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Abstract. For lack of directivity in Total Variation (TV) which only uses x-coordinate and y-coordinate gradient transform as 
its sparse representation approach during the iteration process, this paper brought in Adaptive-weighted Diagonal Total 
Variation (AwDTV) that uses the diagonal direction gradient to constraint reconstructed image and adds associated weights 
which are expressed as an exponential function and can be adaptively adjusted by the local image-intensity diagonal gradient 
for the purpose of preserving the edge details, then using the steepest descent method to solve the optimization problem. 
Finally, we did two sets of numerical simulation and the results show that the proposed algorithm can reconstruct 
high-quality CT images from few-views projection, which has lower Root Mean Square Error (RMSE) and higher Universal 
Quality Index (UQI) than Algebraic Reconstruction Technique (ART) and TV-based reconstruction method. 

Keywords: Computed tomography (CT), sparse projection, adaptive-weighted diagonal total variation (AwDTV), 
compressive sensing (CS) 

1. Introduction 

How to reconstruct high-quality Computed Tomography (CT) images from few-views or 
sparse-views data is a hot research spot in medical CT field [1-4]. The essence of sparse-views 
reconstruction is trying to find the optimization solution of underdetermined equation. But traditional 
CT reconstruction algorithms such as Filtered Backprojection (FBP) [5], Algebraic Reconstruction 
Technique (ART) [6] and Simultaneous Algebraic Reconstruction Techniques (SART) [7] can’t 
reconstruct high quality CT images with the sparse sampling or limited projection data because of 
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their limits in astringency, noise immunity and robustness. Compressive Sensing (CS) theory [8], 
which points out CT images can be reconstructed from sparse projection date if it can be sparsely 
depicted in an appropriate domain and the quality of reconstructed CT images depends on the way by 
which CT images are sparsely represented, makes it possible to get CT images with high quality from 
sparse projection data.  

Total-Variation-based algorithm (TV) [9, 10] which is proposed by E.Y. Sidky and X.C. Pan in 
2007 is one of the most popular algorithms inspired by CS [9-17]. TV uses the x-coordinate and 
y-coordinate gradient operator as the sparse representation approach during the iteration process. It 
can’t take full advantage of directional information of edges and textures in CT images. It means that 
x-coordinate and y-coordinate gradient operator is not the best way to represent images sparsely and 
can be improved. 

Based on this, we propose an AwDTV based CT reconstruction algorithm aiming at exploring the 
sparse capability of AwDTV to reconstruct better CT images. In the following section, the proposed 
algorithm will be introduced. In the third section, we will analyze the numerical simulation results and 
discuss relevant issues. In the last section, we will conclude the paper. 

2. Theory and method 

2.1. CT reconstruction theory based on compressive sensing  

Theoretically, the mathematical CT model can be expressed as: 
 

Au p=� �
                                     (1) 

 
where A is the system matrix, u�  is the original image, and p�  is the projection data. Traditional CT 
reconstruction algorithms such as FBP, ART and SART can’t reconstruct high quality CT images with 
the sparse sampling or limited projection data.  

In 2006, E.J. Candes and D.L. Donoho put forward the CS theory which makes it possible to get 
high quality CT images with sparse projection data [8]. The main idea of CS is that a signal can be 
reconstructed with far less sampled frequency than required by conventional Nyquist-Shannon 
sampling frequency, if the image has a sparse/compressible representation in a transform domain. 

Compressive sensing theory can be expressed by the following equation: 
 

0
min . . Hy s t p u y= = Φ� � � �A A

                         (2) 
 
where Φ  is a orthogonal transform, HΦ  is the corresponding inverse transform, u�  is a CT image 
to be reconstructed and has a special relationship with HΦ , that is = Hu yΦ� �

. p�  is the projection 
data of u�  through matrix A.  

2.2. Total variation and adaptive-weighted diagonal total variation 

Inspired by CS theory, E.Y. Sidky and X.C. Pan proposed a TV-based on CT reconstruction 
algorithm using gradient operator as the sparse representation [10], in which TV is defined as follow: 
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Fig. 1. The illustration of pixel position in an image. 
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where 

TV
u�  represents total variation of an image u� , ,i ju  is a pixel value of u� , i  and j  

represent row and column respectively that is shown in Figure 1. 
AwDTV is defined as follow: 
 

2 2
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where 

AwDTV
u�  represents adaptive-weighted diagonal total variation of an image u� , , 1, , 1i i j jω − −  and 

, 1, , 1i i j jω − +  are the adaptive weights which can be defined as: 
 

2
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i i j j

u u
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δ
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− −
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i i j j

u u
ω

δ− +

� �−� �
� �−	 

� �� �
 �

            (5) 

 
where δ  is a scale factor which controls the strength of the diffusion during each iteration. In our 
study, we selected =0.21δ . 

2.3. Proposed algorithm 

In this paper, we use AwDTV to represent images sparsely. We use the steepest descent method 
[18] to solve the optimization problem. The proposed algorithm can be defined as follow: 

 
2 2

AwDTV 2
min . . .u s t Au p σ− <� � �                           (6) 

 
where � is permissible error of AwDTV. 

The steepest descent method is applied to solve Eq. (6), we have the following formula: 
 

1
AwDTV

k k ku u dgα+ = −� � �
                               (7) 

 
where k denotes the iteration index of AwDTV in the steepest descent method, � is gradient descent 
relaxing factor of AwDTV, d  is gradient descent scaling parameter of AwDTV. 0u�  is the initial 
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image of AwDTV which is obtained by ART method, AwDTVg� is the normalized AwDTV gradient 

while AwDTVg�  is AwDTV gradient , and their relationship is AwDTV AwDTV AwDTV 2
= /g g g� �� . The 

individual elements of AwDTVg�  can be got by taking the derivative of 
AwDTV

u�  with respect to each 
pixel value results in a singular expression. We considered � which is referred to Eq. (4) as an 
adaptive weight, it can be pre-computed at current iteration for the AwDTV minimization at the next 
iteration. So the individual elements of AwDTVg�  can be approximately expressed as: 
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2 2
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where � is a known positive integer. In our study, we selected � =10--8. 

The implementation steps of our proposed algorithm which is shown in Table 1 contain two loops, 
the outside loop operates ART and the inside loop operates AwDTV gradient descent. The flow chart 
is shown in Table 1 where 2,...,m M= denotes the projection angles, mA

�
 is mth row vector and 

system matrix A includes M row vectors mA
�

. Accordingly, M row vectors pm compose the 
projection-data vector p, � is convergence parameter of ART method. The outside loop is labeled by n 
and Niter is the max number of reconstruction iteration. The inside loop is labeled by k and K is the 
iteration count for AwDTV minimization. In our study, we selected K=10, which can strike a good 
balance in the steepest descent, and generate good reconstruction results in the experiments. 

3. Numerical simulation 

In this section, we present our numerical simulation results. There are two sets of model: 
Shepp-Logan phantom and FORBILD head phantom [19, 20] are used to depict the performance of 
our algorithm. This paper uses the Root Mean Square Errors (RMSE) and Universal Quality Index 
(UQI) [21] to evaluate the quality of the reconstructed images. RMSE is defined as: 

 
1
22*

, ,
0 0

1RMSE ( )i j i j
i N j M

u u
M N ≤ < ≤ <

� �
= −	 
×� �

� �

                            
(9) 

where ,i ju  and *
,i ju  are the pixel values of original image ( u� ) and reconstructed image ( *u� ) at 

position (i,j), respectively. The value of UQI is between -1 and 1. When the reconstructed image is 
same as the original image, the value of UQI is 1. UQI is defined as: 
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Table 1 

Implementation steps of AwDTV reconstruction 

Algorithm AwDTV 

%Initialization 
Given M , 1 2,..., )mA m M=

�
, 1 2,..., )mp m M= , λ ,α ,σ , K , I , J ,

iterN and 0 =0u�   
%ART Updating 
for 1, 2,..., itern N=  

do  
,0 1=n nu u −� �
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do 
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m m m m mu u A p A u A Aλ− −= + • − • •
� � � �� � �  

end 
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for 1,2,...,k K=  
do 

, 1 , 1 , 1
, ( , ) ,= = /n k n k n M k

i j AwDTV i j i jAwDTV
g g u u− − + −∂ ∂�

 , 1 , 1 , 1

2
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, + , + 1 , 1= d( )n M k n M k n ku u n gα− −−� � �  
end 
%Image Updating 

1 ,n n M ku u+ +=� �
  

%Exit Criterion
 

if 2 2
2

pAu σ− <�
 
then  

   exit 
end 
end 

 

( )
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(10) 

 
where u�  and *u�  are the mean values of u�  and *u� , respectively; 2

uσ �  and *
2
u

σ �  are variance of u�  

and *u� , respectively; *uu
σ �� is covariance of u�  and *u� . 
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Fig. 2. The reconstructed Shepp-Logan phantoms with three different algorithms from 20 projection views. 
 

Fig. 3. The reconstructed FORBILD head phantoms using three different reconstruction algorithms from 30 projection data.
 

Fig. 4. One magnified part of reconstructed FORBILD head phantoms using three different reconstruction algorithms from 
30 projection data. 

 
In the first simulation, a Shepp-Logan phantom as shown in Figure 2(a) is used to be reconstructed 

and compared with 3 different methods: ART, TV and AwDTV. The size of phantom image is 
256×256. We assume that the CT system was viewed as in a typical pencil-beam geometry, and the 
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scanning range was from 0 to 2π with a � angular increment. The projection number is 20, which 
means θ = π/10. The iteration number is 1000 and all reconstructed images are shown in Figure 2. 

From Figure 2, we can see that the reconstructed image using ART method contains a lot of artifacts. 
Though overall, TV and AwDTV have not much difference, the reconstructed image using AwDTV 
method contains less artifacts, and the inner distribution near edge is more uniform than the image 
reconstructed with TV. 

In the second simulation, a FORBILD head phantom which has more details shown in Figure 3(a) is 
used to reconstruct and compared by 3 different methods: ART, TV and AwDTV, all reconstructed 
images are shown in Figure 3. ART method fails to reconstruct a high-quality image from 30 
projection data and the reconstructed image contains a lot of artifacts as shown in Figure 3(b). TV 
method successfully suppresses the artifacts but introduces stair-case artifacts as shown in Figure 3(c). 
AwDTV method significantly suppresses the artifacts and preserves the edges as shown in Figure 3(d). 
To further observe, we zoom in one part of the reconstructed images as shown in Figure 4, and find 
the reconstructed image using AwDTV method contains less artifacts, and the inner distribution near 
edge is more uniform than the image reconstructed with TV. Figure 5 plots the RMSE and UQI with 
respect to iteration number, we can easily find that AwDTV always has lower RMSE and higher UQI 
with different iteration numbers. 

Table 2 lists all the RMSE and UQI calculated from reconstructed Shepp-Logan phantom and 
FORBILD head phantom with 3 different approaches. It’s obviously see that the RMSE of 
reconstructed images using AwDTV method is much smaller than that of reconstructed images using 
ART and TV methods, the UQI is much bigger. Thus AwDTV method can reconstruct images with 
higher quality. 
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Fig. 5. The RMSE and UQI lines of reconstructed FORBILD head phantoms with respect to iteration number (from 
100 to 1000) for TV and AwDTV methods, where solid lines are the results of TV and asterisk lines are the results of 
AwDTV. 
 

Table 2 

Reconstruction results using Shepp-Logan phantom and FORBILD head phantom 

 RMSE UQI 
Methods ART TV AwDTV ART TV AwDTV 

Shepp-Logan phantom 
FORBILD head phantom 

0.0422
0.0620

0.0066
0.0159

0.0016 
0.0035 

0.9800
0.9799

0.9995
0.9987

1.0000 
0.9999 
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4. Conclusion 

In this study, we proposed a CT reconstruction algorithm based on AwDTV. It uses the diagonal 
direction gradient to constraint reconstructed image and adds associated weights which are expressed 
as an exponential function and can be adaptively adjusted by the local image-intensity diagonal 
gradient for the purpose of preserving the edge details, then using the steepest descent method to solve 
the optimization problem. The numerical simulations demonstrate that the proposed method can 
reconstruct high-quality images from sparse-views data, AwDTV method has a potential in reducing 
the radiation dose in clinical application. In this study, we choose 1000 iterations which are also used 
by E.Y. Sidky and X.C. Pan who proposed TV method. The time of 1000 iterations depends on the 
specification of computer. The time consumption is 768 seconds on my computer. The TV method 
spends almost the same reconstruction time. It can be further improved with many methods such as 
parallel computing, CUDA acceleration, etc. In the further research, we will try to explore the 
directional problem of reconstructed image so as to find the best reconstructed direction of different 
images. Besides we will try to enhance the capability of anti-noise. 
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