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Abstract. High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building 
prediction model which has tensor input and output. The objective of this study is to build a prediction model of the 
relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial 
node field potential made up the model’s input. The concentration and the actuation duration of high glucose made up the 
model’s output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same 
predictive ability and a lower dispersion degree compared with partial least squares (PLS).
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1. Introduction

In biomedical engineering research, the processing of electrophysiological data is a significant field. 
The amount of experimental data has increased sharply since the fast development and extensive 
application of multiple electrodes electrophysiological sensors [1-3]. When the amount of data is huge, 
some features may be hidden in the data and be difficult to find. In this case, researchers tend to pay 
more attention to find the internal relations of the data and then evaluate the new experimental data
using these relations. Therefore, accurate prediction models need to be built.

The partial least square (PLS) is a classical and widely used modeling method which can predict a 
dependent variable set from an independent variable set. There are many variations of the PLS model 
such as recursive PLS, biorthogonal PLS and nonlinear PLS. These methods have been used widely to 
process electrophysiological signals [4-6]. Most of the methods, however, have strict requirements for 
the input and output of the models. For example, the input must be a matrix and the output must be a 
vector. In fact, most of the experimental data describe the relations between multi-way input and
multi-way output which are deemed as tensors. In order to adjust this kind of data, a new prediction 
model, higher order partial least squares (HOPLS), was proposed [7, 8]. HOPLS is highly suitable for
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building a prediction model which has tensor-input and tensor-output. The model can predict several 
variables synchronously.

In this paper, HOPLS was used to build a prediction model which could predict the concentration 
and actuation duration of high glucose to the sinoatrial node field potential. The sinoatrial node is the 
pacemaker tissue located in the right atrium of the heart [9]. The sinoatrial node field potential is an
important electrophysiological signal which could reflect the conduction law of cardiac pacing signals.
The data preprocessing results showed that the sinoatrial node field potential consisted of three 
different sub-signals. The three signals had different sensitivities to high glucose and did not disturb 
each other. The HOPLS prediction model could predict the concentration and actuation duration of 
high glucose according to the sub-signals. Compared with the prediction results of PLS, the predictive 
ability of HOPLS had the same level of root mean squared error of prediction (RMSEP) and a lower 
dispersion degree.

The paper is organized as follows: Part 2 presents the modeling methods of PLS and HOPLS, as 
well as the biology experimental equipment and processes. Part 3 presents the results and discussions 
of the biology experiments and prediction models. Part 4 is the conclusion.

2. Materials and methods

2.1. Prediction modeling methods

In this paper, Nth-order tensors are denoted by underlined boldface capital letters, e.g., X; matrices 
by boldface capital letters, e.g., Y; vectors by boldface lower case letters, e.g., v and scalars by italic 
lower case letters, e.g. a. The ith entry of a vector v is denoted by ��; element (i, j) of a matrix Y by ���; 
and element (��, ��,…, �	) of an Nth-order tensor X (X
 IR��×�
×…×��) by ����
…��

or (X)���
…��
. The 

n-mode product of tensor X
 IR��×�
×…×��×…×�� and matrix A
 IR��×�� is denoted by Y=X×�A


IR��×�
×…×����×��×����×…×�� and is defined as

1 2 1 1 1 2... ... ... ...n n n N n N j in n
n

i i i j i i i i i i a
i

y x
� �

� �                                               (1)

For PLS, we calculated the output variables Y by Eq. (2):

Y = XD + r                                                              (2)

where X is an input variable quantity, D is a regression coefficient matrix, and r is a bias vector.
When a small number of principal components are defined by linear combinations of the input 

matrix, Eq. (2) can be rewritten by Eq. (3):

Y = Tv + r                                                                      (3)

where v is a vector of regression coefficients corresponding to the latent variables. 
Then the matrix T can be calculated by Eq. (4):

� = ��(���)��                                         (4)
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where P is the loading matrix representing the influence of X. W is the weight loading matrix 
indicating the correlation between Y and X.

For HOPLS, X is decomposed as a sum of rank-(1, ��,…, �	) Tucker blocks. Y is decomposed as a 
sum of rank-(1,��,…, ��) Tucker blocks [7]. X and Y can be written by Eq. (5):

X =
1

R

r�
� G r ×� t� ×� ��

(�)
×� … ×	 ��

(	��)
+E r

(5)
Y =

1

R

r�
� D r ×� �� ×� !�

(�)
×� … ×� !�

(���)
+F r

where R is the latent vectors’ number, �� 
 IR�� is the rth latent vector, {��
(�)

}�"�
	�� 
 IR����×#��� and 

{!�
($)

}�"�
��� 
 IR�%��×&%�� are loading matrices on mode-n and mode-m, G r and D r are core tensors. 

G r 
 IR�×#
×…×#�, D r 
 IR�×&
×…×&' .
For the three-way independent variables X
 IR�×�×& and the dependent variable Y
 IR�×� with the 

same sample size I, the model can be simplified as Eq. (6):

X =
1

R

r�
� G r ×� �� ×� �� ×� *� +E r

(6)
Y =

1

R

r�
� ,����-�

. +F r

where �� 
 IR�×#
(/ 0 ��), *� 
 IR&×#1(� 0 ��) are the loading matrices corresponding to the latent 
vector ��.

If we define Z = X ×�Y, the parameters P, S, c can be learned by maximizing the objective function

max
�,*,-

|| G×� -. ×� �. ×� *.||�, subject to �.� = 3#

, *.* = 3#1

and ||c||=1                 (7)

2.2. Animals

Male C57/BL6J mice which were fed a standard laboratory diet and water were chosen for the 
experiments. The mice were 8-12 weeks old and weighed 20-25 g. The ambient temperature was
21°C±2°C. The Ethics Committee of Animal Experimentation approved the experimental protocol,
and the study was performed according to the Guidelines for Animal Experimentation of Xi’an 
Jiaotong University.

2.3. Recording instruments

The MED64 Recording and Analysis System (Panasonic Alpha Med Science Company, Japan) 
were used to record and analyze the experimental data. The system comprised an MED64 amplifier, 
an MED64 connector, an MED64 controller, a data processing computer, an inverted microscope, a
perfusion cap, a peristaltic pump and a measuring electrode. The electrode had 64 channels which 
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were arranged in 8×8 squares. The electrode spacing was 300 4m. Each electrode was square and the 
length of each side was 50 4m.

2.4. Design of the experiment

To begin, mouse heart was needed in vitro perfusion. The Langendorff system [10] and Tyrode’s 
solution [11] were used for the perfusion. Afterwards, the sinoatrial node located on the right atrium
[12] was cut off at a thickness of 1mm. Then the sample was directly placed into the MEA electrode
for recording. In the entire recording process, Tyrode’s solution with 5% carbon dioxide and 95% 
oxygen was provided continuously with a flow rate of 5 ml/min. 

After recording the field potentials of the control sample, high glucose solutions were fed into the 
sample at 0th minute. The concentrations were 20 mM, 30 mM, 40 mM and 50 mM, respectively at a
duration of 30 minutes. Data were recorded every five minutes beginning from the 10th minute. The 
sampling frequency was 20 kHz. Meanwhile, mannitol solutions with identical concentrations were 
fed into the iso-osmotic group to eliminate the possible effects of high osmotic pressure. The results
showed that the field potential was not sensitive to high osmotic pressure.

Fast Fourier transform (FFT) was used to convert the field potential signals from the time domain to 
the frequency domain. Most of the power of the frequency domain signals was focused at 0-50 Hz. 
Data from this section were selected as the experimental data. The dataset contained 1166 samples. 
Shutter grouping strategy [13] was used to split the dataset into the validation set and the calibration 
set. For every two samples, one was placed into the calibration set and the other was placed into the 
validation set. The calibration set was used to build the prediction model. The validation set was used 
to estimate the effectiveness of the modeling method.

3. Results and discussion

3.1. Data preprocessing

(a)                                                                           (b)

Fig. 1. Conductive characteristics of the field potentials in the time domain. (a) The signals gotten from two recording points 
(Channel 36 and Channel 49). The spacing was 1 mm. The conducting direction was from Channel 36 to Channel 49. (b) The 
velocity vector map of the first positive wave peak.

Y. Feng et al. / Prediction model of sinoatrial node field potential using high order partial least squaresS1808



Figure 1(a) showed signals in the same cycle from two different recording points. Both of the first
two wave peaks ���� ���	� �
�	���
�� ������
��������������meant that these two kinds of wave peaks 
were conductive. Figure 1(b) showed the conducting directions and velocities [14] of the first positive 
wave peak. In the center, there were no time intervals. It could be considered that in this area, the 
characteristic of the signals occurred simultaneously. Apart from the centre, the farther the electrodes
were from the area, the later the wave peaks occurred. It showed that the characteristics of the signals
spread around from the center. The negative wave peak had a similar conduction mode. On the 
contrary, the second positive wave peaks appeared almost at the same time point in the entire
recording area. It indicated that the sinoatrial node field potentials had two kinds of different 
conductive characteristics. The signal was composed of several different sub-signals.

Fig. 2. Signal decomposition. (a) The field potentials of the control sample in the time domain. (b) The field potentials in 
high glucose environment in the time domain (The concentration of glucose was 40 mM, the actuation duration was 30 
minutes). (c) The energy distributions of the control sample in the frequency domain. (d) The energy distributions in high 
glucose environment in the frequency domain (The concentration of glucose was 40 mM, the actuation duration was 30
minutes).
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Table 1

The predictive results of PLS and HOPLS in different concentrations of glucose and actuation durations

Concentration (mM) PLS HOPLS Actuation 
duration (min)

PLS HOPLS
RMSEP 56

� RMSEP 56
� RMSEP 56

� RMSEP 56
�

20 6.3911 0.4370 6.3144 0.8069 10 8.1791 0.4715 6.2098 0.8760
30 5.3133 0.5989 15 6.2468 0.4529
40 6.6031 0.3837 20 6.4046 0.5779
50 5.4472 0.6895 25 5.5100 0.6501

30 6.3029 0.5093
Note: RMSEP: root mean squared error of prediction; 56

�: squared correlation corefficient of prediction.

The sinoatrial node field potentials were separated into three sub-signals using wavelet analysis [15] 
(the wavelet function was Dmey and the decomposition level was 9). In this paper, the sub-signals 
were named as the low frequency field potential, conductive field potential and spontaneous field 
potential respectively. Figure 2 showed the signal decomposition in the time and frequency domains. 
In the high glucose environment, the three signals showed different sensitivities and did not disturb 
each other. They comprised the three-dimensional independent input tensor X. The concentrations and 
actuation durations of high glucose comprised the two-dimensional dependent output matrix Y. Thus, 
a prediction model for the concentrations and actuation durations could be built by the method in Part 
2.1.

3.2. Predictive abilities

The predictive abilities of HOPLS and PLS were compared. PLS could not predict the concentration 
and actuation duration simultaneously since the output of PLS is a vector. Therefore, when PLS was 
used, the concentrations were fixed when the actuation durations were predicted and the actuation 
durations were fixed when the concentrations were predicted. Table 1 presented the predictive abilities 
of HOPLS and PLS for the concentrations and actuation durations of high glucose. The root-mean-
squared error of prediction (RMSEP) of concentration using HOPLS was 6.3144, which was 6.32% 
higher than the average value of the RMSEP using PLS, which was 5.9386. The RMSEP of actuation 
duration using HOPLS was 6.2098. This was 5.06% lower than the average value of the RMSEP using 
PLS, which was 6.5409. The results indicated that under the condition of predicting the concentration 
and the actuation duration simultaneously, the predictive ability of HOPLS and PLS was in the same 
order of magnitude. Meanwhile, the squared correlation coefficient of prediction (57

�) of HOPLS was 
higher than the one of PLS. It indicated that the dispersion degree of predicted values using HOPLS 
were lower. 

In clinical and experimental studies, the common situation is that the concentration and actuation 
duration of high glucose are both unknown. In this case, PLS will be invalid since the output is a 
vector. HOPLS is suitable for this situation and its predictive ability is comparable to PLS’s.

4. Conclusion

HOPLS provides a very effective method for building a prediction model with tensor-input and 
tensor-output. Sinoatrial node field potential is composed of three independent sub-signals. The 
signals are sensitive to high glucose. It is suitable to build a prediction model using HOPLS if the 
three sub-signals are regarded as the input tensor and the concentrations and actuation durations of 
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high glucose are regarded as the output tensor. The predictive abilities of HOPLS and PLS were 
comparable, but HOPLS could predict multi-dimension variable.
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