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Abstract. Tuberculosis (TB), caused by infection with mycobacterium tuberculosis, is still a major threat to human health 
worldwide. Current diagnostic methods encounter some limitations, such as sample collection problem or unsatisfied 
sensitivity and specificity issue. Moreover, it is hard to identify TB from some of other lung diseases without invasive biopsy. 
In this paper, the logistic models with three representative regularization approaches including Lasso (the most popular 
regularization method), and ��/� (the method that inclines to achieve more sparse solution than Lasso) and Elastic Net (the 
method that encourages a grouping effect of genes in the results) adopted together to select the common gene signatures in 
microarray data of peripheral blood cells. As the result, 13 common gene signatures were selected, and sequentially the 
classifier based on them is constructed by the SVM approach, which can accurately distinguish tuberculosis from other 
pulmonary diseases and healthy controls. In the test and validation datasets of the blood gene expression profiles, the 
generated classification model achieved 91.86% sensitivity and 93.48% specificity averagely. Its sensitivity is improved 6%,
but only 26% gene signatures used compared to recent research results. These 13 gene signatures selected by our methods 
can be used as the basis of a blood-based test for the detection of TB from other pulmonary diseases and healthy controls.

Keywords: Tuberculosis, feature selection, early diagnostic, regularization, biomarkers

1. Introduction

Tuberculosis (TB), caused by infection with mycobacterium tuberculosis, is still a major cause of 
morbidity and mortality all around the world. Early diagnosis is significant to improve results 
of treatment. Current TB diagnostic methods encounter many limitations. For example, sample 
collection issues (Sputum Tests, LAM, Xpert MTB/RIF) [1], limited sensitivity and specificity 
problem (urinary lipoarabinomannan test) [2, 3]. Moreover, sarcoidosis, community acquired 
pneumonia and primary lung cancer present the similarly phenotype of TB. Identifying TB from these 
diseases, the invasive biopsy is required generally. Therefore, an efficient and non-invasive tool to 
distinguish TB from other pulmonary conditions phenotype and healthy controls is urgently needed.
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Gene expression microarray data of peripheral blood cells are useful supplementary information for 
insight into the biological mechanisms of TB infections and could be a promising tool for early TB 
diagnostic [4-6]. However, the number of observations is much smaller than the number of measured 
biomarkers in most of the genomic studies. Such limitations are known as high dimensional and low 
samples problem that may lead to over-fitting and negatively influence the diagnostic performance in 
traditional statistical models. Regularization methods have been widely used in microarray data 
analysis in order to deal with the problem of high dimensionality. They are an important embedded 
technique and perform continuous shrinkage and gene selection simultaneously [7]. Here, we focus on 
the three representative regularization approaches: Lasso [8], ��/�  [9], Elastic Net [10]. Lasso is the 
most popular regularization method in practices, which estimates as the convex optimization 
problems. ��/� can be taken as a representative of the non-convex Lq (0 < q < 1) penalties and 
inclines to achieve more sparse solution than Lasso theoretically. Elastic Net is the method that 
encourages a grouping effect of genes in the results. Each mono-method performs in its own 
mechanism and leads to different sparse results generally.

In this paper, the logistic models with the three representative regularization methods including 
Lasso, ��/� , Elastic Net are proposed to select gene expression signatures in the microarray data of 
peripheral blood cells. After that, SVM method [11] is used to fit the classifier based on the commonly 
selected gene signatures by the regularization methods. Since TB is involved in multi-biological 
pathway [4, 5], and different regularization approach may select the gene signatures from different 
aspects (or solution paths) in disease phenotype, the common selected gene may participate in many 
biological pathways and play a critical role in those biological processes that explain the activity of 
disease. The results of our proposed approach in this paper reveal the compound regularization 
methods are extremely useful for the diagnostic of TB.

2. Material and method

2.1.Regularization

Assuming that dataset D has n samples, D = { (��, ��), (��, ��), … , (��, ��) }, where �� =
	
��, 
��, … , 
��� is ith sample with p genes and �� is the corresponding variable that takes a value of 0 or 
1. Define a classifier f(x) = 
�/ (1+
�) and the logistic regression is defined as:

P(��=1|��) = f(����) = ��� (����)
����� (��

��)
                       (1)

where � = (��,��, … , ��) are the coefficients to be estimated. We can obtain � by minimizing the 
log-likelihood function of the logistic regression, and then the logistic regression model is presented 
as:

�(�, �) = � � { �����[f(����)] + (1 � ��)log[1 � �(����)] }�
�!� (2)

In high dimensional application with the number of genes p >> the sample size n, solving Eq. (2) 
directly is ill-posed and may lead to over-fitting problem. The regularization approaches are widely 
applied to address this high dimensional problem. When adding a regularization term in Eq. (2), the 
sparse logistic regression can be written as:
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�(��, ��, �) = � � { �����[f(����)] + (1 � ��)log[1 � f(����)] }�
�!� + � � "(�#)�

#!� (3)

where $ > 0 is a regularization parameter. Many regularization terms have been proposed in the recent 
years. For example, Lasso (��), which has the regularization term P(�) = %�#%

�. Elastic Net (�� +  ��)

with P(�) = %�#%
 

� + %�#%
�, ��/� with P(�) = %�#%

�/�

 
.

Each regularization method has its own merits. For example, Lasso is a popular gene selection 
method, which enjoys convex, and some of the attractive properties of both subset selection and ridge 
regression [8]. ��/� can be taken as a representative of non-convex Lq (0 < q < 1) penalties and has 
demonstrated many attractive properties, such as unbiasedness, sparsity and oracle properties [9, 12]. 
Elastic Net emphasizes a grouping effect, where strongly correlated genes tend to be in or out of the 
model together, such as, able to select groups of correlated genes [10]. In other hands, TB diseases are 
complex and often associated with multi-biological pathway. When the different regularization 
methods try to capture the most significant genes to TB disease, the results often vary greatly. This 
means that the different mechanisms of the regularization methods may relate to the different 
biological pathway of TB disease and the selected genes by the different regularization methods may 
significantly express in different disease-related biological pathway. The common part of the selected 
genes is occupying important positions in those paths, which mean these common genes may play a 
critical role in those biological processes that explain the activity of disease. In this paper, we use the 
three representative regularization methods including Lasso, ��/� , Elastic Net to select the common 
gene expression signatures in the microarray data of peripheral blood cells for TB disease.

2.2.Data descriptions 

We follow Bloom, et al. [4] to organize and preprocess gene expression microarray data of 
peripheral blood cells and describe as following: i) Training set (n = 95) (GEO: GSE42830) includes 
TB patients (n = 16) and other samples (n = 79); ii) Test set (n=102) (GEO: GSE42826) includes TB 
patients (n = 11) and other samples (n = 91); iii) Validation set (n = 42) (GEO: GSE42825) includes 
TB patients (n = 8) and other samples (n = 34). These three datasets come from the same microarray,
Illumina HumanHT-12 V4.0 expression beadchip. The pathological characteristics of these three 
datasets were summarized in Table 1. Each datasets was divided into TB group (TB patient; Label 1) 
and non-TB group (includes sarcoidosis, pneumonia, lung cancer, healthy controls; Label 0). 

Table 1

The pathological characteristics of datasets in this paper

Other Lung Diseases

TB Sarcoidosis Pneumonia LC HC TOTAL

Training Set 16 25 8 8 38 95

Test Set 11 25 6 8 52 102

Validation Set 8 11 - - 23 42

Summation 35 61 14 16 113 239

Note: LC: Lung cancer; HC: Healthy controls.
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3. Results and discussion 

3.1.Gene signature selecting

The gene signatures were selected from the training set using the logistic models with Lasso, ��/� ,
Elastic Net approaches respectively. 10 fold cross-validation was estimated for tuning the penalty 
parameters in Lasso and ��/� approaches. The penalty parameters of Elastic Net were selected using 
two dimensional surfaces cross-validation [10]. The numbers of gene signatures selected by these 
three regularization models are: Lasso (g=88), ��/� (g = 63), Elastic Net (g = 875) respectively. In the 
literature, Bloom, et al. [4] reported that they proposed 144 gene signatures to distinguish TB 
from other lung disease and healthy controls. Similar works include that 76 genes (recognized by the 
officer gene symbol) signatures in Maertzdorf, et al. [5] and 50 genes in Koth, et al. [6] were proposed 
to discriminate TB from other lung diseases. 

The regularized logistic methods were compared to the above three studies [4-6] and the results 
were summarized in Table 2. All these methods were developed on the training set and evaluated on
the test and the validation sets. The results of Bloom, et al. [4] come from their publication, in which 
the classifier was built by support vector machines (SVM) with 144 gene signatures. For comparison,
the classification models of Maertzdorf, et al. and Koth, et al. were also built by SVM approach using 
their reported gene signatures in the literature [5, 6].

As showed in Table 2, the signatures selected by regularized logistic methods outperform the other 
three sets of signatures, because they achieved the best performance in every dataset. Such as, the 
��/� method achieved 100% sensitivity in the training set. Elastic Net achieved the highest sensitivity 
in the test set. Lasso achieved 100% sensitivity in the validation set. Moreover, the Lasso approach 
achieved the best specificity in the training set. The ��/� approach achieved 95.60% and 94.12% 
specificity in test and validation sets respectively, which are the best performance amongst these two 
datasets compared to other methods. The classifier with the 144 gene signatures proposed by Bloom et 
al. to distinguish TB from other lung disease, showed a lower sensitivity (82–88%), though similar 
specificity (> 90%). The classifier with 76 genes (recognized by the officer gene symbol) signatures 
suggested by Maertzdorf et al. achieved a much lower sensitivity (45–56%), though similar specificity 
(> 90%). The classifier with 50 genes was shown to be differentially expressed in TB and sarcoidosis 
studied by Koth, et al. also resulted in a much lower sensitivity (45–75%) and lower specificity 
(87-92%). 

Table 2

The discrimination results of all the methods

Method Sensitivity Specificity

Training Test Validation Average Training Test Validation Average

Lasso 100.00% 72.73% 100.00% 90.91% 100.00% 90.11% 91.18% 93.76%

L1/2 100.00% 81.82% 87.50% 89.77% 97.47% 95.60% 94.12% 95.73%

Elastic Net 93.75% 90.91% 87.50% 90.72% 94.94% 90.11% 91.18% 92.07%

Bloom, et al. 88.00% 82.00% 88.00% 86.00% 94.00% 91.00% 92.00% 92.33%

Maertzdorf, et al. 56.00% 45.00% 75.00% 58.67% 96.00% 92.00% 92.00% 93.33%

Koth, et al. 75.00% 45.00% 50.00% 56.67% 92.00% 87.00% 92.00% 90.33%
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Fig. 1. The Venn diagram and heat map of the gene signatures selected by Lasso, ��/� and Elastic Net approaches. (a) The 
Venn diagram analysis of the results of Lasso, ��/� and Elastic Net methods. (b) The heat map of the common genes 
showed in (a) for datasets GSE42830, GSE42826 and GSE42825. Case: tuberculosis, control: non- tuberculosis.

3.2.Common gene signatures analyses

In this section, we consider the common gene signatures selected by the logistic models with Lasso, 
��/� , Elastic Net regularization methods, which are the most relevant signatures of TB disease. Hence, 
13 common genes were found in these methods and described in Figure 1(a). Figure 1(b) showed a 
significant difference of the 13-signature gene expression between TB and non-TB in training set 
(GSE42830), test set (GSE42826) and validation set (GSE42825) using heat map analysis. For 
example, the expression of gene AIM2 in TB (case) patients are much higher than the expression in
non-TB (control) patients. 

The classifier based on these 13 commonly selected gene signatures was built by the SVM approach 
to fit the gene expression data in training set firstly. Then the model was evaluated on the test and 
validation sets. The results of the classifier performance were represented in Table 3. Overall, the 
classifier with 13 gene signatures achieved 91.86% sensitivity and 93.48% specificity averagely (the 
cutoff point is 0.075), in which its sensitivity (91.86%) is much better than the average sensitivity of 
other methods: 86.00% of Bloom, et al. model with 144 gene signatures, 58.67% of Maertzdorf, et al. 
model with 76 gene signatures and 56.67% of Koth, et al. model with 50 gene signatures. The overall 
specificity of the classifier with 13 gene signature is 93.48% and also outperforms the three methods 
(90.33-93.33%). On the other hand, the classifier with 13 gene signatures also competitive when 
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Table 3

The discrimination results of 13 gene signatures using the SVM approach

Method Sensitivity Specificity

Training Test Validation Average Training Test Validation Average

13-gene 93.75% 81.82% 100.00% 91.86% 96.20% 90.11% 94.12% 93.48%

compared to the three regularization methods (Lasso, ��/� , and Elastic Net). As showed in Tables 2 
and 3, the average sensitivity (91.86%) and the average specificity (93.48%) of the 13-gene signature 
classifier are higher than the average sensitivity 90.72% and the average specificity 92.07% obtained 
by the Elastic Net approach. Moreover, the number of gene signatures selected by the Elastic Net was 
875, which is over 67 times more than the 13 gene signatures. The average specificity 95.73% of the 
��/� approach is better than the 93.48% of the 13-gene classifier; however, the average sensitivity 
91.86% of the 13-gene classifier is better than the sensitivity 89.77% obtained by the ��/� approach.
Besides, 63 gene signatures selected by the ��/� approach is much more than the 13 gene signatures 
used in the classifier. Hence, these common gene signatures selected by Lasso, ��/� and Elastic Net 
approaches were the core factors of molecular diagnostics for TB disease.

There are several biological studied that associated with these 13 gene signatures. For example,
absent in melanoma 2 (AIM2) is an indicator of cytology DNA that is accounted for host immune 
responses to DNA viruses and intracellular bacteria. And AIM2 have been proved plays an important 
role in Mycobacterium tuberculosis infection [13]. Complement 1qb (C1qb) gene could be a potential 
diagnostic marker to discriminate active tuberculosis from latent tuberculosis infection as well as 
tuberculosis pleurisy from non-tuberculosis pleurisy [14]. Mef2d, be known as a key factor in muscle 
development, energy storage and immune responses, and have been suggested may play a part in the 
process of tuberculosis infection [15].

4. Conclusion

In this paper, the logistic models with three representative regularization approaches including 
Lasso, ��/� , and Elastic net adopted together to select the common gene signatures in microarray data 
of peripheral blood cells. As the result, 13 common gene signatures were selected, and sequentially the 
classifier based on them is constructed by the SVM approach, which can be accurately distinguishing 
tuberculosis from other pulmonary diseases and healthy controls. This 13-gene signature model 
achieved an impressive performance of discriminating TB from other pulmonary diseases and healthy 
controls. The results in this paper have moved forward the clinical use of blood-based TB diagnostic.
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