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Abstract. Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns 
that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is 
an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients.
Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-
EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the 
PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven 
successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.
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1. Introduction

The electroencephalogram (EEG) can provide valuable information about diagnosis and prognosis 
to aid physicians. EEG is recorded using a collection of scalp-electrodes that are fitted to the scalp and 
is used routinely to assess cerebral disorders [1].

The proposed research in this paper is based on previous work carried out by our research group [2],
in which mathematical methods of analysis were developed for a particular type of EEG Periodic 
Activity (PA-EEG). This activity was observed in patients who were or might have been suffering 
from epilepsy, a disease whose early and accurate diagnosis, impossible in many cases, determines 
patient treatment and facilitates prognosis. The signals present in epilepsy consist of repetitive 
waveforms that exhibit relatively uniform morphology and duration and that occur at approximately 
regular, consecutive time intervals. They are commonly classified as lateralized periodic discharges 
(LPD), bilateral independent discharges (BIPDs) and generalized periodic discharges (GPDs), the 
latter of which often include diphasic waves. All forms of periodic discharges are commonly found in 
critical patients, especially in intensive care unit settings (ICU).

*Address for correspondence: Alain Sánchez-González, DeustoTech-LIFE, University of Deusto, Av de las Universidades, 
24, 48007, Biscay, Spain. Tel.: +34 94413 90 00; Fax: 944 456 817; Email: sanchez.alain@deusto.es.

0959-2989/15/$35.00 © 2015 – IOS Press and the authors.

DOI 10.3233/BME-151456
IOS Press

Bio-Medical Materials and Engineering 26 (2015) S1569–S1578

This article is published with Open Access and distributed under the terms of the Creative Commons Attribution and Non-Commercial License.

S1569



An attempt is made here to extend an analytical methodology that has been previously developed 
[2] to a larger population group, for instance patients with neurological pathologies of different 
aetiology and benignity, in which patterns of periodic activity in routine EEG recordings are 
commonly found.

The periodic appearance of the EEG activity is a feature common to several clinical entities. For 
example, it occurs frequently in patients with past experience of epilepsy or patients with a clinical 
compatible case of repeated seizures with or without clear motor symptoms, which normally facilitate
the diagnosis.

There is a significant group of patients in which the occurrence of these periodic EEG patterns 
prompts the possible diagnosis of epileptic states. However the presented clinical signs are not always 
clearly suggestive of epilepsy. This lack of clarity raises doubts about the treatment and prognosis of 
the patients.

Establishing a mathematical clinical correlation among PA-EEG findings in these patients by 
making a classification according to their benign or malign prognosis will make it possible to adopt 
the most suitable treatment for the patient, thus improving their quality of life. The prognosis of the 
patients is determined by patient survival, which means that any assistance to the physicians is very 
valuable. It is therefore of great importance to develop algorithms to classify patients according their 
prognosis.

2. Materials and methods

2.1. Acquiring EEG data

The data was collected at a large tertiary hospital (Cruces University Hospital, Bilbao, Biscay,
Spain) by specialists from the Clinical Neurophysiology Department. The recordings were obtained
from the routine EEG exams of patients suspected of brain injury or disease. A Neurofax (Nihon-
Khoden, Rosbach, Germany) EEG machine, which has 32 EEG channels in the standard 10–20 
electrode placement system, was used to record the data. The sampling frequency was set to 500Hz.
The data was recorded using a lateral-bipolar montage.

The processing stage at recording uses a finite impulse response (FIR) filter with a band-pass region 
of 0.3–40 Hz. To preserve the time-domain features of the signal, a zero-phase filter using the 
forward-reverse method [3] was employed.

2.2. Database

The population group is large, as it includes patients with neurological pathologies of different 
aetiology and prognosis. This makes it difficult to characterise and create an accurate and robust 
architecture for classification purposes. The pathologies of patients in the population group include:
toxic and metabolic encephalopathy, postanoxic encephalopathy, convulsive and non-convulsive 
status epilepticus, cerebral infarction, tumours or dementia.

For the purpose of correctly analysing and interpreting EEG signals, the recordings have been 
marked by experts from the Clinical Neurophysiology Department at Cruces University Hospital,
stipulating the time of appearance of the segments of detected activity and their respective channels. 
The database is composed of ten patients, seven of them with good prognosis and three of them with 
bad prognosis. These prognoses were obtained from the real evolution of the patients. While the 
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database is still incomplete, the number of patients with good and bad prognoses being less than 
necessary, the length of the recordings is large enough to allow for repeated random sub-sampling 
validation, as explained in Section 2.8, which is enough at this stage of the research.

2.3. Pre-processing of the periodic activity signal

The following processes were carried out on the periodic activity signal prior to extracting the 
features of the signal: notch filtering at 50 Hz to remove the line noise, normalization with respect to 
the mean by subtracting the mean to the data, downsampling the signal from the original sampling rate 
(500 Hz) to 50 Hz and finally, removal of large-amplitude artefacts using the following threshold 
approach. If the EEG signal s(t) at time instant t0 is greater than a predefined threshold, then set this 
signal to zero within a small window frame around t0���������	��
���������, then s���������������
�� �L/2
� � � L/2; and do nothing otherwise���������������00 �� and L to 5 seconds.

2.4. PA-EEG periods selection

PA-EEG periods are selected from EEG signals marked by specialists who define the channels and 
time of appearance. A necessary condition is that periods should be of a minimum duration of 20 
seconds, a requisite demanded by experts in neurophysiology to ensure that segments contain periodic 
activity. Segments of longer duration are split into 20-second intervals which correspond to 1000 
samples, for classification purposes. In this research 105 20s-long segments of good prognosis and 53 
20s-long segments of bad prognosis have been used.

2.5. Classification methods

Automatic learning methods have proven their effectiveness in recognising EEG wave patterns [4-8].
Owing to the variety of aetiologies of patients from the current database, the instantaneous frequency,
which was the chosen feature to separate epileptic from non-epileptic patients in [2], has been shown 
to be insufficient for the purpose of proper classification in the present study. For this reason a larger 
number of features and the use of classifiers have been proposed. 

After having carried out many experiments using different classification algorithms, like Neural 
Networks, Support Vector Machines with Linear, Quadratic and RBF kernels, Adaboost M1 with 
decision trees and discriminant weak classifiers, a parallel architecture (committee) was implemented
[9-11]. This was due to the robustness and reliability they provide to the classification. 

The selection of algorithms as candidates to form part of the committee was based on the following 
diversity measures [12]: Q-����������	� �� ���

������	� !���"���#����#���$��� ��!�!�$&'�� 
�$'��#���$����
Using these measures allowed for a combination of classifiers to be obtained that best fit the data to be 
classified. The selected classifiers were Adaboost M1 with Decision Trees weak classifiers, Support 
Vector Machine Linear kernel and Support Vector Machine RBF kernel. For both kinds of Support 
Vector Machines, the parameters <���!�= were set to 1 and 3 respectively��>�������?J>�X����'�����\�
scaling factor was set to 1. The decision regarding classification of the parallel architecture was taken 
by majority vote. 

Realizing a parallel classification architecture adds complexity and computational cost to the system,
but these are mainly due to the need for training the different classifiers that compose the committee 
and, in addition but to a lesser extent, due to implementing a majority-based voting system. Since 
training is done offline and in a phase prior to setting up the system for a possible online application, 
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and also since the additional complexity of the committee is negligible, online performance should 
remain unaltered. Figure 1 shows an outline of the architecture implemented.

2.6. Feature extraction

Feature extraction is a determining factor when classifying patterns. Features need to be insensitive 
to noise, discriminant and separate from each other. Their main purpose is to objectively describe 
certain aspects, in this case regarding the PA-EEG activity that may be characterized subjectively by 
specialists. 

A collection of 84 features were selected based on previous studies [13-17] in the time, frequency, 
wavelet, time-frequency and instantaneous frequency domains. 

In order to characterise PA-EEG signals several processing techniques have been employed:
�� The Welch method with a 2 second long hamming window to transform the signal to the 

frequency domain.
� Wavelets to extract various features of the signals from time-frequency sub-bands. By using a 

Daubechies mother Wavelet with 5 levels of decomposition, the original spectral range is 
divided into 32 sub-ranges with corresponding detail and approximation coefficients.

� The Wigner-Ville distribution to transform the signal to the time-frequency domain through a 
lag-independent kernel.

To prevent features with higher absolute values from having greater weight in the learning process, 
the features were normalized based on the following Eq. (1).

The maximum and minimum values are calculated for each feature such that each is then 
normalized between 0 and 1.

�������� =  
	
���
������ (	
���
�) 

���� (	
���
�)����� (	
���
�)                                                   (1)

Fig. 1. Classification architecture.
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2.7. Feature selection

Feature selection creates a subset of initial attributes improving their predictive performance and 
constructing patterns more efficiently. One of the major problems with classification algorithms is 
multidimensionality, which has an adverse effect on their decision-making power. By applying an 
attribute selection process, we attempt to select the smallest subset to obtain the greatest accuracy. 

There are many methods used to select attributes. For further information, we refer the reader to 
[18]. The main difficulty lies in selecting the method that is best suited to the features to be classified. 
There are currently many studies on the subject, such as [19, 20] which apply feature selection
techniques in order to obtain greater success rates in their classifications.

For simplicity, the features were reduced using the Wilcoxon method, which is built-in in Matlab.
More specifically, the method was chosen because the statistical Shapiro-Wilk test showed that the 
data distribution was non-Gaussian. A subset of 11 features were selected from the original 84 
calculated in the different domains, which make our classification method more accurate. Features are 
chosen based on their relevance, i.e. their discriminant capabilities. In order to obtain the optimal 
subset of features we have implemented an iterative algorithm that classifies data and computes the 
success rate, then removes the least relevant feature at each iteration. This is done from the original 
number of features until only 1 remains, and the subset of features that provided the highest success 
rate is chosen, in our case when only 11 where remaining. Table 1 shows the selected features.

2.8. Experimental set-up

The experimental set-up consists of a training phase followed by a testing phase, each of which is 
fed by signal segments (trials) that are obtained at random from the PA-EEG epochs marked by the 
specialists within the full recordings of the database of patients with good and bad prognosis. Since the 
database is composed of 7 and 3 patients of each kind, respectively, and the trials are 1000 samples 
long (20 seconds), there exist 105 trials of patients with good prognosis and 53 trials of patients with 
bad prognosis. Then, repeated random sub-sampling validation is performed 100 times, as follows:
� Generate independent training (80%) and test (20%) groups in a random fashion from the 

segments obtained before. Proceeding this way, training and testing are done akin to using a 
cross-validation method, but with completely random rather than permuted groups at each 
iteration, thereby increasing the objectiveness of the validation. To test the individual 
classifiers and the committee, 20% of the available bad prognosis 20-s segments were used (11 
20-s segments) as well as the same number of good prognosis segments.

� Select the most relevant features for the training set of the current iteration, simulating a real 
case in which characteristics cannot be inferred from the recordings (they have to be obtained 
prior to setting up the system). These features are used for the upcoming experimental tests.
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1.Time-Frequency 
coefficients kurtosis. Eq. (2)

2.Time-Frequency 
coefficients skewness Eq. (3)

3. Wavelets D4 coefficients 
variance. Eq. (4)

4. Time-frequency sub-band 
energy. Eq. (5)

5.Time-frequency 
coefficients roll off. Eq. (6)

6.Wavelet D6 coefficients 
minimum

7. Wavelets D8 coefficients 
variance. Eq. (4)

8. Wavelets A8 coefficients 
variance. Eq. (4)

9.Wavelet D5 coefficients 
minimum

10. Area under the curve. Eq.
(7)

11.Time-frequency sub-
band energy. Eq. (5)

� Train the individual classifiers of the committee. This is still part of the training phase.
� Classify data from the testing set using the features and individual classifiers as parameterized 

in the previous step.
At this point, it is already possible to calculate the success rate of the current iteration and reiterate 

the process from the first step.
The above procedure is executed 100 times, finally computing the average success rate and standard 

deviation of the 100 iterations. Figure 1 shows a detailed diagram of the algorithm outlined before.

3. Results

Table 2 shows the results obtained in the classification of PA-EEG signals, including the standard 
deviation and the statistical significance of the calculated feature selection. The statistical significance
has been calculated using a Wilcoxon test by making a comparison between success rates with and 
without feature selection.

As mentioned in the abstract, the combined success rate using the committee is of 81.94% with a 
standard deviation of 9.81 and the p value shows that the results are statistically significant. This 
success rate is greater than that of any individual method and also better than the rate obtained with the 
complete set of features. The increment of the success rate of the parallel architecture compared to the 
single classifiers is not as high as originally expected possibly since the database is still incomplete. 

However, the choice of the committee has prevailed in order to have better scalability and a higher 
improvement of the success rate in later stages of the project. Moreover, in a medical context any 
enhancement of the diagnoses is desirable, even if small.

Table 3 shows the confusion matrix of the committee obtained from the 100 iterations of the 
algorithm. It indicates the performance of the committee. Each column of the matrix represents the 
instances in a predicted class, while each row represents the instances in an actual class. From here the 
following statistical measures of the performance of the committee can be calculated: True Positive 
Rate: 0.83, False Positive Rate: 0.19, True Negative Rate: 0, 8 and False Negative Rate: 0.16. These 
results indicate that in fact the architecture accurately classifies patients of good and bad prognosis. 
According to our experiments, the classification problem seems to be nonlinear. We conclude this due 
to the lowest classification rate corresponding to the only linear classifier of the committee (Linear-
SVM). However, Linear-SVM seems essential in the choice of classifiers that make up the committee

Table 2
Classification results, standard deviation and significance p value for the comparison between feature subset and raw features

Classifier Success rate (Feature 
subset 11 features)

Std. Dev. Success rate (raw 84 
features)

Std. Dev. p

Adaboost M1 78.61% 9.42 76.22% 9.47 0.108
SVM-Linear Kernel 76.55% 9.91 76.16% 8.44 0.743
SVM RBF kernel 79.77% 10.55 67.55% 8.45 0

Table 1
Selected features (Mathematical expressions for calculating the features can be seen in the appendix)

Committee 81.94% 9.81 78.22% 8.63 0.003
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Table 3

Committee classification confusion matrix (11 features)

Good prognosis Bad prognosis
Good prognosis 881 219
Bad prognosis 178 922

in order to increase the success rate compared to the individual results.
The results obtained in this first phase of the research are positive in several aspects. Firstly, it was 

ascertained that the characterization of PA-EEG signals and their subsequent classification according 
to the patient benign or malign prognosis are indeed feasible. This is a complex task for several 
reasons: there is a wide range of pathologies that generate PA-EEG signals, characterized by very 
varied wave patterns. What is more, the medication prescribed to patients also affects the form that 
EEG signals take in many cases. However, it can be ensured that the set of selected features is 
appropriate given the success rates obtained in this preliminary stage of the research.

Furthermore, feature selection has been shown to be beneficial. A subset of 11 features was selected 
from the original set increasing the success rate. The features have been evaluated according to their 
individual relevance, due to the computational cost of evaluating all possible subsets of features. 
Additionally, no redundancy has been taken into account, despite being one of the most determining 
factors in feature selection. Independence between features is desirable, because in many cases some
of them provide the same information, or tend to mix the boundaries of the different classes decreasing 
the success rate.

Lastly, diversity measures [20] among the different classifiers comprising the committee have been 
calculated in order to assess the complementary nature of the parallel classification architecture and to 
select the most accurate classifiers for the purpose of our casuistry. The means of the diversity 
measures for the classification committee are: Q-����������^� ��_�	� �� ���

������^� ��`{	� !���"���#����
measure: 0.21, double fault measure: 0.10. This task entails a lot of complexity, as it is necessary to 
perform each of the calculations for each of the possible sets of classifiers of the committee. In order 
to assess the statistical significance between the committee and the individual classifiers, a non-
parametric Mann-Whitney test was applied, since the data does not follow a normal distribution. The 
results are shown in Table 4.

Taking all this into account, there are substantial grounds to believe that the study is in a promising 
line of work, one that we intend to continue. 

4. Conclusions

After carrying out experimental tests based on available AP-EEG data, it can be concluded that 
accurate automatic classification of different patients according to their prognosis is possible, by no 
means a straightforward task for physicians because, as has already been stated, many times it is based 
on other clinical features and is mostly subjective.

Likewise, it has been demonstrated that the reduction in the number of features and the 
implementation of efficient classification architecture are indeed viable options. This in turn makes us 
feel optimistic about increasing the number of patients in the database, which will imply an expansion 
of patterns to be learnt by classifiers of the committee but should also increase the accuracy of the 
classification.
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Table 4

Mann-Whitney test between committee and individual classifiers

Feature subset 11 features Original 84 features
Committee vs.
Adaboost M1

Committee vs.
SVM Linear

Committee vs.
SVM RBF

Committee vs.
Adaboost M1

Committee vs.
SVM Linear

Committee vs.
SVM RBF

p 0.011 0 0.131 0.183 0.120 0

Classifiers have been chosen to solve the problem at hand due to the variability of pathologies 
involved in the study. It would otherwise have been too complex to implement an ad hoc signal 
processing scheme that could differentiate among so many pathologies and succeed with patient 
diagnosis. On the contrary, by using classifiers and a multi-parameter characterization of PA-EEG 
recordings, patient groups are easier to handle. In addition, a parallel architecture has been preferred to 
enhance the scalability of the system in future stages with more extensive databases.

Moreover, the method may be used in a clinical environment in its current form. Once the 
committee is adequately trained, the classification system can be used to improve medical diagnosis of 
patients presenting PA-EEG bursts of similar characteristics to those included in the database.

The aim of this research has been to obtain objective data about PA-EEG signals in patients thereby 
providing significant assistance to the diagnosis issued by specialists from Clinical Neurophysiology 
units, with there being the chance to propose more effective forms of treatment. By attaining the 
objectives that have been set out, it may be possible to improve the quality of life of patients.

Lastly, after completing the first phase of the experiment, it is possible to state that characterization 
of PA-EEG bears little relation to that of the peak trains associated with epileptic patients researched 
in [2], as the instantaneous frequency does not emerge as one of the most relevant features.

5. Future work

Regarding future lines of research, it is hoped that the database will be expanded to at least 30 
patients to improve the reliability of conclusions. Moreover, feature significance will be revised by 
expanding the database. 

In the next phase of the study improved pre-processing of PA-EEG signals will be implemented
using techniques such as Independent Component Analysis (ICA) in order to remove artefacts [21].

There is also a desire to implement ad hoc inference measures between the different features, which 
will facilitate the selection of the most important features in this casuistry according to their 
independence, discriminant power and complementary nature. 
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Appendix

Mathematical expressions for calculating the selected features:

�������� =  1
(�� � 1)�(�,�)� ! !"#[$, %] � &(�,�)'�

*
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0-.
(1)
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*
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Notations: |^�}���!��!�!����������E: Mean. p[n,k]: time-frequency domain (n: time, k: frequencies). z[n]: time domain 
��"��'���^���#����	�
^���#����!�
��~$���������^�
��~$�����$�!���which 85% of the signal power besides.
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