESC, K562, GM12878, HepG2, HUVEC, HSMM, NHLF, NHEK, 
and HMEC). 

3. Preliminary testing for the Markov property of the 15 chromatin states 

In the previous section, we have explained how and why we built the basic 200bp nucleotide 
frequency profiles. Considering that nucleotide sequences in each of the 15 chromatin states are 
arranged over chromosomes, the analysis must account for their spatial characteristics. Approaches 
that are based on Markov chains can integrate dependencies between regions that are directly adjacent 
in the genome. The key property of a Markov chain is that the probability of each symbol Xi depends 
only on the value of the preceding symbol Xi−1 (i.e., ) and not on the entire prior sequence 
(i.e., ). This can be used to model a random system that changes states according to a 
transition rule that only depends on the current state. 

In this section, we explain how we built the various transition tables of the Markov chains, and this 
is the basis for how we later determine the chromatin states that possess the Markov property. We also 
explain how we have tested for homogeneity in the spatial dimension of the fifteen chromatin states of 
the Broad Histone Track. 

3.1. Definition of Markov chain, Markov property, and homogenity 

A discrete-time chain Xn: n = 0, 1,… is said to be a Markov chain of order m if it satisfies the 
following Markov property of order m: 

 

 

 
A Markov chain is virtually a memoryless chain. If the process is constant over time or space, the 

Markov chain is completely determined by the following Markov transition matrix that summarizes all 
N² transition probabilities (i, j = 1, …, N) with N as the state space of the chain. 

 

 

 
The Markov property of order 1 (i.e., m = 1) is usually referred to as a strong Markov property. A 

Markov chain is spatially homogeneous if the transition probabilities do not vary across regions and is 
population homogeneous if it is not comprised of subpopulations for which the transition probabilities 
sufficiently differ from one another.  

3.2. Building various N-gram transition tables of the 15 chromatin states 
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Markov chains provide a sound mathematical framework to model and analyze genome-wide 
nucleotide sequences. Uniform Markov chains of the zeroth, first, and up to the eighth order of the 
chromatin states of all cell lines were generated by building nucleotide frequency profiles of 1 to 9 
grams by combining the 200bp frequency tables that were described in the previous section. We 
considered the simplest positional statistical model under the assumption that the even the distribution 
of the nucleotide frequencies in most of the chromatin states follow the model of a nucleotide 
sequence in the form of a uniform Markov chain.  

From the training set, the frequency of the occurrence of all possible substring patterns of length 1 
to 8 were tabulated for all 15 chromatin states of all 9 cell lines by joining the necessary tables of the 
200bp frequency tables. In general, 4k + 1 probabilities need to be identified in a kth-order Markov 
model. The problem that arises in building transition tables is that the number of probabilities that 
should be estimated from the data increases exponentially when higher order models are present. For 
example, a uniform sixth order Markov chain is specified by a vector with initial probabilities 

for 42496 components as well as a matrix of transitional 
probabilities  with a size of 42496 x 4.  

3.3. Testing for the homogeneity in the spatial dimension 

Before making predictions using the Markov chain models, we must ensure that the process does 
indeed possess the Markov property. Despite innumerable studies of the Markov property, only a 
small number of tests are available in the literature to verify such an assumption [10-13]. Here, we 
employed a chi-square test to evaluate the reliability of the estimated transition matrices, focusing 
particularly on the homogeneity and independence of the chromosomes over the spatial dimensions.  

In principle, the homogeneity in the spatial dimension can be checked by dividing all of the samples 
into several geographically different regions and testing whether the transition matrices that are 
estimated from each of the sub-samples differs significantly from the matrix that is estimated from all 
samples. Specifically, it tests the null hypothesis  against the 
alternative hypothesis  of transition probabilities that differ between different 
regions using the following chi-square statistics:  

 

 

 

 
Fig. 2. An exemplary chi-square test against each of the transition tables of a single chromosome against the transition table 
of the entire genome of the k562 cell line. 
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where denotes the probability of a transition from the ith to the jth class that is estimated from the 
entire sample (pooled across all R regions), and  denotes the corresponding transition 
probability estimated from the rth sub-sample (i.e., training samples in the rth chromosome in our case).  

Figure 2 shows an example of a series of chi-square tests of transition tables of the k562 cell line 
that were built from each chromosome against the 5th order Markov transition table of the entire 
chromosome. Most of the chromatin states exhibited relatively stable chi-square distances, with the 
exception of the chromatin states 3, 14, and 15, which showed relatively larger chromosomal 
variances. The relatively smaller numbers of available training sequences of state 3 (6266 sequences), 
14 (7027 sequences), and 15 (7989 sequences) are postulated to have caused larger variances, 
compared to the average number of sequences of the overall states (approximately, 41,483 sequences). 

3.4. Preliminary tests for the existence of subpopulations within the 15 chromatin states 

A Markov chain is population homogeneous if it is not comprised of subpopulations in which the 
transition probabilities sufficiently differ from one another. The transition probabilities are estimated 
simultaneously from the entire sample, and those that are estimated from sub-samples obtained by 
dividing the entire sample into mutually independent groups of observations have to be scrutinized.  

For this purpose, we used a couple of publicly available classification and clustering tools (such as 
Weka: http://www.cs.waikato.ac.nz/ml/weka/ or Classias: http://www.chokkan.org/software/classias/), 
to investigate the possible existence of the subpopulation within the 15 existing chromatin states. 
Figure 3 shows the exemplary clustering results obtained using Weka for the testing sequences (the 
sequences of the chromatin state 1 of the K562 cell line) based on the EM (Expectation Maximization) 
algorithm. Clearly, some of the 15 chromatin states were comprised of subpopulations in which the 
transition probabilities sufficiently differ from the original states and distinct Markov models have to 
be built on each subset of the learning data associated with a specific class. Unfortunately, the number 
of training sequences was not sufficient to construct new transition tables for groups of possible 

 

 
Fig. 3. EM (expectation maximization) clustering results of the chromatin states, using weka 3 
(http://www.cs.waikato.ac.nz/ml/weka/). The table in the middle shows the rankings of the fifteen Markov models, based on 
the preliminary prediction accuracy evaluation of the sequences of the chromatin state 1 of the K562 Cell Line. For example, 
the 1456th row of the table (start: 246886977, end: 246888577) shows that the Active Promoter state of the K562 Cell Line is 
correctly predicted as chromatin state 1 while the 1475th row of the table (start: 249176377, end: 249176777) shows that it is 
wrongly predicted as the chromatin state 10. 
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subpopulations. The existence of the subpopulations certainly affected the results from the evaluation 
of the prediction accuracy, as described in the next section. 

4. Prediction accuracy evaluation of the fifteen chromatin states built from the tier 1 cell types 

In the previous section, we tested whether each of the fifteen chromatin states of the Broad Histone 
Track have the Markov property. In this section, we are interested in using the Markov chains to 
sequence the prediction rather than classification. The Markov chains, also known as n-grams, form a 
generalization of a Naive Bayes classifier when longer histories are considered. We present 
representative results for applying the third, fourth, fifth, and sixth order Markov chains built from the 
common regions of the ENCODE Tier 1 cell types, including erythrocytic leukemia cells (K562) and 
B-lymphoblastoid cells (GM12878). When the Markov chains are used to make a prediction, the 
quality of the modeling is generally measured by computing the (log-) likelihood. These values 
measure how well the model fits the underlying unknown process distribution that is represented with 
independent test samples, and better models can offer higher test likelihoods.  

4.1. Prediction accuracy evaluation using fixed-order Markov chains 

Though there is some skepticism for the use of chi-square statistics to test for the Markov property 
under certain conditions [14], we directly investigated whether our sequence-based Markov chain 
models for each chromatin state have the discriminating power necessary to identify different 
chromatin states, as described in Section 3.2. We used the frequency counts to build fifteen 
preliminary transition tables for the third to sixth order Markov models. To this end, we developed a 
global Markov chain classifier to provide values for the stochastic evaluation in order to explore and 
rank the sub-optimal predictions.  

Thus, we initially built 540 (15 chromatin states x 4 n-gram order x 9 cell lines) Markov chain 
models for each chromatin state. Given a random sequence  in the state Sn, we calculated 
the sequence of hidden states that maximize P[x, |M], where M is one of the fifteen 
Markov chain models by using transition probabilities , as follows:  

 

 

 
It is more complex to interpret the nucleotide frequency information contained in each chromatin 

state than to interpret a large vector with numerical values of different biochemical assays. We 
randomly selected training blocks and systematically increased the percentage of the testing blocks 
when training the classifiers. We used the remaining blocks as our testing blocks to naturally exclude 
the regions of testing blocks when each of the transition tables was built. To prepare for the test set of 
the sequences, random DNA fragments were chosen from each of the fifteen chromatin states.  

We explored whether this type of analysis would enable classification and grouping for the 
chromatin states according to the similarities in the numerous n-gram counts and to whether 
preferences were conserved across different chromatin states for a given chromosome. Since the 
spatial variations of the Markov chains were minimal, as was shown in Section 3.3, training was 
performed for approximately 59% of the sequences, and we randomly picked the testing sequences  
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Table 1 

Prediction Accuracy Evaluation of 3rd, 4th, 5th, and 6th order Markov Models (Excluding the Chromatin State 13) 

15 Chromatin States # of 
total 
blocks 

# of 
training 
blocks 

# of 
testing 
blocks 

4 gram 
(Average 
Ranking) 

5 gram 
(Average 
Ranking) 

6 gram 
(Average 
Ranking) 

7 gram 
(Average 
Ranking) 

1_Active_Promoter 8970 4839 1479 63.62%(3.55) 65.86%(3.26) 67.68%(3.18) 34.42%(5.39) 
2_Weak_Promoter 17349 10121 3120 4.55%(8.22) 4.10%(7.70) 3.91%(7.73) 8.37%(6.88) 
3_Poised_Promoter 3744 2488 1114 26.48%(7.14) 27.47%(6.47) 29.17%(6.18) 34.83%(6.38) 
4_Strong_Enhancer 17643 10142 3966 9.78%(5.45) 14.83%(4.87) 18.31%(4.55) 7.59%(6.30) 
5_Strong_Enhancer 22735 13455 4829 8.10%(5.40) 11.16%(4.72) 13.11%(4.51) 8.78%(6.20) 
6_Weak_Enhancer 34047 20715 5960 1.76%(7.74) 2.10%(7.03) 2.48%(6.73) 9.65%(6.63) 
7_Weak_Enhancer 70956 43681 13192 13.63%(5.65) 14.71%(5.08) 15.99%(4.79) 10.37%(6.29) 
8_Insulator 23851 14470 3870 6.64%(6.15) 19.92%(5.49) 21.73%(5.18) 6.82%(6.40) 
9_Txn_Transition 12547 7562 3372 6.26%(5.03) 6.70%(4.64) 8.63%(4.45) 5.60%(6.21) 
10_Txn_Elongation 14614 9080 3120 46.54%(5.44) 46.47%(5.22) 46.09%(5.16) 18.11%(6.23) 
11_Weak_Txn 58733 35626 10693 16.38%(5.88) 15.37%(5.63) 13.95%(6.23) 16.62%(7.29) 
12_Repressed 23122 14674 4777 5.65%(5.07) 15.53%(4.54) 26.43%(3.99) 7.12%(5.37) 
13_Heterochrom/lo 45045 29464 6141 NA NA NA NA 
14_Repetitive/CNV 4216 1926 880 15.57%(8.04) 0.00%(15.00) 0.00%(15.00) 4.32%(14.40) 
15_Repetitive/CNV 4793 2524 781 3.84%(7.46) 3.20%(7.80) 2.56%( 8.69) 11.27%(8.22) 

 
from the remaining 41% in order to evaluate the classification accuracy.  

Due to the page limit for this paper, we provide an explanation for only some examples of the 
prediction accuracy performance of the global Markov classifier built from the common regions of the 
chromatin signal tracks of the ENCODE Tier 1 cell types (K562 and GM12878), and we thus used this 
model to assign testing sequences to their most likely state.  

Table 1 shows the prediction accuracy performance of the 15 states with the 3rd, 4th, 5th, and 6th 
order Markov chains. The performance differed greatly, depending on the chromatin states. The test 
fragments were extracted from state 1 and 10 and were predicted correctly, peaking at the 5th order 
model (or 6-gram model) with a prediction accuracy of 67.68% and 46.09%, respectively. However, 
less than 10% of the sequence fragments that were extracted from chromatin states 2, 6, and 9 were 
predicted correctly for all n-gram tests. Inactive states, such as states 13, 14, and 15, were not 
population homogeneous. In particular, state 13 needs to be subdivided into many subpopulations, 
which is beyond the scope of this paper. 

For a 6th-order model that requires probabilities for all 7-mers, there is a substantial number of 7-
mers that do not occur sufficiently often, and the problem is worse for higher order models. Therefore, 
a more sophisticated method (such as an interpolated Markov Model [15, 16]) needs to be considered 
in the future, and the parameters would need to be carefully calibrated to address the data sparseness 
problem when more training data becomes available. 

4.2. Prediction accuracy evaluation of the broader chromatin states 

According to Ernst, et al. (2011), the fifteen chromatin states can be represented as six broader 
classes of chromatin states. These are referred to as the Promoter, Enhancer, Insulator, Transcribed, 
Repressed, and Inactive states [6]. The Active, Weak and Poised Promoters (states 1-3) differ in their 
expression levels, the Strong and Weak candidate Enhancers (states 4-7) differ in the expression of 
their proximal genes, and the Strongly and Weakly Transcribed regions (states 9-11) also differ in 
their positional enrichment along the transcripts. Similarly, the polycomb-repressed regions (state 12) 
differ from the heterochromatic and the repetitive/CNV states (states 13-15), which are also enriched 
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for H3K9me3.  
Thus, many of the wrongly predicted cases in Table 1 were predicted as other states in the same 

broad state groups. For example, 33.6% of the sequences extracted from state 11 were wrongly 
predicted as state 10; 32.5% of the sequences extracted from state 2 were also wrongly predicted as 
either state 1 (17.66%) or state 3 (14.84%), and 21.3% of the sequences extracted from state 1 were 
also wrongly predicted as either state 2 (13.18%) or state 3 (8.11%), 33.36% of the sequences 
extracted from state 11 were also wrongly predicted as a state. 

Figure 4 represents the relative chi-square scatter plots of 6-grams of tier 1 cell lines, which 
confirms that the chromatin states in the same broad group are indeed closer than other broader groups 
in covariance distance. These general patterns suggest that despite a variation in the activity levels or 
expression levels, similar chromatin regions tend to preserve their Markov properties as regions of 
their broader states. Our analysis in Figure 4 suggest that some of the 15 chromatin state models do 
not have a Markov property that is distinguishable from other chromatin states in the same broad 
group, and the Markov models might have to be reconstructed according to the 6 broader state models. 

Thus, we explored two models with different structures in terms of the means and variances of our 
states based on the fifteen existing states and the six broader states (when these fifteen states are 
merged into the six broader Promoter, Enhancer, Insulator, Transition, Repressed, and Inactive states). 
Table 2 shows the prediction accuracy of these two models. The precision accuracy for both models 
peaked at the fourth- or fifth-order Markov model.  

The prediction accuracy for the individual chromatin states improves for the first model (e.g., 
Active Promoter state: 85.46%; Strong Enhancer state: 43.12%; and the Txn_Elongation state: 
50.25%). That number was obtained by adding all the blocks that were predicted correctly as the 
chromatin states in the same group, divided by all testing blocks. For example, the Promoter state 
prediction accuracy was calculated using the following formula: 

 

 
Fig. 4. The 15 x 15 Chi-square scatter plots of the 6-gram transition tables of 15 chromatin states. For example, this shows 
that the scatter plot between states 1 and 9 belongs to different broader states (Promoter State and Transition State, 
respectively), is more scattered (wider) than the scatter plot between states 9 and state 10, and belongs to the same broader 
state (Transition State). 
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Table 2 

The Six Broader Chromatin States and Their Prediction Accuracy (Excluding Chromatin State 13) 

Broader 
Chromatin States 

15 Chromatin States # of total 
blocks 

# of 
training 
blocks 

# of 
testing 
blocks 

4gram 5gram 6gram 7gram 

Promoter State 1(Active) 5713 17448 5713 85.80% 50.18% 85.60% 50.48% 85.46% 49.99% 61.66% 49.61% 
2(Weak) 37.05% 37.31% 36.28% 43.88% 
3(Poised) 39.68% 40.75% 41.29% 49.64% 

Enhancer State 4(Strong) 27947 87993 27947 30.61% 25.07% 37.62% 31.99% 43.12% 34.75% 17.40% 17.64% 
5(Strong) 25.89% 32.78% 35.22% 16.75% 
6(Weak) 21.04% 26.56% 28.69% 18.44% 
7(Weak) 24.93% 32.46% 34.80% 18.24% 

Insulator State 8(Insulator) 23851 14470 3870 6.64% 6.64% 19.92% 19.92% 21.73% 21.7% 6.82% 6.82% 
Transition State 9(Transition) 85894 52268 17185 48.93% 55.22% 48.16% 53.47% 47.63% 50.25% 32.62% 35.32% 

10(Elongation) 66.86% 65.74% 65.03% 47.47% 
11(Weak) 53.81% 51.57% 44.84% 26.36% 

Repressed State 12(Repressed) 23122 14674 4777 5.65% 5.65% 15.53% 15.53% 26.44% 26.44% 6.41% 6.41% 
Heterochrom 
State 

13(Heterochrom/lo) 45045 29464 6141 NA NA NA NA NA NA NA NA 

Inactive State 14(Repetitive/CNV) 9009 4450 1661 20.11% 16.01% 4.89% 4.09% 5.34% 4.03% 15.11% 13.31% 
15(Repetitive/CNV) 11.40% 3.20% 2.56% 11.27% 

 

 

 
We also explored the second model by building new transition tables based on the broader states. As 

a whole, the broader states also showed reasonable prediction accuracies (Promoter state: 49.99%; 
Enhancer state: 34.75%; Transition state: 50.25% for the case of the 6-gram). For a 6th-order model (or 
7-gram), there is still a substantial number of 7-mers that do not occur sufficiently often, and the 
prediction accuracy was also influenced by the data sparseness. 

5. Conclusion 

In this paper, we have provided a conditional characterization of the Markov property of the 15 
chromatin states of the Broad Histone Track by performing preliminary tests for the Markov properties 
of the common regions of the ENCODE Tier 1 cell types. It was not possible to enter into a more 
detailed discussion of the questions associated with the population homogeneity of our Markov chain 
models within the framework of this paper, so we note only the following.  

We present a pioneering line of research to address the characteristics of the genome-wide Markov 
properties of nucleotide sequences in noncoding DNA regions. We showed that the patterns of the 
nucleotides in noncoding DNA are non-uniform for fifteen different chromatin states of the common 
regions of the ENCODE Tier 1 cell types. We also showed that it is possible to establish Markov chain 
models to distinguish some of the functionally significant regions. The characteristics of these patterns 
are postulated to reflect a specific path of evolution, selecting different rules of fixation for mutations 
in different functional regions. Our study is significant in that it has potential for use to construct 
special statistical models that are necessary to develop algorithms to build nucleotide-sequence-based 
classifiers of chromatin states. 
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