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Abstract. Due to the generation of enormous amounts of data at both lower costs as well as in shorter times, whole-exome
sequencing technologies provide dramatic opportunities for identifying disease genes implicated in Mendelian disorders.
Since upwards of thousands genomic variants can be sequenced in each exome, it is challenging to filter pathogenic variants
in protein coding regions and reduce the number of missing true variants. Therefore, an automatic and efficient pipeline for
finding disease variants in Mendelian disorders is designed by exploiting a combination of variants filtering steps to analyze
the family-based exome sequencing approach. Recent studies on the Freeman-Sheldon disease are revisited and show that the
proposed method outperforms other existing candidate gene identification methods.
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1. Introduction

Recently, several different identification strategies have been developed for analyzing and interpret-
ing whole-exome sequencing data in order to improve detection capabilities for disease-associated
genes [1-3]. Typically, most published studies focus on exploiting the traditional candidate strategy
and performing a filtering approach, which is based on the variant’s predicted impact on protein func-
tion and structure, which are mutations in the exonic and splice-site region [4]. Moreover, these meth-
ods are always designed for analyzing a specific gene, and there is not a pipeline that can be common-
ly used for applying various filtering steps to the identification of a disease gene from exome rese-
quencing experiments. In addition, such an approach is not optimal under the condition of further
availability of family members or other affected individuals.

In this study, an automatic and efficient pipeline is proposed for finding disease variants in Mende-
lian disorders. Thus pipeline consists of a combination of features: an improved candidate strategy and
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a family-based exome sequencing approach. As one appropriate open-source tool, ANNOVAR
[5] and many in-house developed programs are integrated into the pipeline. The pipeline takes stand-
ard VCF (Variant Call Format) files and a highly configurable file as input and then automatically pri-
oritizes variants for inherited Mendelian diseases. Specially, it can process multiple files simultane-
ously on per-chromosome mode. Additionally, twelve main criteria are used for predicting the effects
of coding non-synonymous variants on protein function. In addition, it fully makes use of the family-
bases sequencing information as well as takes non-affected family members as the control data set;
thus, the amount of interesting variants can be kept to a minimum. The software is written in Perl and
driven by command-line. It has been implemented as a standalone application on UNIX high perfor-
mance computing system scheduled by SGE (Sun Grid Engine) as well as on a single personal com-
puter equipped with the UNIX operating system. The proposed method revisits the Freeman-Sheldon
disease and shows that it outperforms other existing candidate gene identification methods.

2. Materials and methods
2.1. An overview of the analysis pipeline

An automatic and efficient pipeline is proposed and developed for analyzing family-based exome
sequencing data. The constructed steps are shown in Figure 1. The software takes VCF (Variant Call
Format) files as the input of calling variant positions in DNA sequence data, which is commonly gen-
erated by methods such as Samtools (sequence alignment/map tools) [6], SOAP2 (short oligonucleo-
tide analysis package 2) [7], and GATK (genome analysis toolkit) [8] by using sequencing data.

Due to the memory restrictions of most computing platforms, a parallel program (Algorithm 1) is
designed for the analysis process by running the program on a separate chromosome-by-chromosome
mode. This feature can be executed in a manner in which multiple files are performed simultaneously
on an UNIX operating system automatically, and the real execution time is appreciably reduced. The
results are merged into a single output file that sorts by the chromosome order.

2.2. Disease Gene Identification Process

In order to search for disease genes from amongst thousands to millions of genomic variants, sever-
al in-house developed scripts, as well as a source analysis tool, have been integrated into a single pipe-
line. It can be seen from Figure 1 that the proposed approach includes two phases: in the first phase, an
interface to the ANNOVAR [7] software is provided to functionally annotate genetic variants from
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Fig. 1. Identification of disease gene from high-throughput family-based sequencing data.
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Algorithm 1: Analysis procedure on per-chromosome basis

INPUT: A VCF file X
OUTPUT: Filtered results on per-chromosome
for i {chrl,chr2,chr3,chr4,chr5,chr6,chr7,chr8,chr9,chr10,chrl1,chr12,chrl3, chrl4, chrl$, chrl6,
chr17,chr18,chr19,chr20,chr21,chr22,chrX,chrY } do
Yi  Xi //VCF format converted to ANNOVAR standard format
for j=1,...,Nido //Ni is the total line number of file Yi, where each line corresponds to one variant
Y’ij  Yij //Gene-based annotation of genetic variants
end for
system "qsub -1 vf=6G -q group name -P project name shell script" //Submit the job to the workstation
job_num ++;  //The job number adds one
if(job_num > max_job_num){
sleep; //The job is temporally turned into sleeping state.

}

end for

high-throughput family-based sequencing data. In the second phase, a filtering method is performed
to identify a candidate gene list for Mendelian diseases from the annotated genetic variants. Then, the
details of each step that is contained in the two phases are described in the following:

2.2.1. ANNOVAR Annotation

The pipeline is supported to take VCF files as input, adopted by the 1000 Genomes Project [9] for
encoding structural variations. ANNOVAR [5] is an efficient software that utilizes update-to-date in-
formation in order to functionally annotate genetic variants that are detected from high-throughput
sequencing data. After annotating the list of variants with gene definition, it is convenient for the pro-
posed filtering method to identify the causal disease genes.

2.2.2. Variants Filtering

Millions of genomic variants are identified per genome, but only a few may actually explain the
Mendelian disease. Therefore, variants must be both automatically and efficiently prioritized to opti-
mizing the disease gene identification process. The proposed filtering methods combine the improved
candidate strategy with the family-based sequencing approach for selecting candidate variants. As far
as is currently known, this pipeline presents the first effort to identify disease genes on this scale.

(1) Quality criteria

Firstly, the variants are filtered based on quality criteria; doing so will reduce the number of false-
positive calls; the quality scores marked with PASS will be conserved.

(2) Exonic and splice-site region

Then variants outside the exonic and splice-site region will be excluded, assuming that they can not
affect the mutated gene’s encoded protein sequence’s function and structure.

(3) Common databases

The 1000 Genomes Project and the International HapMap Project contribute to developing a public
resource, including SNPs and structural variants and their haplotype contexts. VAF (Variant Allele
Frequency) is the number of copies of a particular allele divided by the number of copies of all alleles
at the genetic place (locus) in a population; it is usually expressed as a percentage. A VAF threshold is
applied to the filtering variants from the public resources. Only variants whose allele frequency is
higher or equal to the threshold are printed filtered out. Moreover, users can change the default thresh-
old in the configurable file.

(4) Prediction program
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Subsequently, twelve main criteria obtained from ANNOVAR, are used for predicting the effects of
coding non-synonymous variants on protein function (see Table 1). A variant with higher scores is
more deleterious and can be represented by any of the following: D (Deleterious), A (dis-
ease_causing_automatic), P (possibly damaging), or H (high). A filtering function is provided in the
proposed method so as to connect a final deleterious decision to every prediction criteria, therefore
indicating whether the variants are related to Mendelian diseases.

Because each prediction software has its own evaluation standard in predicting whether a mutation
is harmful, the results can be variable between prediction softwares. However, in our research, a varia-
tion is considered a disease gene if two or more softwares predict said variation to be harmful. Of
course, users can easily customize the number of software with positive prediction results that is ap-
propriate for their needs so as to set their own criteria for a gene to be annotated as deleterious.

Accordingly, the deleterious function is defined as:

D=Y!2 Xi-N, )]

where Xi represents variants that are predicted as deleterious or tolerated based on twelve different
scores, Xi , and N represents the minimum number of prediction software which annotates the variant
as deleterious, N . Finally, if the Deleterious score (D) is greater than or equal to zero— that is, more
than N software prediction results indicate that the candidate is deleterious— then the variant will be
conserved.

Table 1

Detailed information for the twelve prediction programs

Score Categorial Prediction Xi Categorial Prediction Xi

SIFT D: Deleterious 1 T: tolerated 0

D: Probably damaging; P: possibly

PolyPhen 2 HDIV damaging 1 B: benign 0
PolyPhen 2 HVar dD;IE;Z?;;ly damaging; P: possibly 1 B: benign 0
LRT D: Deleterious 1 N: Neutral; U: Unknown 0
MusioiToser s et swomaie D:y - Naolmontia Fpobmar
MutationAssessor H: high; M: medium 1 L: low; N: neutral 0
FATHMM D: Deleterious 1 T: tolerated 0
MetaSVM D: Deleterious 1 T: tolerated 0
MetaLR D: Deleterious 1 T: tolerated 0
GERP++ higher scores (>=2) 1 lower scores (<2) 0
Phylop higher scores (>=0.95) 1 lower scores (<0.95) 0

Siphy higher scores (>=0.95) 1 lower scores (<0.95) 0
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(5) Control data

Finally, in contrast with traditional candidate gene analysis approaches, the pipeline for identifying
these specific genetic risk factors is improved because there is a search for an association between a
specific variant and a disease via a comparison between a group of affected individuals with a group
of unaffected controls. By using healthy individuals as the control data set, the list of candidate genes
can be substantially trimmed down to a human-manageable number.

3. Experimental results

In order to clearly demonstrate the performance and efficiency of the proposed pipeline in identify-
ing causal genes for Mendelian diseases, the Freeman-Sheldon disease was selected as the tested
Mendelian disease in the experiments. Because its causal mutations in the genes are already known to
be a rare, dominantly-inherited disorder. Since exome data for the Freeman-Sheldon cases were una-
vailable, we downloaded the exome data of three subjects who were reported in [10] in the HapMap
Project, including one Yoruba subject (NA18507), one European American (NA12878), and one East
Asian subject (NA18956). Additionally, we use the healthy European individual (SRR309293) as
control data. The statistics of the testing data is summarized in Table 2.

Figure 2 lays out an overview of the variants reduction and the running time of each step. At first,
~0.67 million variants were initially inputted with gene annotation, amino acid change annotation,
prediction scores, variant allele frequencies, and other information. Then, after filtering the variants
based on quality criteria, ~0.59 million variants marked with PASS were conserved. Next, the variants
were focused on exonic protein-changing only, and from which, a subset of 38,146 variants were iden-
tified as falling into highly-conserved genomic regions. Assuming that variants that are observed in
the public common database with high variant allele frequency are less likely to be causal variants for

Table 2
Summary of the Freeman-Sheldon syndrome study data

Statistics NA12878 NA18507 NA18956 NA309293
Raw data yield (Mb) 4,216 4,474 3,842 10,159
Data mapped to target region (Mb) 1,379 1,346 2,990 8,975
Reads mapped to target region (%) 40.03 37.42 52.65 95.35
Mean depth of target region 15.2 17.6 20.2 56.8
Coverage of target region (%) 85.39 89.29 89.87 97.81
Average read length (bp) 76 76 76 101
GC rate 42.03 41.44 41.19 53.29
Gender test result F M F M
Heterozygosity (%) 67.4 69.4 63.3 65.8
raw SNPs in total 606,506

raw INDELS in total 63,715
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Fig. 2. Number of selected variants and the running time on each step of candidate strategy. Step A: A VCF file is converted
to the ANNOVAR input format; Step B: Genetic variants are added with annotation information; Step C: Variants with low
quality scores are filtered; Step D: Variants outside of the exonic and splice-site region are removed; Step E: The variants
with high allele frequency in the public database are filtered; Step F: The deleterious variants are predicted; Step G: Healthy
family members are set as control data so as to exclude private benign variation.

Freeman-Sheldon syndrome, the variants were filtered from the 1000 Genome Project and the Hap-
Map project. This procedure left 31,120 variants. In the reduced variants set, 6801 mutations were
predicted to be deleterious by applying Eq. (1). Finally, the four subjects were examined so as to iden-
tify variation shared among the three affected individuals; in leaving out the control case, the list of
candidate genes was trimmed down to only three (HEATR1, TCF25, and MYH3), including the causal
gene MYH3 as the major cause of this syndrome.

The following experiments were designed to further evaluate the performance of the proposed pipe-
line. The proposed pipeline was compared to the variants reduction method implemented in the AN-
NOVAR as the only comparative tool. The experimental results are shown in Figure 3. The causal
gene MYH3 is the only major cause of this syndrome. The pipeline selected only 3 genes with 66.6%
false identification, in stark contrast to the 142 candidate genes that were left by the ANNOVAR vari-
ants reduction procedure with 99.3% false identification. In addition, two variants were located in the
MYH3 gene from the total number of five variants that were generated by the proposed method; there-
fore, the accuracy is 40%, whereas the accuracy of ANNOVAR is 2% because four useful variants
were generated from the number of 204 variants. Moreover, the proposed method’s superiority is also
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Fig. 3. Comparison between the proposed method and ANNOVAR on selected genes.
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exemplified in the running time of the method; the proposed method requires four hours, which is far
less than the eight hours that are necessary for ANNOVAR. These data demonstrate that the results
achieved by the proposed method are more practical for further analysis in real applications.

4. Conclusion

In this paper, an automatic and efficient pipeline has been developed for identifying disease variants
from family-based sequencing data. The distinguishing features of the proposed method are: (1) mul-
tiple files can be performed simultaneously on a per-chromosome basis equipped with a UNIX operat-
ing system automatically, (2) incorporation of twelve main criteria into the filtering procedure for pre-
diction of gene function, and (3) using non-affected family members as the control data set. These fea-
tures have been tested via analyzing real data sets, and experimental results show that this method
achieves superior performance over another existing variants reduction pipeline. Thus, the proposed
pipeline can be used in combination with other bioinformatic filters so as to streamline gene discovery
in future exome sequencing projects.
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