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Abstract. Blood oxygenation level dependent functional MRI (BOLD fMRI) requires repeatedly scanning the same region to 
capture neuronal activities, so the sampling data is very sparse along the temporal direction, which offers an opportunity to 
accelerate the fMRI. In this paper, (k-t) space data is sparsely acquired and reconstructed for BOLD fMRI using a partial 

separability (PS) model with a 2� -norm constraint. The proposed approach achieves a high temporal resolution of 200 ms 
without compromising spatial resolution (3.5� 3.5�4.0 mm3). A simulation based on the EPI data with the right finger
tapping experiment demonstrates that the proposed method can realize high spatiotemporal fMRI with accurate reconstruction 
of the activation regions from highly undersampled data. Meanwhile, preliminary in vivo experiment results also demonstrate 
the potential application of the proposed method in fMRI.
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1. Introduction

Functional magnetic resonance imaging(fMRI), which is a technique that measures the hemodynamic 
response related to neural activity in the brain, requires a high spatial and temporal resolution [1].
Echo-planar imaging (EPI) provides a scan time of tens of milliseconds for a slice imaging and a spatial 
resolution of 3-4 mm. In addition, other significant efforts based on EPI have been made to accelerate 
data acquisition for fMRI using fast scanning [2, 3] and/or parallel imaging [4, 5]. However, the 
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resolution of an fMRI image based on this fast scanning is limited by technological challenges [6]. A
sparse sampling model provides a new way for the high spatial and temporal resolution fMRI. One of 
the higher-order generalized series imaging with a parallel imaging technique has been introduced for 
highspatial resolution fMRI [7, 8]. However, disadvantages of this method include the limitation on the 
number of imaging slices, and the reduced number of encode lines. As a result, the quality of the 
reconstructed image is generally degraded. Other sparse sampling models include the partial 
separability (PS) [9, 10] and compressed sensing (CS) [11-14]. Holland et al shows that the 1� -norm 
based CS reconstruction can  produce an increase in functional contrast and yield equivalent fMRI 
sensitivity when applied to 28% under-sampled data [13]. However, the spatial and temporal resolutions 
of BOLD fMRI are tradeoffs using the CS-based method. In this work, a dynamic model of partial 
separability (PS) with 2� -norm constraint was introduced to improve the temporal resolution of BOLD 
fMRI from 2000ms to 200ms without compromising the spatial resolution. As the temporal resolution of 
BOLD fMRI improved, the increase in the time frame may lead to more statistical signal power 
compared to the fully sampled acquisition.

2. Theory

The Lth-order PS model represents the spatiotemporal image function as Eq. (1)
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where ( )U r�
( N LU C �� ) and V ( )t�

( M LV C �� ) are the � th spatial and temporal basis functions,
respectively. L is the model order, N is the pixel number, and M is the image number. Our purpose is to 
recover image ( , )r t� from a sub-Nyquist measured data ( , )d k t , which is expressed as Eq. (2) in 
matrix form.
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where F is the Fourier operator that transforms the image into k space, 	 is the undersampling matrix, 
and � is white Gaussian noise. Generally, the temporal basis V can be obtained by applying the singular 
value decomposition (SVD) method [10] on a training dataset that is acquired along with the measured 
data. Thus, the least-squares method can be used to solve Eq. (2) and get the spatial basis U . Because 
the measured data is highly undersampled, directly solving Eq. (2) without any constraint would result 
in noise amplification and potential image artifacts. As the BOLD signal changes little (~3%), a 2�

-norm constraint was used to suppress the noise for solving Eq. (2), which can be described as Eq. (3)
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where � is the regularization parameter [15]. The first term in the right side of Eq. (3) is the data 
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consistency and the second one is the 2� -norm constraint. The solution of Eq. (3) can be written exactly 
as Eq. (4) which can be quickly evaluated using a conjugate gradient algorithm [16].

( )H H H H H HV F FV I U V F d�	 	 
 � 	                                           (4)

where H is Hermitian transpose.

3. Materials and methods

3.1. Numerical simulations

The proposed method was evaluated using an experimental fMRI dataset that was acquired by a 2D 
EPI sequence on a 3T MRI (SIEMENS Tim Trio, Germany). A periodic block design paradigm (Figure 
1) with the right finger tapping action was performed for collecting the data. In the experiment, a healthy 
volunteer who participated in the study had not experienced any medical, neurological, or psychiatric 
illnesses. The study was given ethical approval by the appropriate Institutional Review Boards and 
written informed consent was obtained from the study participant prior to MR scan. The fMRI data was 
then acquired using a 2D EPI sequence with the parameters including: TR/TE = 2000/30 ms, matrix size 
=64�64, slice thickness=3.5 mm with 35% gaps, and 32 slices. The field of view was (FOV) = 220 mm
�220 mm, and the flip angle = 80°. The acquired data was then treated as a reference and used to 
simulate the undersampled data for PS model as illustrated in Figure 2. The repeatedly sampled phase 

encodings near the center of k-space is referred to as training data Train ( , )S k t , which is used to estimate

the temporal basis V [17-19]). The image data ( , )ImgS k t , which is the measured data ( , )d k t in Eq. (2),
was collected by sparse sampling the phase encodings of the referred k-space. After the training and 
image data were collected, image reconstruction was performed using the proposed method in Eq. (3).

Fig. 1. The stimulus mode for the fMRI experiment.
Fig. 2. An illustration of the proposed data acquisition 
scheme.
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Fig. 3. A schematic diagram of the customized sequence. 

3.2. In vivo study

An in vivo experiment with the same finger tapping task was performed on the same 3T MRI scanner
using a customized sequence (see Figure 3). The training data and the image data were acquired for 
image reconstruction using the proposed method. Scan parameters included: TR/TE = 100/20 ms, 
bandwidth = 880 Hz/pixel, flip angle = 10°, and 3D data acquisition fashion with spatial resolution 
3.5×3.5×4.0 mm3. Because training data determined the temporal resolution and the image data 
determined the spatial resolution, a BOLD fMRI with a temporal resolution of 200 ms and a spatial 
resolution of 3.5×3.5×4.0 mm3 were achieved using the proposed method.

The training data and the image data were interleaved acquired for the proposed method.

4. Results and discussion

4.1. Simulation results

The EPI-based data demonstrated the ability of high temporal resolution fMRI. Figure 4 shows two 
representative reconstruction images of the proposed method and EPI. It is clear that the proposed PS 
method could effectively suppress noise. Figure 5 shows representative neuronal activation maps from 
the proposed method. The neuronal activation map reconstructed by the proposed method was analyzed 
with SPM (http://www.fil.ion.ucl.ac.uk/spm/), and the activation regions were overlaid on the 
corresponding reconstructed images. The neuronal activation reconstructed by the proposed method 
matched well with that reconstructed by of the reference EPI data. The BOLD signal variation was also 
consistent with the reference results (Figure 6).

4.2. In vivo experiment results

In vivo experiment results are shown in Figures 7 and 8. A much higher temporal resolution of 200ms 
was achieved without compromising spatial resolution. Compared with the conventional PS model 
without regularization, the noise was suppressed by the proposed method (Figure 7). As the noise 
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suppressed, the neuronal activation can be found after the reconstructed images are processed by SPM 
[20]. It should be noted that the location of neuronal activation using the proposed method (Figure 8)
was found to be different with the reference (Figure 5), which needs to be further evaluated and studied.

Fig. 4. The reconstruction images of the proposed 
method and EPI.

Fig. 5. Representative neuronal activation maps from the 
fully sampled data with those from the proposed method 
(Sagittal).

Fig. 6. BOLD signal variation curves. The activation result of proposed method (red curve) matched well with that of the 
reference EPI (green curve).

Fig. 7. The fMRI images of our proposed method compared with traditional PS model.
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Fig. 8. Representative neuronal activation maps of the proposed method with a traditional PS model. Compared to the proposed 
method, the location of neuronal activation of the traditional PS changed due to the noise amplification; the traditional PS 
model achieved poor functional imaging results.

5. Discussion

In this study, the PS model was used for a high spatiotemporal fMRI. Generally, EPI-based methods 
with parallel imaging techniques are used to achieve a sufficient imaging speed in fMRI studies. 
However, the parallel imaging technique causes SNR degradation [21]. For example, the SENSE
(sensitivity encoding) technique with an acceleration factor of R leads to the SNR reduction of a factor 
of g R , where g indicates the coil geometry factor. Sparse sampling offers a new way to further 
accelerate fMRI. Recently, the two basic sparse sampling imaging methods, including compressed 
sensing (CS) and a partial separability (PS) model, have been used to improve the spatiotemporal 
resolution of MR imaging. The PS model overcomes the tradeoff of the spatial and temporal resolutions 
of BOLD fMRI, but the tradeoff still existed for CS-based methods. However, the undersampling of k 
space data based on the PS model often causes noise amplification and potential image artifacts. It is 
therefore useful to regularize the model by incorporating additional penalties. In this paper, a 2� -norm 
penalty to the spatial basis 2|| ||U was used to suppresses the noise for image reconstruction, which could 
realize more accurate brain activation mapping and high-resolution functional images.

In the in vivo experiment, the efficiency of undersampled fMRI acquisition schemes illustrated that the 
proposed method achieved a much higher temporal resolution compared to the EPI. However, as shown 
in Figure 8, the location of neuronal activation using the proposed method was found to be different with 
the reference. Further evaluation and a large-scale subject study are necessary for our future work.

6. Conclusion

This paper discusses a novel method based on the PS model for accelerating fMRI experiments using 
sparse sampling of (k, t)-space data. The performance of the proposed method has been preliminarily
evaluated using a retrospective undersampling of an EPI-based fMRI dataset and an in vivo healthy 
volunteer study. The simulation results demonstrated that the proposed method could accurately 
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reconstruct the magnitude images with much higher temporal resolution and capture the BOLD signal 
change for fMRI study. The in vivo experiment results also demonstrated the feasibility of the proposed 
method. However, further evaluation and optimization of the proposed method need to be carried out in 
the future.
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