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Abstract. Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To 
optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and 
compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the 
speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively 
analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused 
information loss and noise characteristics, and did not represent the most significant noise reduction performance. 
Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, 
and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best 
denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the 
results was confirmed to have a high potential for clinical application. 
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1. Introduction 

Ultrasonography is one of the most popular medical imaging techniques for the visualization of 

muscles, tendons, and various internal organs due to the fact that it is safe, cheap, and provides real-

time tomographic images of specific lesions [1]. This technique is used to diagnose lesions by 

employing the ultrasound image from the transducer. Reception signals generated by reflections from 

inside the human body are converted into electrical pulses via a transducer, and converted to the 

ultrasound image after being sent to the scanner. 

A common problem with ultrasonic diagnosis is speckle noise generated from the non-homogenous 

structure of the tissue, following a Rayleigh distributed noise [2, 3]. Speckle noise is a specific form of 

noise that degrades fine details and edge definitions in ultrasound images [4]. It also appears as a 
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experimental images were obtained with the ultrasound system, Accuvix V 10 (Samsung Medison 

Corp., Seoul, Korea). 

2.2. SRAD filtering 

As anisotropic diffusion performs well with additive Gaussian noise, SRAD [15] is proposed for 

speckled images without logarithmic compression. SRAD is an edge detector similar to the coefficient 

of variation of the filter used by Lee [10] and we selected the instantaneous coefficient of variation 

(ICOV). ICOV is defined as Eq. (1): 
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where ▽I represents the image Laplician I. q serves as the edge detector in speckled imagery. ICOV 

exhibits a high value in edge areas that consist of a high-frequency component, but presents a low 

value in the same region containing a low-frequency component. Thus it ensures the mean preserving 

behavior in the homogeneous regions [15, 16]. To this end, SRAD filtered images were utilized as the 

input images for image fusion algorithm. 

2.3. Discrete wavelet transform 

A wavelet transform was applied to edges with various sizes to extract them from ultrasound 

images. Discrete wavelet transform (DWT) uses the scale parameter as well as the shifting parameter 

for wavelet transformation. The scale parameter either expands or compresses the width of a wavelet 

function while maintaining its basic structure. The larger a scale value becomes, the greater the width 

becomes, presenting the features of a low-frequency component. In contrast, the smaller a scale value 
becomes, the greater the features of a high-frequency component. The shifting parameter determines 

the position of functions along the time axis. As the value of shifting parameters become larger, the 

functions move to the right in parallel. 

Step 1 DWT decomposes the original image into one approximation image (LL1) and three detailed 

images (LH1, HL1, HH1). The LL1 image contains the low frequency components while LH1, HL1 and 

HH1 contain the high frequency components in horizontal, vertical and diagonal directions, 

respectively. The step 2 decomposition process decomposes Step 1 approximation images into one 

approximation image (LL2) and three detailed images (LH2, HL2, and HH2). These images are each 

decomposed into one sub-approximation image (LL2) and three detailed images (LH2, HL2, HH2) 

respectively. This means that Step 2 DWT generates 2 sub-approximation images and a total of 6 sub-

detail images. This process can be continued until the required amount of detail is reached. When 

performing each step, the length of the image being decomposed is reduced by half compared to the 

original step image. Figure 2 presents the image decomposition results of B-mode ultrasonic images 

used in Step 2 DWT. 

2.4. Image fusion 

The image fusion technique can synthesize the image for input through a total of 3 processes; 

decomposition, fusion and reconstruction of the image (Figure 3). Firstly, the 2 input images are 
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selection rule is defined as Eq. (2). 
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where input images I1(x,y) and I2(x,y) are decomposed at different levels using DWT to obtain wavelet 

coefficients W1(x,y) and W2(x,y). Inverse discrete wavelet transform of W(x,y) will provide a fused 

image. Finally, the fused image is converted to a final image using the selected coefficient and the 

backward wavelet transform. Through these processes, a synthesized image is derived from two input 

images. 

2.5. Evaluation parameters 

To evaluate noise reduction performance, the mean square error (MSE), signal-to-noise ratio (SNR), 

and peak signal-to-noise ratio (PSNR) were employed. The MSE measures the quality change between 

the original image and the denoised image, and is widely used to quantify image quality, however it 

does not correlate strongly with perceptual quality when used alone. It should therefore be used 

together with other quality metrics and visual perception. The SNR compares the level of the desired 

signal to the level of background noise. The higher the ratio, the less obtrusive the background noise is. 

The PSNR is a ratio between the maximum possible power of the signal and the noise content. Higher 

PSNR values show better image quality. For identical images, the MSE becomes zero and the PSNR is 

undefined. 
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where M and N are the number of rows and columns, respectively. X is the original image and Y is the 

denoised image. 

3. Experimental results 

3.1. Comparison of noise reduction performance according to the different DWT and filtering 

schemes 

Tables 1 and 2 show the quantitative results of MSE, SNR, and PSNR for the B-mode cyst 

ultrasound image, according to different DWT and filtering methods. The first image reconstruction 

level of DWT provided a higher noise reduction performance than the second level (Table 1). Under 

the first reconstruction level, the DMEY scheme outperformed the other methods, demonstrating the 

lowest MSE of 48.57, the highest SNR of 21.35 dB and a PSNR of 31.27 dB. The worst performing 

method in terms of MSE, SNR, and PSNR was the BIOR method (Table 1). 

Analysis of existing methods revealed that the SRAD scheme had the most significant noise 

reduction performance (MSE=29.90, SNR=23.46 dB, and PSNR=33.37 dB), while the Median 
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Table 1 

Quantitative results of MSE, SNR, and PSNR for the B-mode ultrasound image across different decomposition levels of 

DWT 

 MSE SNR (dB) PSNR (dB) 

1 Level 2 Level 1 Level 2 Level 1 Level 2 Level 

BIOR 65.81 129.70 20.03 17.09 29.95 27.00 

DB 55.94 115.98 20.74 17.57 30.65 27.49 

SYM 55.94 115.98 20.74 17.57 30.65 27.49 

COIF 54.93 114.92 20.82 17.61 30.73 27.53 

DMEY 48.57 108.00 21.35 17.88 31.27 27.80 

 
Table 2 

Quantitative results of MSE, SNR, and PSNR for the B-mode ultrasound image according to different filtering methods 

 MSE SNR (dB) PSNR (dB) 

Median 112.81 17.69 27.61 

Gaussian 111.59 17.74 27.65 

Lee 88.15 18.76 28.68 

Frost 49.49 21.27 31.19 

SRAD 29.90 23.46 33.37 

 

 

Fig. 4. Speckle noise reduction of a B-mode ultrasound image using 

the different DWT approaches. 

 

filtering method had the lowest (MSE=112.81, SNR=17.69 dB, and PSNR=27.61 dB). The same 

results were obtained for analysis of harmonic liver ultrasound images.  

Figures 4 and 5 illustrate the noise reduction results for the B-mode cyst ultrasound images using 
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Table 4 

Quantitative results of MSE, SNR, and PSNR for the harmonic ultrasound image across different decomposition levels of 

DMEY 

Input condition MSE  SNR (dB) PSNR (dB) 

1Level 2 Level 1 Level 2 Level 1 Level 2 Level 

SRAD-SRAD 20.71 20.71 25.15 25.15 34.97 34.97 

Original-SRAD 10.33 20.26 28.17 25.24 37.99 35.06 

SRAD-Original 11.75 1.80 27.61 35.75 37.43 45.57 

 

methods, MSE, SNR and PSNR. These results were partially enhanced by the 1-level condition of the 

original-SRAD method, however in the 2nd

 level, the denoising performance was still significantly 

lower. Converesely, the 2-level conditions of SRAD-original had the most excellent performance for 

all input conditions. These results were equal for both B-mode and harmonic images (Tables 3 and 4).  

Figures 6 and 7 show the denoised images according to different input conditions for the B-mode 

and harmonic images, respectively. The Blurring effect appeared in SRAD-SRAD conditions by 

applying image fusion. However, SRAD-original condition improved fine details and edge definition. 

The same results were obtained for the analysis of harmonic ultrasound images (Figure 7). 

4. Discussion 

In the present study, new DWT and image fusion based denoising techniques were proposed to 

 

 

Fig. 6. Speckle noise reduction of a B-mode ultrasound image 

using the image fusion. 
 

H.H. Choi et al. / Speckle noise reduction in ultrasound imagesS1594



 

remove 

proposed

analyzed

compare

different

performa

denoisin

informat

textural 

classifica

assessed

approxim

techniqu

characte

SRAD p

techniqu

on such 

techniqu

process o

When

different

SRAD. T

the speckle

d techniques

d and comp

ed in order 

t DWT met

ance among 

ng performan

tion loss from

information 

ation studies

d the diagno

mation imag

ue had the b

rized as mul

processes th

ues, which pr

characteristi

ues applied. 

of image fus

n the denoisin

t input condi

The original 

(

(c) O

Fig. 7. Spe

using the im
 

e noise in u

, the denoisi

ared. In add

to derive th

thods and le

all the meth

nce than the 

m the origin

but significa

s extracted t

ostic accurac

ge had a bet

best perform

ltiplicative n

he data direc

rocess the lo

ics, and acco

Based on th

sion. 

ng performa

itions, the re

images are t

(a) Original 

Original-SRAD

eckle noise red

mage fusion. 

ultrasound im

ng performa

dition, the p

he optimal i

evel conditi

hods applied

2-level appr

nal image. Ge

antly reduces

the features 

cy according

tter perform

mance among

oise, but exi

ctly to prese

og–compress

ordingly, SR

hese results, 

ance of vario

esults were in

typically use

 

duction of a ha

mages. To o

ances for eac

performance

input condit

ons were co

d. In addition

roximation i

enerally, the

s information

of the lesion

gly. Converse

mance in resp

g all the fil

isting filterin

erve informa

ed [15]. SRA

RAD had the

SRAD and 

ous image fu

n the order o

ed as input im

(b) SRAD-SR

(d) SRAD-Ori

armonic ultraso

optimize the

h different D

s based on 

tions. When

ompared, th

n, the 1-level

image. Such 

e 2-level app

n in the origi

n from the 2

ely, the exp

pect to nois

ltering techn

ng techniques

ation in the 

AD can cont

e best perfor

DMEY (DW

usion techniq

of SRAD-ori

mages for im

 

RAD 

 

iginal 

ound image 

e denoising 

DWT and filt

different in

n the denois

he DMEY m

l approximat

results are 

proximation i

nal image. T

2-level appro

perimental re

se removal. 

niques applie

s are unable 

image, unl

trol the noise

rmance amon

WT) methods

ques were co

ginal > origi

age fusion in

performanc

tering techni

nput conditio

ing perform

method had 

tion image h

due to differ

image maxim

Therefore, mo

oximation im

esults for th

The SRAD

ed. Speckle 

to remove th

ike existing 

e appropriate

ng all of the

s were appli

ompared acc

inal-SRAD >

n CT and MR

 

ce of the 

ique were 

ons were 

mances of 

the best 

had better 

rences in 

mizes the 

ost lesion 

mage and 

he 1-level 

filtering 

noise is 

his noise. 

filtering 

ely based 

e filtering 

ed to the 

ording to 

> SRAD-

RI. Wang, 

H.H. Choi et al. / Speckle noise reduction in ultrasound images S1595



 

et al. [18] used the original image as the input image for image infusion in CT and MRI images in 

order to measure the location and enlargement of a brain tumor. Angoth, et al. [19] used the original 

image as the input image to detect the size and position of a brain tumor in CT and MRI images. 

However, in this study, to measure speckle noise reduction performance, the image used was acquired 

by applying a SRAD filter to the original image. SRAD-original input conditions from the 

experimental results were confirmed to exhibit a better denoising performance in ultrasound images. 

SRAD filtering can remove speckle noise without modifying the image information or losing edge 

information [15]. To this end, it was determined that the speckle noise was removed by a fusion 

selection process, but the key information in the original image was clearly preserved. Based on such 

characteristics, the input conditions of SRAD-original had the best denoising performance with 

ultrasound images. 

5. Conclusions 

The experimental results of this study present techniques that exhibited the best denoising 

performance for speckle noise in ultrasound images. In addition, SRAD-original conditions had the 

best denoising performance with ultrasound images among all the input conditions tested. From this 

study, the best denoising technique proposed based on the results, was confirmed to have a high 

potential for clinical application. Future studies are planned to evaluate the denoising performance by 

a variety of image types and DWT levels in order to further secure the significance of the experimental 

results. 
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