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Abstract. Application of the Next generation sequencing (NGS) technology has demonstrated that most tumor samples 
exhibit intra-tumor heterogeneity. Here we proposed SAPPH (Somatic Aberrations Prediction for Paired Heterogeneous 
tumor samples), as a new method for estimating tumor somatic copy number aberrations as well as inferring tumor subclone 
proportions from heterogeneous tumor sequencing data. This method is based on CBS and local proportion clustering 
strategy. When SAPPH is applied on simulated tumor samples, the agreement between the results analyzed by SAPPH and 
the sequencing signals suggests that SAPPH can find the solution to best fit the signal distributions. We benchmark the 
performance of SAPPH and show that it outperforms existing method in estimating tumor copy number aberrations.  
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1. Introduction 

Tumor subclonality, also known as intra-tumor heterogeneity, is a typical feature of human cancers 
that has attracted much attention over recent years [1, 2]. Somatic copy number aberrations (CNA) 
that appear during tumor involution result in different genomic profiles between cancer cells, which 
give rise to tumor subclones [3]. By studying CNA in different subclones of a large collection of 
tumors can lead to the discovery of novel oncogenes and tumor suppressor genes. This will in turn 
facilitate designing effective treatment strategies [4]. 

The advent of next-generation sequencing (NGS) provides a great opportunity for accurate 
identification of copy number aberrations and composition of tumor samples [5-7]. The NGS 
technology provides coverage of each genomic site by a number of short reads. Window-averaged 
number of reads along the genome can be used to obtain copy number, which is quantified by the Log 
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R ratio (LRR). LLR is defined as the logarithmic ratio between the read count of tumor sample and 
that of the paired normal sample. B allele Frequency (BAF) for each known annotated single 
nucleotide polymorphism (SNP) is calculated as the fraction of B-allele read counts (B-count) to the 
total read counts (T-count). BAF represents the probability of mapping the B-allele [8, 9].  

Determination of genomic aberrations and subclonality for intra-tumor heterogeneous NGS data is 
very challenging due to the following reasons. Firstly, due to the large size and high signal noise in the 
sequencing data make the computational analysis complicated. Secondly, copy number aberrations in 
the tumor samples are always diluted in sequencing signals due to the contamination of tumor sample 
with the normal cell. Therefore the admixed normal DNA attenuates measured signals representing 
genomic aberrations in tumor DNA, which results in the decrease of both signal-to-noise ratios in 
sequencing data and the performance of aberration detection [10-12]. Thirdly, due to the fixed total 
number of reads in genome sequencing, large copy number aberrations in the part of the genome will 
cause the observed number of mapped reads in normal genome regions to deviate from the expected 
value [11]. Therefore, finding the sequencing data baseline for normal genomic state is critical for the 
estimation of copy numbers for other genome regions. Finally, when tumor sample is known to be 
homogeneous, the tumor cell proportion of the sample can be deduced from the observed average copy 
number and BAF pattern for the genome patterns. Whereas if genomic CNAs present in only a part of 
the tumor cells, the average copy number and BAF may not provide sufficient information to 
determine proportions of different tumor subclones. 

This paper focuses on modelling and analysis of the composition and genomic aberrations of 
heterogeneous tumor sample using NGS data. We proposed a method named SAPPH, which utilizes 
paired tumor-normal sequencing data. Based on an enhanced CBS method, we divided the genome 
intervals into two parts: high confidence genome intervals and the rest. Next, we formulated an 
explicit probabilistic model to estimate the mixing ratio for each CNA in high confidence genome 
intervals separately. In the following step, candidate tumor cell proportions were calculated by 
clustering the approximate local ratios. Searching the candidate proportions and computing 
corresponding CNAs to find a combination that best fit LRR and BAF signal distributions could 
realize subsequent analysis of the remaining intervals. At last, Bayesian information criterion (BIC) 
was used to guide model selection for final determination of the number of tumor subclones. We 
applied SAPPH to the simulated datasets and compared it to the results of THetA [11] to demonstrate 
its ability in estimating tumor subclone copy number aberrations.  

2. Methods 

2.1. Data generation and preprocessing  

Three different tumor genomes and a normal genome were constructed to simulate intra-tumor 
heterogeneous samples by making different combinations between tumor and normal genomes at 
known proportions. We constructed each genome by randomly dividing the reference genome into a 
number of regions, and then assigned each region with a known aberrational state characterized by 
total copy number c and B-allelic number b . Simulated sequencing data were generated from a real 
normal sample (HCC1143_BL) that was downloaded from 
https://cghub.ucsc.edu/datasets/benchmark_download.html by the following steps: 1) For each region 
of the simulated genome, we repeatedly sampled 2c n� reads from the corresponding region of 
HCC1143_BL genome, where n  is the number of reads mapped to HCC1143_BL; 2) the nucleotide 
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sequences of the sampled reads were modified to match BAF values of heterozygous SNPs 
encompassing the genome region; 3) repeating step 1 and step 2 until the reads of the whole genome 
were produced; and 4) the simulated reads after processing were merged and sorted to generate BAM 
file using Samtools software [13].  

We simulated a total of 23 tumor samples, and then classified them into three simulated datasets, 
each containing tumor samples with one, two or three kinds of subclones, respectively. The tumor 
subclone with the highest cellular proportion in the sample is typically called the dominant clone 
(subclone 1), and those with lower cellular proportions are called subclone 2 subclone 3, and so on. 
These subclones may be nested within the dominant clone. It should be noted that each locus in the 
genome can experienced only one kind of copy number aberration in different tumor subclones. For 
each sample, LRR signal was computed as the read count ratio between the tumor genome and was 
matched to the normal genome. We excluded homozygous SNPs (with BAF > 0.95) for analysis as 
they were not directly informative [6]. Since BAF signal is centered on 0.5, we used the mirrored 
profile to better model the statistical distribution.  

2.2. Segmentation 

The aberrations in copy number are a result of genomic events that cause discrete gains and losses 
in contiguous segments of the genome. We adopted the enhanced circular binary segmentation (CBS) 
that has been implemented in an R package “DNAcopy” to divide chromosomes into intervals of 
constant copy number [14]. 

In any tumor, the possible range and distribution of BAF signal is useful to deduce tumor subclone 
proportions as well as the CNA type. Here we segmented the mirrored BAF and then synthesized the 
results with the LRR segmentation outcome. Therefore, the tumor genome was partitioned into J  
consecutive segments or intervals, and each possesses a constant copy number and B-allele number, 
which is reflected in mean LRR ( _ jm lrr ) and mean BAF ( _ jm baf ). Each interval contains a number 
of SNP sites, and we use ( , )i j  to denote the i th�  SNP site in interval j  with [1,..., ]ji N� , where 

jN  is the total number of SNP sites in interval j .  

2.3. Baseline identification 

During the sequencing, large amount of copy number aberrations will cause the observed number of 
mapped reads in an interval to deviate from expected value, even when the interval itself does not 
experience a CNA. Therefore, in normalized NGS data, absolute copy numbers depend not only on 
LRR values, but also on the baseline of normal copy number for entire chromosomes, which is 
reflected in LRR baseline shift.  

The alignment of the tumor genome with the paired normal genome, intervals with the most similar 
BAF signal distributions between tumor genome and normal genome can only be either the normal 
genotype (AB), or balanced copy number gain (AABB, AAABBB, and so on). These mapping reads to 
a genomic site can be treated as a Bernoulli trial, given that T-counts override a SNP position, and the 
B-counts at the corresponding SNP site are modeled by a binomial distribution [15]. We used the 
binomial distribution with mapping probability 0.5 to calculate the probability of intervals belonging 
to a copy neutral state. For SNP site ( , )i j in tumor and normal samples, let ,

T
i jbc  and ,

N
i jbc  denote the 

B-count, ,
T
i jtc  and ,

N
i jtc  denote the T-count, respectively. The probability of interval j  being in 
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copy neutral state for tumor and normal samples ( T
jP and N

jP ) can be formulated as: 
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Interval j  is copy neutral if 
 

( ) 2T N

j j babs P P �� �                                 (3) 
 
where b� is the average variance of tumor BAF in all intervals, and 2b�  is the threshold for the 
difference between tumor and normal genotyping signals.  

An interval can be ascribed to the copy neutral state when it satisfies Eq. (3). Among the copy 
neutral intervals, the ones that have the minimum mean LRR value can be identified as normal 
genotype with copy number 2, and the corresponding mean LRR is considered the baseline. This 
simple technique takes full advantage of the paired normal samples and is very effective in 
ascertaining LRR baseline shifts. 

2.4. Selection and analysis of high confidence segments 

The proportions of somatic aberrations for genome segments always cluster around a small number 
of distinct proportion ‘modes’. This suggests that somatic aberrations of similar proportions may 
reside in the same subclone of tumor cells [15]. We addressed this issue by selecting high confidence 
intervals (HCI) for analysis that met one of the following criteria: (a) intervals with copy number 
deletion; and (b) intervals with mean mirrored BAF 0.5 b�� � . After filtering, we estimated a local 
mixing ratio for each HCI, called partial proportion. This is the ratio between the normal cell with the 
normal state and a single tumor subclone carrying the local CNA. This is based on the assumption that 
each locus experiences only one kind of copy number aberration. For genomic interval j , the average 
copy number jy  and average B-allele number jz  can be calculated as: 

 
10_ log ( )2j jm lrr oy� �                             (4) 

( )_10 2j
j

m lrr oy �� �                                  (5) 

_j j jz y m baf� �                                  (6) 
 
where o  is the LRR baseline shift. Let jw  be the partial tumor proportion in interval j , the tumor 

copy number jc  and B-allele number jb  are restricted by following equations. 
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2(1 )j j j jy c w w� � �                                (7) 

    (1 - )jj jjz b w w� �                               (8) 
 
Since there are limited combinations of jc  and jb ( j jb c�� ), we developed a family of curved 

lines to model ( , )j jy z  with the change of jw  [13]. Each line corresponds to a unique combination 

of ( , )j jc b  and was named a canonical line. For each interval, the task is to scan all the canonical 

lines to find the one contains point ( , )j jy z . Due to noise and segmentation bias, ( , )j jy z  may not 
locate precisely on a canonical line. In this situation we find the line that contains the point closest to
( , )j jy z . Consequently, partial tumor proportions for all HCIs are calculated. We also aggregated 

partial tumor proportions to G centers corresponding to candidate tumor subclone proportions.  

2.5. Whole genome analysis and model selection 

With candidate tumor subclone proportions 1 2{ , , ..., }GR r r r� , ranging by the number of SNP probes, 
the complexity to analyze all genome intervals can be greatly reduced. For each interval, we could find 
one optimal candidate proportion with the corresponding aberrational states. This maximizies the 
likelihood of LRR and BAF for this interval. Supposing the optimal local tumor proportions, copy 
numbers and B-allele numbers for all intervals are denoted as 

1{ , ..., }jW w w� ,
1{ , ..., }jC c c� ,

1{ , ..., }jB b b� , total likelihood of the whole genome can be calculated as follows: 
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where ,

T

i jlrr
 represents LRR signal of SNP site ( , )i j  in tumor samples. l�  is the average variance 

of tumor LRR for all intervals. Note that the likelihood is greatest when we use the full set of 
candidate proportions as the genome intervals can be fitted to the maximum extent with enough tumor 
subclones. However, this complex model might outstrip the real situation. Therefore, we adopted the 
Bayesian information criterion (BIC) to select a model with a balance between higher likelihood and 
fewer tumor subclones. 

3. Results 

3.1. Prediction of tumor subclone copy number aberrations 
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Fig. 1. Tumor subclone copy number aberrations predicted by SAPPH. For each subplot, top two panels are LRR and BAF 
signals, and bottom two panels are estimated copy number and B-allele number. Chromosome intervals marked by gray 
denote normal genomic state, and intervals with signals marked by green indicate somatic aberrations. Results show there are 
three tumor subclones, marked by purple, red and blue, respectively. (a) chromosome 14; (b) chromosome 22; and (c) whole 
genome. 

 
SAPPH provides visualization of tumor subclone copy number aberrations for each genome 

segments. Figure 1 shows the signal distribution and the estimated results of chromosome 14 and 22 in 
a simulated sample with 20%, 30% and 35% of three kinds of tumor subclones, respectively. This 
sample was contaminated with 15% of the normal cells. The top two panels represent LRR and BAF 
signals along the chromosome and the black lines indicate average signal values for each interval. The 
bottom two panels are copy number and number of B-allele estimated by SAPPH. In Figure 1(a) 
where LRR/BAF signals for one copy deletion that is marked in red show stronger contractions to the 
diploid track (average LRR equals to 0, and average BAF equals to 0.5) than that marked in purple; 
whereas that marked in blue show even stronger contractions. Therefore, we can infer the existence of 
three subclones with different cellular proportions. Tumor subclone 1 can be treated as ancestor tumor 
cell (or dominant clone) due to the fact that both subclone 2 and 3 shares its somatic aberrations. 
Figure 1(b) shows that tumor subclone 2 experiences a copy-neutral LOH (loss of heterozygosity) on 
the part of Chr 22, while tumor subclone 3 has one copy deletion on another region of the same 
chromosome. The interval with local proportion of 85% marked by magenta indicates that both 
dominant clone and other tumor cells have one copy amplification on this region. The overall genomic 
profile of this sample is illustrated in Figure 1(c). SAPPH successfully identified all copy number 
aberrations for each tumor subclone including amplification and LOH. 
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Fig. 2. Accuracy of SAPPH and THetA for three datasets. (a) Dataset 1, each sample contains only one kind of tumor 
subclone cell; (b) Dataset 2, each sample contains two kinds of tumor subclone cell; (c) Dataset 3, each sample contains three 
kinds of tumor subclone cell. 

3.2. Performance evaluation on detecting somatic aberrations and subclone proportions 

In order to quantitatively evaluate the performance of the proposed method, we calculated the 
accuracy (defined as the proportion of all correctly identified SNP copy numbers) of the simulated 
samples, and compared it with that of THetA. As shown in Figure 2, the accuracy of SAPPH for all the 
three datasets is greater than 0.95 and the performance of THetA is relatively low. This is especially 
true in Dataset 1 when there is only one kind of tumor subclone cells, SAPPH can correctly estimate 
copy numbers for almost all SNPs, whereas the average accuracy of THetA is lower than 0.5. In 
contrast to the consistent good performance of detection of tumor copy numbers by SAPPH, THetA 
shows unstable accuracy with the change of tumor subclone proportions. As shown in Table 1, we also 
calculated the precision, recall and F-score of the two methods in estimating genomic amplifications. 
These results demonstrate that SAPPH is more robust than THetA in detecting genomic amplification 
for heterogeneous tumor samples. To further illustrate the ability of SAPPH in detecting tumor 
subclone proportions, we calculated the bias of estimated proportion with respect to the ground truth 
for the three datasets. We did not compare with THetA in this part as it wrongly estimates tumor 
subclone numbers for part of samples. Figure 3 shows the bias of estimation with the change of mixed 
tumor subclone proportions. The overall biases are below 0.5% even for samples with tumor subclone 
cells as low as 10%. We conclude that the estimated tumor subclone proportions by SAPPH are highly 
consistent with actual values.  

 
Table 1 

Measurements of the two methods in estimating genomic amplifications for Dataset 3 

Sample ID SAPPH THetA 
Precision Recall F-score Precision Recall F-score 

t1_15t2_20t3_50 1.000 0.767 0.868 0.998 0.119 0.213 
t1_15t2_25t3_45 1.000 0.767 0.868 0.659 0.268 0.381 
t1_20t2_20t3_45 0.999 0.768 0.869 0.426 0.131 0.200 
t1_20t2_30t3_35 0.999 0.768 0.869 0.607 0.244 0.348 
t1_25t2_25t3_35 1.000 0.769 0.870 0.720 0.127 0.217 
t1_35t2_25t3_25 0.950 0.674 0.788 0.651 0.275 0.387 
t1_45t2_20t3_20 0.871 0.770 0.817 0.597 0.242 0.344 
t1_45t2_30t3_10 0.999 0.705 0.826 1.000 0.242 0.390 
t1_55t2_10t3_20 1.000 0.771 0.871 0.546 0.243 0.336 
t1_55t2_20t3_10 0.999 0.675 0.806 0.816 0.243 0.374 
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Fig. 3. Bias of estimation with the changing of tumor subclone proportions for three datasets. 

4. Discussion and conclusion 

In this study, we developed a novel computational method to predict somatic copy number 
aberrations and tumor subclone proportions from heterogeneous tumor samples. In order to decrease 
the computation burden we utilized SAPPH. This method avoids using general optimization approach 
to solve this deconvolution problem. SAPPH first estimates the mixing proportion for each interval 
separately, and then clusters local proportions to get the number of tumor subclones. While a separate 
study may bring bias estimation on some intervals, it can be refined in the final model selection step. 
SAPPH is highly efficient in simultaneous estimation of tumor subclone proportions as well as 
identification of tumor subclonal aberrations. Moreover, its computation time scales linearly with the 
number of somatic aberration events and is not affected by increasing the number of tumor subclones. 
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