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Abstract. Snoring detection is important for diagnosing obstructive sleep apnea syndrome (OSAS) and other respiratory 
sleep disorders. In general, audio signal processing such as snoring sound analysis uses the frequency characteristics of the 
signal. Recently, a correlational filter Multilayer Perceptron neural network (f-MLP) has been proposed, which has the first 
hidden layer of correlational filter operations in frequency domain. It demonstrated a superior classification performance for 
the pattern sets; of these, frequency information is the dominant feature for classification. The first hidden layer is 
implemented with the correlational filter operation; its output is the power spectrum of the filter output, while the other layers 
are the same as the ordinary multilayer Perceptron (o-MLP). By using the back-propagation learning algorithm for the 
correlational filter layer, f-MLP was able to self-adapt the filter coefficients to produce its output with more discrimination 
power for classification in the higher layer. In this research, this f-MLP was applied for sleep snoring signal detection. As a 
result, the f-MLP achieved an average detection rate of 96% for the test patterns, compared to the conventional multilayer 
neural network that demonstrates an 82% average detection rate. 
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1. Introduction 

In the last 20 years, snoring has been a popular topic in clinical medicine. About 50% of the adult 
population snores frequently. Snoring has been also reported as a risk factor for developing disorders 
such as ischemic brain infraction, systemic arterial hyper-arterial hypertension, coronary artery disease, 
and sleep disturbance [1]. Several studies have shown the relationship between snoring and OSAS, 
which is usually associated with loud and heavy snoring [1]. Snoring also disrupts sleep for partners of 
snoring. Investigation into sleep sounds also provides information about breathing abnormalities, 
OSAS, or other pathologies such as upper airway resistance syndrome. It also supports health 
assessment [2].   

For several decades, many studies have been performed on snoring detection. The detector usually 
contains a pre-processing block and a following classifier. The pre-processing procedure is usually 
composed of one or more steps of filtering, segmentation, feature extraction, and normalization for the 
sleep sound to be in a suitable form for the classification process [3]. Based on the discriminative
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characteristics of pre-processed data, the classifier will be trained to discriminate the snoring state 
from the normal respiratory state. Researches ranging from laboratory-based studies to real 
environment studies have produced higher detection rates using several classification methods. These 
methods include robust linear regression with principal component analysis (PCA) on the sub-band 
energy distributions [1], AdaBoost classifier using acoustic features from time and spectral domains 
[3], hidden Markov model (HMM) [4], fuzzy mean clustering [5], wavelet-based spectral analysis [6], 
genetic algorithm, and a support vector machine (SVM) [7]. Most of these classification methods use 
information extracted from acoustic signals during sleep. 

This paper introduces a new neural network approach for sleep snoring detection. The neural 
network is a multilayer feed-forward neural network with the first hidden layer of correlational filter 
operation [8, 9]. This correlational filter multilayer Perceptron neural network (f-MLP) is 
simultaneously trained for both the correlation filter coefficients and the weight parameters using the 
back-propagation algorithm. The correlational filter layer was implemented in the frequency domain, 
which included the transformation of the input patterns in the time domain into the frequency domain. 
The filter operation was applied to this and the power spectrum was computed as the output of this 
first layer. Then, the output of the filter layer was fed into the next higher layer of the classification 
network. The pattern data set for classification was collected from many over-night sleep breathing 
signals, and was pre-processed by normalization without any pre-process noise reduction. The 
classification performance was compared with the ordinary multilayer feed-forward neural network 
(o-MLP). 

2. Literature reviews 

2.1. Snoring detection 

In the last 20 years, there has been much research about snoring detection. Jane and Sola-Soler 
provided a snoring detector containing 2 blocks: a segmentation subsystem and a 2 layer feed-forward 
multilayer neural network with a back-propagation learning algorithm [10]. Input data included 
snoring sounds from normal snorers, OSAS patients, and other sounds. This detector showed an 
acceptable performance and achieved a sensitivity of 82%. Even though they changed the dataset bias 
in [11], the accuracy rate was not significantly improved.  

Later, in [12], Snider and Kain proposed a snoring classification method including a pre-processing 
unit, a spectral domain transformation, and a classifier with hidden Markov Models. Accuracy 
increased to 87% compared to previous approaches. 

Moreover, in [1], M. Cavusoglu proposed another technique to detect snoring by using principle 
component analysis (PCA) as a feature extraction. The power spectrum of the data set was necessarily 
calculated to obtain the sub-band energy distribution before applying PCA. New features were then 
computed by projecting the feature vectors onto PCA’s eigenvectors space. In this paper, a two 
dimensional pattern data obtained by PCA was used for classification with a robust linear regression 
method. The accuracy was found to be 97% when the system was trained using only simple snorers’ 
data. It dropped to 90% when training data included both simple snorers and OSA patients. 

Other classification methods were also investigated, such as an AdaBoost classifier using acoustic 
features from time and spectral domains [3], hidden Markov model (HMM) based method [4], and 
fuzzy mean clustering [5]. Their performances were acceptable. However, it is difficult to draw a fair 
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comparison between them because their data collection conditions are different. However, most of the 
methods used the characteristics of the signal in the frequency domain. 

2.2. Correlational filter multilayer perceptron neural network (f-MLP) 

Recently, we introduced a new type of multilayer feed-forward neural network that was able to 
successfully classify the patterns that has frequency-information-dominant characteristics hidden in 
time domain patterns, where the ordinary multilayer feed-forward neural networks normally fail [8, 9]. 
The neural network is composed of two operation stages: the first hidden layer of correlational filter 
operation and the ordinary feed-forward neural network operation. This correlational filter multilayer 
Perceptron neural network (f-MLP) is simultaneously trained for both the correlation filter coefficients 
and the weight parameters using the back-propagation algorithm. 

The correlational filter layer is implemented in the frequency domain, which implies the 
transformation of the input patterns in the time domain into frequency, on which the filter operation 
applied and the power spectrum is computed as the output of this first layer. Note that the correlational 
operation in the time domain can be done by the point-wise multiplication in the frequency domain. 
Then, the power spectrum of the filter output is calculated and fed into the next higher layer of the 
network. Figure 1 depicts this neural network architecture. In this figure, x(t) is the input pattern, and 
X(f) and H(f) are the Fourier transform of x(t) and the correlation filter, respectively. Also, ‘FT’ and 
‘P/S’ stand for the computing procedures for the Fourier transform and power spectrum, respectively. 
⊗ represents the point-wise multiplication. 

3. Data collection 

3.1. Collection of sleep breathing sounds 

Fifteen randomly chosen participants with snoring symptoms were asked to wear a neck band 
equipped with a small recording device with a condenser microphone during overnight sleep.  The 
microphone was a unidirectional device faced the neck, which minimized noise disturbances from the 
environment. The recorded signals were then digitized with the sampling frequency of 8 kHz and a 16-
bit resolution as mono channel raw data. 

3.2. Pattern data set 

From the long breathing sound signal recorded during overnight sleep, the patterns of snoring 
sounds and normal respiration were collected. By manual analysis on the recorded sound, it was found 
that snoring sounds occurred at the inhalation phase of the breathing cycle, while normal breathing 
sounds occurred at the exhalation phase or intermediate of those two phases (usually no sound). 

 
Fig. 1. f-MLP basic structure. 
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Firstly, the snoring zones were determined by auditory examination, and then the pattern vectors for 
snoring sounds were segmented out using a sliding window of 1024 points. For the next pattern, the 
sliding window moved 512 points. This sliding segmentation process was repeated over the central 
region of a snoring zone to have a gap between its neighbor non-snoring zones. This procedure was 
repeated for the other snoring zones of the breathing sound signal. Using the same sliding window 
segmentation procedure, the pattern vectors for normal breathing sounds were collected from the non-
snoring zones, which include the exhalation phases and normal inhalation phases. The pattern vector 
segmentation was applied to the sleep breathing sound files obtained from the participants. Then, 
several thousand pattern vector sets were obtained. This pattern data set was then used for running the 
experiments by randomly choosing 1,000 patterns for each category. 70% of the data set was used for 
training the MLP classifiers, while the rest 30% unseen data was used for testing the trained classifier. 

4. Experimental results and analysis 

4.1. Experimental set-up 

In the experimental studies, both the correlational filter multilayer neural network (f-MLP) and the 
ordinary multilayer neural network (o-MLP) were trained with the training pattern set and then tested 
with the test set. The f-MLP consisted of 2 layers of the filter layer and the output layer, which has 
only a single hidden layer of the correlational filter and the output layer. The filter layer had the 
structure of 1024 units with complex number architecture. The output layer had only 2 units, which 
represent the 2 classes of snoring and non-snoring. Other network configurations and training criterion 
were the same as in [9]. 

The o-MLP was also trained and tested with the same data set for comparison purposes. However, 
the size of the neural network (i.e., the number of parameters such as weights and biases) and the 
training conditions cannot be fairly compared with those of f-MLP. Thus, nearly optimal conditions 
for the network size and training process were exhaustively found, and the o-MLP network of a single 
hidden layer with 41 hidden nodes was chosen. 

4.2. Classification results 

To avoid overtraining, cross-validation with the test dataset was used as an additional stopping 
criterion with the predefined maximum number of training epochs and minimum sum-squared-error  
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Fig. 2. Training and testing curve of f-MLP. 
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Table 1 
Comparison of classification performance between f-MLP and o-MLP 

trails 1 2 3 4 5 
o-MLP f-MLP o-MLP f-MLP o-MLP f-MLP o-MLP f-MLP o-MLP f-MLP

training 93.9 96.8 97.0 96.9 93.0 97.6 98.4 97.0 96.6 97.0 
testing 84.0 96.6 77.8 94.6 81.0 96.3 82.0 96.5 86.2 94.8 
difference 9.9 0.2 19.2 2.3 12.0 1.3 16.4 0.5 10.4 2.2 
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Fig. 3. Double-side power spectrum of the filter layer in f-MLP. 

 
(SSE). Thus, the training process terminated when the testing error did not decrease during certain 
training epochs. As shown in Figure 2, most of the training processes for f-MLP stopped between 90 
and 110 epochs. 

Table 1 shows the comparison results of the 5 repeated experimental studies for both f-MLP and o-
MLP. Note again that for each trial, 1,000 training data sets for each category (snoring and non-
snoring) were randomly retrieved from the pattern data pool of several thousands, as described in 
section 3.2. Then, 70% were used for training and 30% were used for testing. 

The training accuracy for both MLP classifiers was over 93%, although f-MLP usually achieved 
higher accuracy. However, for the testing set, correction rates of f-MLP were always higher than that 
of o-MLP with the maximum difference of 16.8% and the minimum difference of 8.6%. Also, in terms 
of the generalization capability, which can be evaluated by the difference between training accuracy 
and testing accuracy, f-MLP is superior to o-MLP by showing the maximum difference of 2.3%. 
However, o-MLP mostly shows the difference higher than 10%, which indicates poor generalization 
capability. 

4.3. Analysis 

As shown by a high testing accuracy over 96%, the f-MLP successfully extracted and classified the 
frequency information from the breathing sound during sleep. Figure 3 shows the double-side power 
spectrum of coefficients in the filter layer; the horizontal axis shows the number of features extracted 
in the filter layer (not the real frequency index of the signal). As shown in Figure 3, at least 2 feature 
(frequency) ranges around 200 and 810 of the x-axis index have been activated in this layer to give 
more discriminant power for the next layer. Figure 4 statistically shows the distribution of the power 
spectrum of filter output for every pattern. The dots (.) and the stars (∗) in this figure represent the 
mean values for the classes, while the error bars indicate the variances. The ratio of the distance 
between two means to the sum of variances for each feature index can be considered as the 
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discrimination power of that feature: the higher the ratio, the more discrimination power. Thus, 
separation power of each feature can be defined by the following equation:  
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where iμ  indicates the mean value and ivar  does the variances of class i (i = 1, 2), respectively. If 
separation>1, the two classes are highly separable with that feature. However, even though the class’s 
distributions overlap, the neural network can perform its task by their nonlinear classification ability. 

Figure 4 explains why some of the features are highly activated at the hidden layer output. Two 
feature index ranges of [20 80] and [120 220] show higher discrimination power. Also, by close 
examination, some other points such as 270 and 350 can be found as good features for classification. 
By converting these feature indices to real frequency values, the interesting frequency zones are [156 
625] Hz, [937 1718] Hz, 2100 Hz, 2735 Hz. It can be also found that the snoring sounds mostly have 
higher power in the first range of [156~625] Hz and have lower power in other regions, especially in 
[937~1718] Hz. 

5. Conclusion and future works 

A new correlational filter multilayer Perceptron neural network (f-MLP) method for detecting 
snoring was introduced. Respiratory sounds were directly analyzed and classified based on their 
frequency characteristics. Through this research, f-MLP produced a superior performance to the 
conventional multilayer Perceptron neural network (o-MLP) by producing the testing accuracy of 97% 
or higher. It was also experimentally proven that the generalization capability of f-MLP was better 
with smaller differences between training accuracy and testing accuracy, which could not be reached 
by o-MLP. 

In the future works, further research should be conducted on this snoring detection method. For this 
research, more sleep breathing sounds should be collected from various populations. Also, comparison 
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Fig. 4. Statistical distribution of a single-side power spectrum for each feature index. 
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with a standardized machine approved by an official organization such as the Food and Drug 
Administration (FDA) should be performed to promote real-world applications. For reducing the 
computational burden, the f-MLP classifier can be applied only for the frequency ranges with higher 
discrimination power for the classification. 
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