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Abstract. Computer-aided diagnosis (CAD) approaches succeed in detecting a number of diseases, however, they are not 
good at addressing atrial hypertrophy disease due to the lack of training data. Support Vector Machine (SVM) is very popular 
in few CAD solutions to atrial hypertrophy. Yet the performance of SVM is moderate in atrial hypertrophy detection 
compared to its success in other classification problems. In this paper we propose a novel CAD algorithm, Local 
Discriminative SVM (LDSVM), to overcome the above-mentioned difficulty. LDSVM consists of a global SVM that is 
trained on the training data, and a local kNN that is trained based on the information of SVM and query. When a query 
arrives, SVM gives the initial decision. If the initial decision is less confident, local kNN begins to modify the initial decision. 
LDSVM improves the accuracy of SVM through some contributions: the risk tube, the discriminant information derived from 
SVM hyperplane, the new metric and the self-tuning size of neighborhood. Empirical evidence on real medical datasets show 
high performance of LDSVM over the peers in addressing atrial hypertrophy problems. 
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1. Introduction 

Computer-aided diagnosis (CAD) has always been one of the major research subjects in medical 
imaging and diagnostic radiology [1-4]. In computer science community, CAD approach belongs to 
pattern recognition or machine learning, with the aim to let computer yield a second opinion for 
medical staff. Although CAD approaches behave well in detecting many cardiovascular diseases [5-7], 
they are not good at addressing atrial hypertrophy disease. The reason is that the training data is 
extremely rare. 

Neural network [8-10] and Support Vector Machine (SVM) [11, 12] are two of few CAD solutions 
to atrial hypertrophy problems. However, between the two tools, SVM performs better. On 
comparison with outstanding behaviors in other classification problems, performance of SVM is 
moderate for solving atrial hypertrophy problems. The underlying reasons for this lie in two aspects; 
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firstly, the existing training data sets are of poor quality as there are errors during the data acquisition 
process. Further, the sharp difference in physiological information between individuals generates 
problems to find the accurate distribution of atrial data. Secondly, the gap between the normal and the 
abnormal is getting blurred, and the margin between two classes is getting vague. This hinders SVM to 
construct a qualified hyperplane within the margin. 

In last decades, a number of SVM variants appeared: Eigenvalue Proximal Support Vector Machine 
[13], Twin Support Vector Machine [14], Multi-Weight Support Vector Machine [15], Least Square 
Twin Support Vector Machine [16], Least Square Projection Twin Support Vector Machine [17]; and 
some other variants [18-20]. These algorithms work well under many circumstances including 
computer-aided diagnosis. However, they only focus on common datasets and don’t care the 
characteristics of atrial hypertrophy data. Thus they perform moderately when they solve atrial 
hypertrophy problems. To overcome the above-mentioned difficulties, in this paper we propose a 
novel Local Discriminative Support Vector Machine (LDSVM). LDSVM consists of a global 
classifier, SVM, and a local classifier, k-nearest neighbor (kNN) [21, 22]. When a query arrives, the 
global SVM generates an initial decision. If the initial decision is less confident, then a local kNN is 
initiated to update the label decision. The novelty of LDSVM lies in the following; 1) Define a risk 
tube to observe whether the initial decision is confident enough or not. 2) Derive the discriminative 
information from SVM hyperplane. 3) A new metric is defined based on the derivative information. 
The neighborhood where kNN works is formulated with the new metric. Neighborhood size is decided 
by the query information. Experiments on real atrial hypertrophy datasets show LDSVM provides 
higher accuracy and appealing consumption compared with the peers. 

In literatures, there are researchers who defined the rejection region for SVM. This rejection region 
is similar to the risk tube proposed in this paper. However existing research only identified the data 
falling into the rejection region, and didn’t do any further prediction to those hard queries. That 
actually does not do any help to upgrade the accuracy of SVM. Here LDSVM specifies the risk tube 
and handles the tube with a local-wise classifier, which improves the performance of the classifier.  

2. Related work 

For N samples: (x1, y1)…(xN, yN) sampling from X × Y, X is the training dataset where X = Rn, and Y 
is the label set where Y = {1, -1}. SVM constructs the optimal hyperplane through optimizing: 
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Therein K is the Kernel function. βi is Lagrange multipliers. C is the penalty coefficient. Points with 
0< βi < C are Support Vectors (SVs). Denote solution of (1) is β*. The offset b of the hyperplane is: 
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Then the hyperplane is decided by: 
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kNN is a local classifier. When query arrives, kNN formulates a neighborhood for query and labels 
query as the most frequent class membership occurring among neighbors. Clearly kNN predicts 
query’s membership according to the local information within the specified neighborhood. 

3. The motivation and idea of LDSVM 

SVM holds strong confidence when addressing the queries that are far apart from the hyperplane. 
However, it could lead to SVM’s failure when handling queries near the hyperplane. This feature 
inspired us to improve the less-confident decisions of SVM with a local classifier that works well in 
the region where SVM is confused. In this paper we have chosen kNN to overcome this problem. In 
this approach a new metric is derived from the hyperplane information of SVM with an overall aim to 
discover the class boundaries. The hyperplane of SVM separates two classes. It means that along the 
direction of the hyperplane, data could be correctly classified. Consider the margin between two 
classes. In this region, it can be thought that the direction of the hyperplane can be replaced with the 
tangent direction of the hyperplane. In following description, the derivative of the hyperplane function 
is computed. This derivative information quantifies the tangent direction, so as to simulate the most 
discriminant direction. 

In a word, LDSVM corresponds to the following steps.1) Preprocess the atrial hypertrophy data. 2) 
Construct SVM on training data; obtain the hyperplane function: f(x). 3) For query Q, label it with 
SVM. 4) If Q falls in the risk tube, develop the new metric ||·||Q. 5) Compute the neighborhood size, 
NS. 6) Formulate the neighborhood of Q and start local kNN classifier to update the label of Q. 

4. Implementation of LDSVM 

4.1. Tube specification 

SVM labels queries according to which side query falls. The queries that fall closer to the 
hyperplane, have higher chances that they are classified by mistake. Here around the hyperplane a 
banding-like region is specified as the risk tube. If query falls in this region, the initial decision of 
SVM will be modified. In details, we think if the query satisfies the condition shown below then it 
falls in the risk tube: 

 
| ( ) | 0.5f Q 
                                                                          (4) 

 
Therein f(x) is the hyperplane function of SVM. |f(Q)| provides the distance of Q from the 

hyperplane. In the 2-dimensional data space, the risk tube generated by the above condition is 
illustrated in Figure 1. 

4.2. Metric definition 

The direction of hyperplane is described by the derivative of f(x): f’(x). Here it takes the 
individuality of queries into consideration and compute the derivative with respect to Q. There are two 
scenarios. If Q is on the hyperplane, say, f(Q) = 0, the gradient vector f ’(Q) can be utilized directly. If 
Q is not on the hyperplane, it should look for Q’s nearest neighbor that is on the hyperplane. This 
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Fig. 1. The illustration of risk tube. Fig. 2. f ’(Q) and f ’(QN). 

 
neighbor is denoted as QN, and then QN can be probed via optimization as shown below, by 
optimization problem: 

 
min || ||QN Q QN�        s.t.  ( ) 0f QN �                                                  (5) 

 
Extra cost is incurred during optimization. If the local kNN is initiated, it implies Q is located within 

the risk tube. That is, Q is near the hyperplane. As shown in Figure 2 the direction expressed by f ’(Q) 
is very close to the direction expressed by f ’(QN). Therefore we simulate QN with Q. 

Now in both the scenarios, f ’(Q) is used to define the new metric. Denote G = f’(Q) = (G1 , G2 ,…, 
Gn), where Gi is the ith element of f’(Q). Gi tells the importance of the ith dimension when describing 
this discriminant direction. In this paper the derivative information is used to weight data original 
coordinates. In details, for the ith dimension, the weight coefficient is defined as: 
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Exponential mechanism avoids the dramatic changes in computation. Given x and y being any two 

points, the new metric that is customized to Q is defined as: 
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4.3. Neighborhood formulation 

With the new metrics in hand, we can specify the size of neighborhood as follows. 1) Compute the 
distance between each training data, x, and the query: ||x - Q||Q. 2) Sort training data into the ascending 
order: { x(i) | ||x(i) - Q||Q> ||x(i-1) - Q||Q, i = 2…N}. 3) Find the maximum gap position in the list: 

 
( ) ( 1)( ) max {|| || || || }i i Q i Qgap Q x Q x Q�� � � �                                          (8) 

 
4) Let the neighborhood size NS = gap(Q) and specify the nearest NS data {x(1), …x(NS)} as the 
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neighbors of Q. gap(Q) implies the inherent boundary of a small region centered at Q. It is believed 
that data within that region are densely gathered. We view that region as the neighborhood of Q. 

5. Application to atrial hypertrophy data 

5.1. Data preprocessing 

MGH/MF dataset and Fantasia dataset [23, 24] are considered as experimental datasets. They are 
downloaded, observed and processed by WFDB software [25]. MGH/MF includes the electrocardio-
records of 250 patients; Fantasia dataset includes the electrocardio-records of 40 healthy persons. If 
one heartbeat has original 300 sampling points, we compute the sampling interval: 300/50 = 6. Then 
reserve the 6th sampling point and abandon from 1st to 5th sampling points; reserve the 12th sampling 
point and abandon from 7th to 11th sampling points, and so on; until 50 reserved sampling points are 
obtained. Therefore, a 50-dimensional vector describes one heartbeat. It should be noted here that its 
voltage describes each sampling point. Therefore, this 50-dimension vector records 50 voltages. In this 
paper, entries of such a 50-dimension vector are normalized by subtracting the mean voltage of 
corresponding dimension, with aim to ranging the electrocardio-data valued around zero. In 
experiments, some patient records and some healthy person records are selected randomly from 
MGH/MF and Fantasia to formulate four training and four testing datasets, which are named as a), b) 
c) and d), as shown in Table 1. Here ‘#’ stands for the number of samples. 

For LDSVM, its global SVM is equipped with Gaussian Kernel. The scale parameter and the 
penalty coefficient are tuned by 10-fold cross validation [26]. Neural network (NN) and classical SVM 
are conducted for comparison. Here NN uses a three-layer network. The number of neurons and the 
transfer function are reported in Table 2. The maximum iteration times of NN is set as 104. Classical 
SVM also employs Gaussian Kernel. Similarly, the scale parameter of Gaussian Kernel and the 
penalty coefficient of classical SVM are also tuned by 10-fold cross validation. To investigate the 
quality of the proposed metric, another version of LDSVM, named as LDSVMEU, is conducted. 
LDSVMEU consists of global SVM and kNN that is based on Euclidean metric. That is, the 
neighborhood where kNN works is developed based on Euclidean metric. 

 
Table 1 

The specification of experimental datasets 

 Training dataset Testing dataset 
# patients # healthy persons # patients # healthy persons 

a) 30 31 10 9 
b) 38 37 10 3 
c) 50 35 10 5 
d) 65 35 10 5 

 
Table 2 

Details of NN 

 # neurons Transfer function 
Input Layer 50 g(x) = x 
Hidden Layer 10 g(x) = tansig(x) 
Output Layer 1 g(x) = purelin(x) 
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Fig. 3. Comparison of accuracy on four datasets. 

 
Table 3 

Theoretical time complexity analysis 

 Time Complexity 
NN Unexpected 
SVM O(N3) 
LDSVM O(N3) + O(NlogN) 

5.2. Experiment results 

Experimental results are listed in Figure 3. From Figure 3, it is safe to conclude the following. 1) 
LDSVM presents the optimal results. LDSVMEU produces the second optimal results, followed by 
SVM. NN performs the worst. The advantage of LDSVM and LDSVMEU over classical SVM is 
attributed to the employment of local classifier to modify the initial decision. In the risk tube, the local 
kNN does effectively refine less-confident decisions. The advantage of LDSVM over LDSVMEU can 
be explained that the new metric is well done. The neighborhood formulated by the new metric can 
cover the neighbors with same class membership as the query. That greatly assists kNN to improve the 
unpleasant initial decisions. These experimental results verify the quality of the new metric and show 
the discriminant information derived from SVM hyperplane function can benefit the consequent label 
assignment. 2) In datasets a) and b), the sizes of two classes are very close. They are viewed as the 
balanced cases. In datasets c) and d), there is an obvious gap in the sizes of two classes. They are 
viewed as the imbalanced cases. According to experiment results, four classifiers do better jobs in the 
balanced cases in comparison to the imbalanced cases. For LDSVM, LDSVMEU, and SVM, they 
construct the hyperplane around the central line sites of the margin between two classes. The 
imbalance between two sides would attract the hyperplane from the central line to the sideling sites. 
That inevitably affects the classification accuracy. For NN, the imbalanced classes affect updating of 
weight coefficients of network, and the final output. 

5.3. Time complexity analysis 

This section further explores the time consumption of NN, SVM and LDSVM. Table 3 lists the 
theoretical analysis, where N is the size of training dataset. 

Therein the cost of NN is unexpected and the implementation depends on many factors, such as, the 
structure of network (including the number of layers and neurons), the termination condition (using 
the pre-specified iteration times or the threshold of error), etc. SVM solves a quadratic optimization 
problem, with the cost being O(N3). The time consumption of LDSVM consists of cost of global SVM 
and cost of local kNN. Global SVM’s time complexity is O(N3). The time complexity of local kNN 
lies in sorting training data. We chose the most commonly used sorting algorithm, quick sorting 

P. Ling et al. / Improve the diagnosis of atrial hypertrophy with the local discriminative support vector machineS1818



algorithm to fulfill the sorting task. On average, quick sorting algorithm fulfills logN partitions, and in 
each partition, it does N comparisons. Hence, the time complexity of local kNN is O(NlogN). LDSVM 
consumes more time than SVM. But in the era when computer hardware is in mushroom growth, the 
difference in cost between LDSVM and SVM will gradually reduce. 

From the above experiments, it is evident that among existing CAD solutions to detect atrial 
hypertrophy diseases, LDSVM behaves the best; and in cost LDSVM is more appealing than others. 

6. Conclusion 

This paper proposes a Local Discriminative Support Vector Machine (LDSVM) to address atrial 
hypertrophy problems. LDSVM employs the kNN classifier to refine the less-confident decision of 
SVM. For that, a risk tube is defined. The queries falling into the tube are re-labeled. A new metric is 
derived from the hyperplane function of SVM. For local kNN, the neighborhood is developed based 
on the new metric and the neighborhood size is decided query-adaptively. 

In the future, some medical diagnosis problems will utilize LDSVM. For example, in the prediction 
of disease-causing SNP, existing approaches are used to including sequences of protein paralogs, 
which affects the prediction accuracy. Wong, et al. [27] proposed an algorithm to fulfill the prediction 
using orthologous protein sequences to improve the prediction accuracy. With the scarcity of 
orthologous protein sequences, it is interesting to introduce LDSVM into such a problem, since 
LDSVM is equipped with local kNN to address the difficulty of the small-sized training data. 
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