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Abstract. This paper introduces an automatic bond graph design method based on genetic programming for the evolutionary 
design of micro-resonator. First, the system-level behavioral model is discussed, which based on genetic programming and 
bond graph. Then, the geometry parameters of components are automatically optimized, by using the genetic algorithm with 
constraints. To illustrate this approach, a typical device micro-resonator is designed as an example in biomedicine. This paper 
provides a new idea for the automatic optimization design of biomedical sensors by evolutionary calculation. 
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1. Introduction 

With the continuous development of the micro electro mechanical systems (MEMS) technology and 
biological chip technology, the concept of the current biosensor has jumped out of the original narrow 
circle. It has extended to miniaturization, integration, intelligent and chip for characteristics of micro 
system for biological detection and treatment. Optimization design of biosensor also affects the 
development of biomedicine. 

At present, there have been many reports on research of biological micro-sensor based on MEMS 
process. The study of enzyme sensor is mature, the DNA sensor research is continuous, and the 
immune sensor research is still at the start stage. The signal converters are the most typical 
applications, such as biological micro-sensor, micro cantilever, microelectrode, micro bulk acoustic 
wave resonator and biological sensitive field effect transistor. 
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MEMS is an extremely complex system effected by the multi physics field coupling. Most 
simulation tools confined to just one energy field, so it needs a new design methodology to improve 
the design of such systems [1]. This paper introduces an automatic bond graph design method based 
on genetic programming for the evolutionary design of micro-resonator. In addition to keeping the 
advantages of bond graph, a new design method is integrated in the introduced method. To realize 
automatic design through evolutionary calculation, a new idea is provided for the design of complex 
multi-domain systems. According to the micro electro mechanical systems (MEMS) classification 
proposed by Senturia [2], the interactive modeling and simulation of MEMS devices and electronic 
devices could be realized at the system level. Bond Graph (BG) [3], as a modeling method, provides a 
unified approach for the modeling and analysis of dynamic systems. Meanwhile, genetic programming 
(GP) [4] is a kind of evolutionary algorithms that involve a typical tree structure. Experimental data 
shows that after defining the feasibility function set, genetic programming (GP) could also evolve the 
corresponding RF MEM devices, i.e. the topology and parameters of band pass filter, can be 
evolutionarily improved through genetic programming, so as to satisfy predefined design 
specifications. The advantage of the proposed method lies in its open search capacity in topology 
design space and parameter design capacity. The method employs bond graph to represent the models 
of mechanical and electrical products, and genetic programming to design space search. There are 
some successful examples of using genetic programming for the modeling and automatic synthesis of 
physical systems [5-7], but the search spaces of the topologies in those examples are greatly limited. 
The method proposed in this paper overcomes such limitation by its �Analysis of multi-energy and 
multi-domain systems by using bond graph; � Open search of design topology structures by using 
genetic programming [8]; and � Introduction of an effective and fast multi-step evaluation for genetic 
programming based on the characteristics of bond graph. 

2. Hierarchy-based MEMS design methods 

With the development of computer technology, new intellective heuristic algorithms are emerging 
and being applied broadly [9-11]. The research on automatic MEMS design methods is both a new 
challenge and a successor to previous studies [12]. MEMS design process is divided into system-level 
design, device-level design and process-level design, each has its own design features and design goals, 
as well as its own design and optimization methods. According to the order in which the three-tier 
design proceeds, MEMS design methods can be classified into top-down design and bottom-up design 
approaches. A top-down design process can be verified by using a bottom-up method to see whether 
the design of each level strictly meets the requirements. The GP/BG method is easily extended and 
applied to the system-level MEMS design. Design issues of the physical layer are expressed as 
constrained optimization problems and solved using a constrained evolutionary algorithm [13]. 

GP / BG method adopts genetic programming method to study the modification of design space and 
the advantages of bond graph, in order to more accurately and efficiently model multi-domain systems, 
proving its feasibility in the integrated design of multi-domain dynamic systems [14, 15]. In the first-
level or advanced MEMS design, GP / BG method can help obtain a high-level description. This 
system puts together a collection of existing component libraries, through an automated way, to meet 
predefined design specifications. For the second- or lower-level design, other digital optimization 
methods [16] are used for evolutionary computation in order to synthesize custom components that 
meet functional specifications. Figure 1 illustrates the structural design process of MEMS. The GP 
/BG method aims to solve system-level design issues at the first level in an automated manner. 
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Fig. 1. Structure design process based on micro electro mechanical system. 

3. Evolutionary design based on bond graph and genetic programming 

Genetic algorithm-based designs are only applicable to the design of search space with fixed size of 
design solution. However, in open innovative design of bond graph, the size of the design solution is 
uncertain; the number of components, the way of connection, and the component parameter setup are 
not given in advance. The breakthrough idea of genetic programming-based evolutionary design is to 
realize design space search through evolutionarily elongating program instead of direct programming. 
The process of bond graph-based evolutionary design is detailed below [17]. 

(1) The generation of evolutionary population: The target of search is a set of candidates, rather than 
an individual design.  

(2) The design of embryo bond graphs: Prior to the evolutionary design, the designer must provide 
the embryo bond graph [18, 19]. Figure 2 presents an embryo bond graph modifiable points; the 
dashed box illustrates the initial modifiable points. 

(3) The design of the topological operator of genetic programming function sets: The GP function 
sets are the components that modify the structure and parameters. There are four types of GP 
functions: add, insert, replace and numerical function. 

(4) The crossover and mutation operations of the design: through genetic manipulation functions, 
the structure of GP trees can be modified, so as to realize individual evolution, as shown in Figure 3. 

 

 
Fig. 2. The embryo circuit and the bond graph. 
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 Fig. 3. GP genetic operator based on BG. 

 
(5) The assessment of fitness value: For a given bond graph model, its fitness value is assessed with 

the following steps: 
� obtain matrix A of the state space model from the bond graph model; 
� calculate the eigenvalues of matrix A; 
� compare the eigenvalues of the calculation results and the objective eigenvalues, and calculate 

the D-value; in the range of 0 to 1, calculate the fitness value of bond graph by the following rule: 
if distance/order�0.1 then 
fitness =0.1/(0.1+distance/order) 
else fitness =5.05/(10+distance/order) 

where "order" is the value of the energy storage element. 
(6) The selection operation: the units with higher fitness values are more likely to be selected to 

perform a copy operation. The principle for selection is "survival of the fittest". 
This paper introduces the realization of the automatic design of bond graph through evolutionary 

algorithm, and the dynamic design of multi-domain systems. Random selection, crossover, and 
mutation operator guide the evolutionary design process. The evolutionary process has to be stopped 
when the fitness value has reached a specified value or the desired bond graph has been found. 
Multiple candidate solutions with the highest fitness values should be output as the result of bond 
graph design. 

4. Case study: comb-driven microresonator design 

A comb-drive microresonator design with 15 mixed-type design variables and 24-design constraints 
is proposed in this paper. The comb-drive microresonator is fabricated in a poly-silicon surface micro 
structural process [20]. The layout of the comb-driven microresonator is shown in Figure 4(a). It can 
be specified by 15-design variables, as shown in Figure 4(b). The vector of design variables are 
defined as follows: 

 

 
Units of micrometers are noted for the first 13-design variables. They should be integer multiples of 

the feature size (set to be 0.09 �m), then they are discrete variables. The 14th-design variable is a 
continuous variable with unit of volt. The 15th-design variable is an integer variable with no unit. 15  
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Table 1 
15 mixed-type design variables for microresonator 

Design Variable Design constraints Design Variable Design constraints 

Variable Description Min Max Variable Description Min Max

bL  length of flexure beam 2 400 cL length of comb fingers 8 400

bω  width of flexure beam 2 20 cω width of comb fingers 2 20 

tL  length of truss beam 2 400 saω width of shuttle axle 10 400

tω  width of truss beam 2 20 saL length of shuttle axle 2 400

syL  length of shuttle yoke 2 400 ox  comb finger overlap 4 400

syω  width of shuttle yoke 10 400 V voltage amplitude 0 50 

cyL  length of comb yoke 2 700 cN number of rotor comb fingers 3 50 

cyω  width of comb yoke 10 400     

 
Fig. 4. (a) Comb-drive microresonator fabricated in a poly-silicon surface micro structural process. (b) Major design 
variables for comb-driven microresonator. 
 
mixed-type design variables for microresonator are shown in Table 1. 

Otherwise, it assumes that cω =g=d in the design, some special case with equal comb finger width, 

gap, and spacing. baω =11� caω =14�γ =4�t=2, in which baω is the width of beam anchors, caω is the 
width of stator comb, and t is the thickness of the microresonator. 

Some design constraints, both geometric and functional constraints, are considered for the comb-
driven microresonator cell component. In this paper, the following 12 constraints are considered [21]: 

 
1( ) : 0 2 2 700c cyg x g Lω≤ + + ≤  
2 ( ) : 0 2 2 700t b syg x L Lω≤ + + ≤  
3 0( ) : 0 2 2 4 2 3 700cy c sy ca tg x x L Lω ω ω≤ − + + + + ≤  
4 0( ) : 4 ( ) 200c dispg x L x x≤ − + ≤  

5 ( ) : 0 (2 1) 2 700c c cy cg x N W L N g≤ + − + ≤  
6 0( ) : 4 200dispg x x x≤ − ≤  
7 ( ) : 4 ( ) / 2 200t sy b dispg x L W W x≤ − + − ≤  
8 ( ) : 4 2 400sy sa bag x L W W≤ − − ≤  
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9 ( ) : 2 100dispg x x≤ ≤  
10 ( ) : 5 1 5g x Q e≤ ≤  

11( ) : 0 / 0.1disp bg x x L≤ ≤                          
12 ,( ) : 0 / 1 / 3e y yg x K K≤ ≤  

 
The first 8-design constraints are linear, and the last 4-design constraints are nonlinear. 

, /disp e x xx QF K= , where Q is the quality factor: 
2/x x xQ m K B= , ,e xF is the force generated by the comb 

drive. The force is proportional to the square of the voltage V applied across the comb fingers. 
2

, 01.12e x c
tF N V
g

ε=
, where ε0  is the permittivity of air. 

3 2 2 2

3 2 2 2

2 14 36
4 41 36

b t t b b
x

b t t b b
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γ
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,  

3( / )t bW Wα = ,  where bA� cA , sA  and tA� are flexure beams, comb 
finger sidewalls, the bloated layout areas of the shuttle, and truss beams, respectively. � is air viscosity. 

Moreover, 
1 12
4 35x s t bm m m m= + +

, where s sm A tρ= , t tm Atρ= , b bm A tρ= . 2s sa sa sy syA L Lω ω= + , 

2t ca cyA Lω= , 8 2 (2 2 )b b b t t a bA L Lω ω ω ω= + + + , 2c c c cA N Lω= . The natural frequency nω : 
1

2
x

n
x

K
m

ω
π

=
. The design 

objective of comb-driven microresonator is robustly to match the natural frequency with a predefined 
natural frequency. 

In this paper, a genetic algorithm with constraints is used to provide a search orientation towards the 
feasible domain. Once the feasible solutions are found, the niche algorithm is used to keep the 
diversity of the feasible solution. It makes the crossover operator of the genetic algorithm to find better 
feasible solution, make the search close to the true optimal solution. 

The parameter setting of the genetic algorithm with constraints as shown in Table 2, and flow chart 
of the proposed algorithm is shown in Figure 5. 

 

 
Fig. 5. Flow chart of the proposed algorithm. 
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Table 2 
The parameter of the genetic algorithm with constraints 

variable boundary: Strict population quantity: 500 

total generation count: 100 Crossover probability: 0.9 

mutation probability: 0.15 niche Count: 0.9 

n for SBX: 2 n for mutation: 50 

 
Table 3 

Layout parameters after ten runs by the genetic algorithm 

RUN NO. 1 2 3 4 5 6 7 8 9 10 
( )bL mμ  308.63 306.44 307.35 308.72 306.24 312.07 307.47 308.88 310.26 306.61 
( )b mω μ  17.82 17.82 17.79 17.81 17.80 17.80 17.80 17.79 17.79 17.80 
( )tL mμ  183.26 195.28 136.84 122.37 168.13 172.09 189.67 162.79 135.57 203.72 
( )t mω μ  2.08 3.49 2.09 2.31 1.95 1.99 2.88 3.24 2.07 2.68 
( )syL mμ  58.65 67.28 38.97 48.34 64.12 95.83 107.21 69.88 73.36 87.55 
( )sy mω μ  18.14 12.53 15.78 10.24 11.70 11.53 15.62 19.17 16.30 18.70 
( )sa mω μ  10.80 11.28 15.59 13.12 10.87 11.30 18.26 17.69 10.44 11.18 
( )cy mω μ  12.15 10.17 10.09 12.81 10.24 14.79 23.80 17.91 11.63 10.47 
( )cyL mμ  578.92 643.28 648.71 664.17 651.88 631.08 396.47 617.29 649.73 641.91 
( )cL mμ  12.03 12.02 12.02 12.02 12.02 12.06 12.18 16.30 12.11 12.06 
( )c mω μ  9.68 9.82 10.08 12.37 9.32 11.59 10.32 10.23 12.18 9.26 
( )saL mμ  382.08 371.57 294.64 103.33 20.27 25.42 93.67 13.71 12.79 227.63 

0 ( )x mμ  6.21 6.21 6.21 6.23 6.23 6.30 18.98 6.24 6.18 6.20 
( )V volt  32 35 36 33 28 37 36 27 26 33 

Obj. value 1e-6 4e-6 3e-6 1e-6 2e-6 1e-6 1.5e-5 1e-6 3e-6 2e-6 
 

Fig. 6. SSE-Generation curve graphs. Fig. 7. Curves of objective value versus generation of both 
DE and IDE-SR. 
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After running ten times genetic algorithm by using different random seeds, the parameter and 
objective function value with adjustable size are obtained, as shown in Table 3. As can be seen, the 
performance of the algorithm is very stable. Almost all of the operation has obtained the target value, 
the range of normalized squared sum of errors is 1.0e-6. The average value is 3.5e-6, the standard 
deviation is 3.8533e-6, the maximum value of NSSE is 1.5e-5, and it can be regarded as superb results. 
Figure 6 is a typical SSE-Generation curve, and it can be seen from the chart, according to the changes 
of generations, the NSSE value reduced to close to linear, in the 1800-th generation, the NSSE value is 
reduced to 1.0e-6. 

Figure 7 shows the curves of objective values versus generation number recorded in one exemplar 
evolutionary process of both standard DE and IDE-SR. [20] Comparing Figure 6 and Figure 7, it 
shows that after 1600 iterations, the NSSE value has reduced to below 1.0e-3 and tended to be stable, 
this algorithm has faster convergence speed and relatively lower NSSE value, the validity and 
convergence of the algorithm are better than IDE-SR and standard DE. 

5. Conclusion 

A hierarchical design method for MEMS automatic synthesis is put forward in this paper. It is the 
first time for MEMS automatic synthesis process hierarchy in a comprehensive framework. First, the 
system-level behavioral model is discussed, which based on genetic programming and bond graph. 
Then, the geometry parameters of components are automatically optimized, by using the genetic 
algorithm with constraints. To illustrate this approach, a typical device micro-resonator is designed as 
an example in biomedicine. In addition, it still need further investigation to optimize multiple design 
goals of the system, in order to reproduce offspring to meeting the ideal design, so that the various 
subsystems and components meet the design specification. Meanwhile, the multi-objective fitness 
function in evolvable systems is valuable to be used into the issue of MEMS design [22]. 
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