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Abstract. This paper focuses on the improvement of the diagnostic accuracy of focal liver lesions by quantifying the key 
features of cysts, hemangiomas, and malignant lesions on ultrasound images. The focal liver lesions were divided into 29 
cysts, 37 hemangiomas, and 33 malignancies. A total of 42 hybrid textural features that composed of 5 first order statistics,
18 gray level co-occurrence matrices, 18 Law’s, and echogenicity were extracted. A total of 29 key features that were 
selected by principal component analysis were used as a set of inputs for a feed-forward neural network. For each lesion, the 
performance of the diagnosis was evaluated by using the positive predictive value, negative predictive value, sensitivity, 
specificity, and accuracy. The results of the experiment indicate that the proposed method exhibits great performance, a high 
diagnosis accuracy of over 96% among all focal liver lesion groups (cyst vs. hemangioma, cyst vs. malignant, and 
hemangioma vs. malignant) on ultrasound images. The accuracy was slightly increased when echogenicity was included in 
the optimal feature set. These results indicate that it is possible for the proposed method to be applied clinically.

Keywords: Ultrasound, focal liver lesions, classification, artificial neural network

1. Introduction

Ultrasound is extensively used to diagnose focal liver lesions since it provides an inexpensive and 
non-invasive means to visualize tissue characteristics. An ultrasound can provide real-time images of 
the lesion in which soft tissues can be differentiated. However, the classification accuracy of
ultrasound imaging is relatively lower than that of computed tomography and magnetic resonance 
imaging due to the low resolution. In addition, it is difficult to diagnose focal liver lesions using only 
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an ultrasound image through a visual inspection due to the operator-dependent nature of the process 
[1-3].

The diagnostic accuracy can therefore be improved by implementing advanced computerized lesion 
differentiation via artificial neural network (ANN) and support vector machine (SVM) techniques. 
Such methods can extract clinical features from each of the different focal liver lesions, and these 
features provide a more accurate diagnosis through a computerized classification method that can 
process a medical image with greater accuracy than through visual inspection [4-6].

Poonguzhali, et al., [7] used principal component analysis (PCA) to determine the optimal feature 
group for focal liver lesions that could obtain an accuracy of 70% through a combination of GLCM 
and Law’s features. Balasubramanian, et al., [8] classified focal liver lesions into normal, cyst, 
hemangioma, and malignant in liver ultrasound images using K-means and a back-propagation neural 
network (BPNN). BPNN was found to be suitable for the groups that were to be classified. Mittal, et 
al., [9] classified normal, cyst, hemangioma, and hepatocellular carcinoma according to a set of typical 
and atypical characteristics. Virmani, et al., [10] used a wavelet filter and a GA-SVM to classify 
normal, cirrhosis, and hepatocellular carcinoma on liver ultrasound images. Xian, et al., [11] reported 
a Fuzzy-SVM as an exercise tool to classify benign and malignant lesions in comparison with SVM. 
Jeon, et al., [12] suggested extracting multiple regions of interest (ROI) (ROI in, ROI out, ROI 
overlap, ROI posterior) for a suspicious lesion on ultrasound images in order to distinguish between
focal liver lesions. In the present study, the method for multiple ROI obtained a higher accuracy than 
that acquired from a single ROI, however the accuracy in the classification between a malignant and 
hemangioma lesion was relatively low at 80%.

The above studies indicated that the performance of diagnostic methods that use computer vision to 
assess lesions according to various characteristics are dependent upon the component of the feature 
set, the classifier, and the leaning algorithm [13, 14]. These previous studies suffer from two 
limitations. Firstly, the studies that have been performed thus far have focused much less on the
diagnosis of various focal liver lesions on ultrasound images than on other disease areas. Conventional 
methods can obtain a meaningful accuracy in the differentiation between a cyst and hemangioma and 
between a cyst and a malignant lesion, nevertheless the accuracy in the differentiation between a 
hemangioma and a malignant lesion is still low due to the fact that these lesions present very similar 
tissue characteristics on ultrasound images.

The main purpose of this study therefore, is to improve the diagnostic accuracy of focal liver lesions 
by quantifying the key features for cysts, hemangiomas, and malignant lesions on ultrasound images 
and by evaluating the classification accuracy. To this end, information on the various characteristics of 
each of the different focal liver lesions is extracted and optimized. This present paper is organized as 
follows: Section II describes the feature extraction methods, the feature selection method, the artificial 
neural network, and the learning algorithm. Section III evaluates the performance of the proposed 
algorithm. Section IV presents the discussion, and Section V finally provides the conclusion.

2. Materials and methods

2.1. Image acquisition

This study was performed with 115 patients presenting with 99 focal liver lesions. The focal liver 
lesions were divided into 29 cysts, 37 hemangiomas, and 33 malignancies. The mean age of the 
patients was 58 years old, and the age range was from 29 to 78 years. All of the images were obtained 
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Fig. 1. Ultrasonic images of focal liver lesions, which were obtained using an Acuson Sequoia 512 ultrasound imager. The
red rectangle shows the ROI that included the boundary of the lesions, and the size of the ROIs were 52x52 pixels2 –
122x157 pixels2.

with an Acuson Sequoia 512 ultrasound imager, under the approval of the Institutional Review Board 
of Seoul National University Hospital. The resolution for the gray level image was 640 x 480 pixels2.
The transmitting frequency of the ultrasound was set to 2.0 MHz and the receiving harmonic 
bandwidth was 4.0 MHz. The specific characteristics for each different lesion were obtained by 
selecting a ROI of 52x52 pixels2–122x157 pixels2 from the original image. An experienced radiologist 
determined the ROI, which included the boundary of a focal liver lesion (Figure 1).

2.2. Feature extraction

The purpose of feature extraction is to improve the accuracy of the diagnosis by distinguishing the 
lesion area from a different area. In the present study, a total of 42 statistical textural features based on 
first order statistics, gray level co-occurrence matrix, Law’s and echogenicity were obtained. The 
feature sets for each group are estimated as shown below. Figure 2 presents the entire image 
processing algorithm used to estimate the hybrid texture features from the original ultrasound images.

2.2.1 First order statistics (FOS)
The first-order histogram is used to extract five statistical features from the original image, as 

described in the following equations.
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where ��(�, �) is the image intensity at point (x,y), and ith ROI image; X and Y denote the size of the 
ROI image; and � is the mean of the ROI image and � is the standard deviation of the ROI image.

2.2.2 Gray level co-occurrence matrix (GLCM)
The GLCM is the second-order statistical approach that considers the relationship between the 

Fig. 2. Flow chart of the proposed algorithm for the classification of focal liver lesions.
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Table 1

A total of 18 features extracted from GLCM method

GLCM
No. Feature No. Feature No. Feature
1 Energy 7 Autocorrelation 13 Sum Variance
2 Entropy 8 Cluster Shade 14 Sum Entropy
3 Dissimilarity 9 Cluster Prominence 15 Difference Variance
4 Contrast 10 Maximum Probability 16 Difference Entropy
5 Correlation 11 Sum of Squares 17 Information Measures of Correlation
6 Homogeneity 12 Sum Average 18 Inverse Difference moment-Normalized

pixels [15]. The co-occurrence value ����	
����	
)} represents the frequency of an occurrence of a pair 
of gray-levels (i,j) at a given distance d with an orientation 
. The present study used the unit distance 
and the 135° orientation to reduce the computational load. The detailed algorithm for the GLCM was 
discussed by [15, 16]. A total of 18 Haralick features are extracted from the co-occurrence matrices, as 
shown in Table 1.

2.2.3 Law’s texture features
Law’s features were used to extract energy information from the image. The Law’s method [17-19]

extracts texture energy measure features in three main steps. Firstly, five coefficient vectors were 
determined in order to represent level (L), edge (E), spot (S), ripple (R) and wave (W), as shown in 
Eq. (6), and a set of 5 x 5 kernels was formed by using each of the coefficient vectors.

1]2-02[-1=W5

1],4-64-[1=R51],-020[-1=S5

1],202-[-1E51],4641[L5 ��

                                            (6)

Each 5 x 5 kernel was convolved with an ROI image. This step enabled the extraction of the specific 
characteristics of lesions by combining the original image with certain kernels. Rotational invariance 
is provided by generating each set of images from orthogonal matrices and then taking the average. A 
total of 9 energy maps can be resolved using Eq. (7). 
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E5E5L5R5/R5L5
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                                                       (7)

According to [20], the features can be calculated from the above energy maps, and the sum of the 
absolute values/the number of pixels (SAV) or the sum of the squared values/the number of pixels 
(SSV) were the most significance statistics. Thus, these were comprised of a total of 18 Law’s texture 
features by extracting SAV or SSV from each energy map, as shown in Eqs. (8) and (9).
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where Ri(x,y) is the intensity of the convolution image at point (x,y); M and N denote the size of the 
ROI image.

2.2.4 Echogenicity
Echogenicity can extract the echoic characteristic of the lesions by comparing the gray scale value 

of the lesion inside with that of the lesion lateral based on pixel intensity. Echogenicity is one of the 
most useful clinical indices [21]. Echogenicity is calculated as the mean gray scale value of the ROI 
(inside) divided by that of the ROI (lateral), and its equation is given as [22]:
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When the echogenicity value of the lesion is less than 0.9, the lesion is determined to be 
hypoechoic, isoechoic between 0.9 and 1.1, and hyperechoic when greater than 1.1.

2.3. Feature selection

PCA with varimax rotation was performed to determine the optimal feature set. PCA can improve 
the classification accuracy and reduce computational time. This method transforms the feature vector 
by projecting the original data along the directions with greater variance. It is then possible to form an 
optimal feature set to classify the focal liver lesions, because the variance of the mean square error is 
reduced to an optimal value. PCA reduces the number of features used as input for the classifier, but 
the number of features that must be measured for classification is not actually reduced [23]. Since each 
extracted feature is usually a linear combination of the underlying features, a total of 29 optimum 
variables were selected from 42 original feature sets (Table 2).

2.4. Classification

Classification is the process during which the given input data is allocated to a predefined class in a 
manner that corresponds to the knowledge used to train the classifier. We used a two-layered feed-
forward neural network (FFNN) with a sigmoid function for classification. FFNN is widely used as a 
classifier for lesions since it has a simple structure but is robust against noise. FFNN is composed of 
29 input neurons, 10 hidden neurons and 2 output neurons, as shown in Figure 3. A total of 29 key
features that were selected by the PCA were used as a set of inputs for FFNN.

For training, a Bayesian regulation learning algorithm was applied to reduce over-fitting. This 
updates the weights and bias variables according to the Levenberg-Marquardt optimization. The
connection weight vectors were randomly assigned at the beginning, and were continually modified to 
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Table 2

The optimal features selected by PCA from 42 original features

Feature 
Extraction 
Method

No. of Features Optimal Features

FOS 1 Mean
GLCM 10 Autocorrelation

Contrast
Dissimilarity
Entropy
Sum of Squares
Sum Average
Sum Variance
Sum Entropy
Difference Variance
Difference Entropy

Laws Textural 
Features

18 E5’L5
S5’L5
E5’E5
S5’E5
R5’L5
R5’E5
S5’S5
R5’S5
R5’R5
E5’L5_2
S5’L5_2
E5’E5_2
S5’E5_2
R5’L5_2
R5’E5_2
S5’S5_2
R5’S5_2
R5’R5_2

Note: Features from E5’L5 to R5’R5 are variables for SAV corresponding to each of 
the different masks. Features from E5’L5_2 to R5’R5_2 are variables for SSV.

Fig. 3. Structure of the feed-forward neural network composed of one input layer, one hidden layer, and one output layer.
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reduce the overall system error. It is possible to minimize the combination of the squared error and the 
weights as well as to determine the right combination to form a well-generalized network [24-26]. In 
addition, it can measure a mean square error and a percentage error, and this process can be used to 
classify the values of the input variables into three groups corresponding to cysts, hemangiomas, and 
malignant lesions.

2.5. Performance evaluation

For each lesion, the performance of the diagnosis was evaluated using the positive predictive value 
(PPV), negative predictive value (NPV), sensitivity, specificity and accuracy based on the true positive 
(TP), true negative (TN), false positive (FP) and false negative (FN) rates.
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where TP is the number of ‘malignant’ lesions that are correctly categorized as ‘malignant’, TN is the 
number of ‘non-malignant’ lesions that are correctly categorized as ‘non-malignant’. FP is the number 
of ‘non-malignant’ lesions that are misclassified as ‘malignant’. FN is the number of ‘malignant’ 
lesions that are misclassified as ‘non-malignant’. ‘Non-malignant’ denotes other lesions (cysts and 
hemangiomas) that are classified differently from malignant ones. Thus, the hemangioma lesion was 
designated as a ‘malignant’ type during classification between a cyst and a hemangioma lesion. PPV is 
the percentage of predictive positives that are actually positive, and NPV is the percentage of 
predictive negatives that are actually negative. The sensitivity is the ability for the classification model 
to classify malignant cases, the specificity is the ability to identify benign cases, and the accuracy is 
the ability to diagnose all cases.

The accuracy of the diagnosis for the lesion was estimated using the receiver operating 
characteristic (ROC) curve. The ROC analysis was performed in order to show the efficiency of the 
trade-off between the TP and the FP [27]. The performance of the diagnosis was evaluated in terms of 
the area under the ROC curve (AUC), where a higher AUC indicates a higher accuracy.

3. Experimental results

3.1. Comparison of diagnosis accuracy in accordance with each different PCA component
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The accuracy is compared according to diverse feature sets, and the three groups are determined by 
conducting a PCA to evaluate the classification accuracy of each group. Table 2 demonstrates a total 
of 29 features composed of FOS, GLCM, Law’s, and echogenicity optimized by PCA selection.

When feature set 1 was selected as the optimal feature group, the accuracy of the diagnosis between 
a cyst and a hemangioma as well as between a cyst and a malignant lesion was 97.72% and 97.63%, 
respectively. These results were slightly improved by applying feature set 2. To classify between 
hemangioma and a malignant lesion, the accuracy of the diagnosis with feature set 2 largely increased 
by 22.14% when compared with feature set 1, nevertheless it still showed a very low accuracy of 
72.72%. However, for classification between a hemangioma and a malignant lesion, feature set 3 
resulted in an accuracy that was greatly increased by 18.44%, although it did not show a large 
difference relative to the accuracy of feature set 2 when classifying between a cyst and a hemangioma 
as well as between a cyst and a malignant lesion. More importantly, feature set 3 showed a high 
diagnosis accuracy of over 90% among all classification groups (cyst vs hemangioma, cyst vs 
malignant, and hemangioma vs malignant) (Tables 3-5).

Table 3

Classification results between cysts and hemangioma lesions according to the different feature sets determined by PCA

Group Cyst vs. Hemangioma
PPV NPV Sensitivity (%) Specificity (%) Accuracy (%) AUC

Feature set 1 97.3 96.55 97.84 97.67 97.72 0.976
Feature set 2 97.3 96.55 97.84 97.95 97.9 0.977
Feature set 3 97.37 100 98.11 98.64 98.35 0.986

Table 4

Classification results between cysts and malignant lesions according to the different feature sets determined by PCA

Group Cyst vs. Malignant
PPV NPV Sensitivity (%) Specificity (%) Accuracy (%) AUC

Feature set 1 100 96.67 96.96 98.3 97.63 0.976
Feature set 2 97.06 100 99.09 97.95 98.56 0.985
Feature set 3 96.97 96.55 98.4 97.95 98.24 0.982

Table 5

Classification results between hemangiomas and malignant lesions according to the different feature sets 
determined by PCA

Group Hemangioma vs. Malignant
PPV NPV Sensitivity (%) Specificity (%) Accuracy (%) AUC

Feature set 1 46.42 68.75 40 60 50.58 0.5
Feature set 2 73.33 72.5 67.59 77.3 72.72 0.726
Feature set 3 86.11 94.12 95.14 86.68 91.16 0.909

Table 6

Classification result with and without echogenicity in feature set 3 according to each of the different classification 
groups

Group PPV NPV Sensitivity (%) Specificity (%) Accuracy (%) AUC
Cyst vs. 
Hemangioma

99.37/100 100/100 98.11/100 98.64/99.32 98.35/99.7 0.986/0.997
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Cyst vs.
Malignant

96.97/100 96.55/100 98.4/98.79 97.95/98.64 98.24/98.72 0.982/0.987

Hemangioma vs.
Malignant

86.11/94.12 94.12/97.22 95.14/98.2 86.68/94.33 91.16/96.13 0.909/0.963

Table 7

Comparison of the diagnosis accuracy between the preliminary study and proposed method

Group Cyst vs. Hemangioma (%) Cyst vs. Malignant (%) Hemangioma vs. Malignant (%)
Previous study [10] 96.5 95.8 80
The present study 99.7 98.72 96.13

3.2. Comparative result of the performance evaluation depending on the inclusion/exclusion of the 
echogenicity from feature set 3

Although echogenicity was excluded from the feature set during feature selection, this feature has 
been used clinically. Therefore, the performance was evaluated with and without echogenicity in 
feature set 3. Table 6 shows a comparison of the performance between feature set 3 (excluding 
echogenicity) and feature set 3 (E), which included echogenicity.

In feature set 3, the accuracy of the diagnosis for cyst vs. hemangioma and cyst vs. malignant 
slightly increased by 1.35% and 0.48%, respectively. In contrast, the classification for hemangioma vs. 
malignant increased considerably not only in terms of accuracy by 5%, but also in terms of sensitivity, 
specificity, and AUC. The PPV distinguishing a malignant lesion from a hemangioma was less than 
90% in feature set 3, at 86.11%. Feature set 3 (E) offered a significant improvement of over 8%, with 
a PPV of 94.12%. These results therefore indicate that echogenicity improved the performance of the 
diagnosis of focal liver lesions.

3.3. Comparison with our previous study

In order to evaluate whether the accuracy of the proposed method improved, a comparative study 
was performed between the proposed method and that of our preliminary study. The preliminary study 
had shown meaningful diagnosis accuracy for the classification of cyst vs. hemangioma and cyst vs. 
malignant at 96.5% and 95.8%, respectively, using a multiple ROI selection. However, the 
classification for hemangioma vs. malignant had shown a low accuracy [12]. The proposed method 
exhibits a superior accuracy for all classification groups when compared with that of our preliminary 
study. In particular, a considerable improvement was observed when classifying hemangioma vs. 
malignant, with an accuracy of 96.13%. Table 7 shows a comparison of the classification accuracy 
between the proposed feature set 3 (E) and that of the preliminary study [12], in accordance with each 
group. 

4. Discussion

The amount of information according to the feature sets used in the PCA followed a relationship 
where feature set 3 > feature set 2 > feature set 1. Although feature set 1 and feature set 2 had 
relatively little information, these showed a high accuracy of 97% for classifying cyst vs. hemangioma 
and also for cyst vs. malignant. However, for hemangioma vs. malignant, they showed a very low 
accuracy of 50.58% and 72.72%, respectively. This is due to the similarity of each of the lesions. In 
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the ultrasound images, cysts commonly show distinct characteristics including anechoic behavior, 
enhancement of posterior acoustics, and a clear boundary of the lesion when compared to that of other 
lesions, such as hemangiomas or malignant lesions. Thus, it is possible for cysts to be differentiated 
from hemangiomas and malignant lesions with a small amount of information. Conversely, it is 
difficult for hemangiomas to be differentiated from malignant lesions because the larger the 
hemangioma area is, the more irregular the boundary, and the lesion has similar characteristics to a
malignant lesion in that they both have a hypoechoic or mixed echoic pattern [21, 28]. For this reason, 
more information is required to distinguish a hemangioma from a malignant lesion than when 
differentiating between a cyst and a hemangioma and between a cyst and a malignant lesion. This 
study shows important results for all focal liver lesions by optimizing the feature set.

During feature selection, echogenicity was not selected in the PCA, but echogenicity is often used 
clinically because different echoic behaviors are presented by each variable focal liver lesion. Thus, 
the diagnosis accuracy was evaluated according to whether echogenicity was included or excluded 
from feature set 3. Although the results provided by the existing feature set 3 were adequate, the 
accuracy was slightly increased when echogenicity was included in the optimal feature set. In 
particular, the classification of hemangioma vs. malignant showed an improved accuracy because the 
echoic behavior is shown, unlike in other features that consider the texture of the lesion on the inside 
only. A cyst is commonly anechoic with a thin wall and enhanced posterior acoustics, but a 
hemangioma typically has a fine, hyperechoic nature (<2 cm). A malignant lesion usually has a
hypoechoic nature but has a variable acoustic mass by size. At less than 1cm in diameter, 92% of 
malignant lesions are hypoechoic, and for a diameter of less than 2 cm, this figure reduces to 60-80% 
[29]. When the mass is larger than 1.5cm, a clear moon halo shows that the periphery of the mass is 
more hypoechoic than the center of the mass, and this characteristic can be used to classify the focal 
liver lesions in the present study. Echogenicity is also found to be an important feature for the 
classification of focal liver lesions, and in addition, the best performance is not always achieved when 
the feature set is selected via PCA. Therefore, the selection of the feature set should be performed with 
practical considerations.

The proposed method exhibits an improved classification for focal liver lesions. Our preliminary 
study compares the accuracy with multiple ROIs (ROI in, ROI out, ROI overlap and ROI posterior) in 
order to classify focal liver lesions (cysts, hemangiomas, and malignant lesions). In the comparison, 
results show that multiple ROI had the best accuracy. A high accuracy was observed when classifying 
cysts vs. hemangiomas and also cysts vs. malignant lesions, but an accuracy of 80% was only
achieved when classifying hemangiomas vs. malignant lesions. The proposed method exhibits
excellent classification performance using an optimized feature set even though the proposed method 
applies a single ROI extraction. The results indicate that the determination of the optimal feature set is 
more important than the selection of the ROI. In addition, our preliminary study used an SVM based 
on an RBF kernel. However, when dealing with highly nonlinear and complex systems, like with the 
ultrasound systems, ANNs are generally superior to SVMs because many hidden layers, nodes, and 
parameters can be easily adjusted in an ANN. The proposed method shows excellent performance in
classification of focal liver lesions when compared with the method described in our preliminary 
study.

5. Conclusions

The results of the experiment indicate that the proposed method exhibits great performance in terms 
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of classifying focal liver lesions on ultrasound images. The classification to distinguish hemangiomas
from malignant lesions shows meaningful results. In addition, echogenicity was found to be a key 
feature in the classification of focal liver lesions. These results indicate that it is possible for the 
proposed method to be applied clinically. However, despite its superior performance, a limitation of 
the proposed method is that a small number of subjects were included in the experiment. Therefore, a 
large number of subjects should be included to study the classification of variable focal liver lesions 
with a high diagnosis accuracy.
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