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Abstract. Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective 
diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution 
enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such 
as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a 
trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the 
coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-
minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours 
from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by 
substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and 
vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the 
underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads 
to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of 
the proposed scheme is comparatively better than other state-of-the-art schemes.  
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1. Introduction  

Applications in various fields, such as medical imaging and high-resolution (HR) displays, need 

resolution enhancement of the images captured by low-quality visual sensors [1, 2]. In medical 

imaging, diverse physical, technological, and economical consideration limit the resolution of 

magnetic resonance (MR) images. This limitation of resolution introduces a series of bad artifacts in 

MR images, such as partial volume (PV) effect that degrades the performance of post processing 

algorithms and image analysis tasks, preventing derivation of accurate measurement and diagnosing 

[3]. Traditional interpolation techniques such as bicubic or B-spline are usually used to enhance the 

resolution of MR images, but these techniques cannot properly reconstruct the sharp luminance and 

complex texture of the underlying MR images and strongly affect the subsequent processing steps, 
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such as MR image segmentation and registration. Hence, any super-resolution (SR) reconstruction 

scheme should have the capability to coherently recover these sharp luminance and complex texture. 

In image SR, reconstruction constraint (SC) and sparsity prior (SP) are two important components as 

described by [4]. SP demands that the reconstructed HR image A∈R
H
 must be consistent with low-

resolution (LR) image B∈RL
 with-respect-to the image observation model. A is the HR version of the 

corresponding observed LR image B, where B is obtained by downsampling A as: 

 ( ) ( )dd
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      (1) 

where Q(d) is the interpolation operator for downsampling and ɛ(d) is the interpolation error or blurring 

effect. In SP, HR image A can be well represented as sparse linear combination of the prototype signal 

atoms determined from dictionary G ∈R
n
×
m
.  
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where ɛ is a fixed value indicating the limit for the reconstruction error. A similar objective could be 

achieved alternatively by considering the problem posed in (2) as sparsity constraint 
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where ǁXǁ0 is simply the number of nonzero elements of X={x1,…, xn}∈R
m
×
n
 and K is the threshold 

for maximum number of atoms. Unfortunately, solving the problem posed in Eq. (3) involves a 

combinatorial search, making it computationally intractable [5]. The L1-minization, as the closest 

convex function to L0-minization, is extensively used as an alternative scheme to solve the problem in 

Eq. (3) [6]. In other words, the two major algorithmic approaches to solve problem posed in Eq. (3) 

are L1-minization and L0-minization (matching pursuits). The problem in Eq. (3) can also be denoted 

as a sparse recovery problem. Yang et al. [4] solved the same problem using L1-minization known in 

statistical literature as the Lasso. They incorporated the work of Lee et al. [7] for dictionary learning. 

Zeyde et al. [8] used orthogonal matching pursuit (OMP) to recover the sparse representation both in 

dictionary learning and SR. They applied K-SVD dictionary training procedure [9] for dictionary 

learning. In [10], author applied the same approach for dictionary learning, however they determined 

the sparse coefficients by solving the problem in Eq. (3) using L1-minization. In our previous scheme, 

Sparse Representations-based Super-Resolution of Key-Frames Extracted from Frames-Sequences 

Generated by a Visual Sensor Network (SR-KF) [11], optimized orthogonal matching pursuit (OOMP) 

was applied for sparse-representation recovery in SR. For dictionary, the K-SVD dictionary training 

procedure was incorporated. In literature, it has been proved experimentally that L1-minization can 

produce more precise solutions than matching pursuits (L0-minization) but usually needs higher time 

complexity [12]. Therefore, there must be a minimization method to solve the problem posed in (3) 

that has advantages of both approaches (i.e., L0-minization and L1-minization).  

In this paper, we present a sparse representation based image SR reconstruction scheme for brain 

MR images. First, the dictionary is trained using the modified version of the K-SVD dictionary 

learning procedure. The sparse coding phase of the K-SVD dictionary learning scheme is then 

enhanced incorporating a simple and an efficient regularized version of orthogonal matching pursuit 

(ROMP) [13, 14]. ROMP has the transparency and greediness of OMP and the robustness of the 
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L1-minization, and this property of ROMP enriches the learning process of the K-SVD dictionary 

learning scheme in terms of features representation such as oriented edges and contour. In addition, 

the dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors 

of sparse coefficients. In SR reconstruction, ROMP is used to seek the vector of sparse representation 

coefficients for the underlying patch. The sought vector of sparse coefficient is then multiplied to the 

trained dictionary to reconstruct the HR output of the underlying LR patch. The final HR output of 

high quality is generated by solving the optimization problem with respect to trained dictionary. 

Experimental results validate the qualitative and quantitative significance of the proposed SR 

reconstruction scheme over other state of the art schemes. 

The remainder of this paper is organized as follows: Section 2 describes the proposed framework. 

The experiments and results are discussed in Section 3. Finally, Section 4 concludes the paper.  

2. Proposed methodology  

The proposed methodology consists of two phases, that is, a dictionary training phase and an SR 

phase. According to the problem posed in Eq. (3), we can generate an HR output A from a given LR 

image B by applying the recovered sparse coefficients X with an overcomplete dictionary G. The 

pictorial demonstration of the proposed framework is shown in Figure 1. The details about dictionary 

learning and SR are described in the following subsections. 

2.1. Dictionary training  

Effective image representation plays a vital role in image SR reconstruction. Various dictionary 

learning algorithms have been developed to replicate the image representations from the observed 

training images. From the last decade, K-SVD dictionary learning procedures have been deployed 

successfully for image de-noising and super resolution [11]. Literature reviews indicate that an 

appropriate modification both in sparse recovery and in dictionary updating stages can improve the 

performance of the dictionary learned through the K-SVD dictionary training procedure [9, 15].  

The training procedure of the K-SVD consists of two parts: 1) sparse recovery method and 2) 

dictionary updating. The objective function for sparse recovery posed in Eq. (3) can be decoupled into 

N distinct problems of the form  
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where y ∈ R
n
 is the training patch randomly taken from the HR training image Y. The image patch y 

is involved in dictionary learning if the standard deviation σ of its intensity is greater than a threshold 

∆, i.e., σ > ∆. The L0-minization in this problem is solved by applying ROMP [13]. ROMP is a simple 

regularized extension of OMP which has the transparency and greediness of OMP and the robustness 

of the L1-minization. In ROMP, the local approximation property recommends using the K biggest 

coordinates of the observation vector u=G*x instead of one biggest coordinate as OMP does. The 

observation vector u does better as a local approximation while reconstructing the HR patch a from the 

measurement x =Ga. ROMP emphasizes that the selected coordinates I must be more regular. Thus, 
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coordinates J0 with maximum energy and comparable sizes are selected and are added with the index 

set: I←I∪J0. For selected coordinates I, we solve a least square problem and update the residual r to 

eliminate any contribution of the coordinates in I: 
 

2
zx

I
z

G−=

ℜ∈

ymin       (5) 

x-xr G=        (6) 

 

where residual r is initialized to y at the start. The regularization step does not involve combinatorial 

complexity and can be performed in linear time. For a detailed study of ROMP, the readers are 

referred to [13]. The algorithm for ROMP can be summarized in Algorithm 1. 

Algorithm 1 

Task: Generate a vector of the sparse representation coefficients.  

Input: G, y, sparsity level K. 

Output: r, I, and x. 

Initialization: Set t = 1, r = y,   and I = 0. 

while (stopping criterion not met) do 

(i). Identify: Chose a set J of the K biggest coordinates of the observation vector u=G*x. 

(ii). Regularize: divide the set J into J0 where 
0

J∈≤ jiforalluu ji ,.2 with maximal energy
20J

u . 

(iii). Update:  

• Set
( ) ( ) 0

J∪
1-tt

II =
. 

• Compute x by solving the problem posed in Eq. (5). 

• Calculate the new residual r using Eq. (6). 

(iv). t = t + 1. 

 
Fig. 1. Framework of the proposed super-resolution reconstruction technique. 
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In dictionary updating stage, the procedure of simultaneous atoms optimization described in [15] is 

incorporated that allows to simultaneously update an arbitrary subset of atoms and the corresponding 

non-zero coefficients of the sparse representation. Let I ⊆ G={g1,…, gn} ∈R
n
×
m
 be the index set of 

the atoms to be updated. G:,I and X:,I indicates the sub-matrices indexed by I. The optimization 

problem for simultaneous updates can be written as 
 

( )GI
GGG I

f
∈:

inf

:,

       (7) 

 

and the corresponding objective function of ( )G
I
f  can be written as  
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where ( ) ( ){ }Ω∉∀=∈=Ω
× ji,0: ji,
nm
XX RV  and these two steps, sparse coefficients recovery and dictionary update 

are repeated until an overcomplete dictionary is produced. The resultant dictionary G contains image 

representations such as oriented edges, lines, and bars instead of raw patches prototypes. 

2.2. Super-resolution  

Suppose, we have to reconstruct an HR output image A from a given low-resolution image B. First, 

B is interpolated to the size of A using our recent adaptive interpolation technique [1]. 

 

( ) ( )uu
AQB ε+=′

      (9) 

 

where Q(u) is the interpolation operator for scaling up and ɛ(d) is the interpolation error or the blurring 

effect of the scaling process. Then, m patches { }( )m

b′ each of size nn ×

 
are extracted from 

locations (i, j) using an extraction operator R. ROMP algorithm is applied as described in the previous 

section to seek the vectors of sparse representation coefficients { }( )

( )m

ji,
x  for each patch in { }( )

( )m

ji,
b′ . The 

corresponding HR patches { }( )
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�
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The final HR image A can be reconstructed by solving the following optimization problem 
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The problem posed in (12) iterates until, we get an HR image A of high quality.   
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3. Experimental results  

In this section, we conducted a variety of experiments to prove the effectiveness of the proposed 

scheme practically. For this purpose, we acquired brain MR images of different views (i.e., coronal 

view, axial view, and sagittal view) from three datasets: 1) PIMS Hospital (PIMSH) [16], 2) Brain 

Web Tumor Repository (Brain-Web) [17], and 3) Harvard Medical School brain MRI dataset 

(Harvard-MRI) [18]. These datasets contain varieties of brain MR images of high quality more 

suitable for training and evaluation purposes. The dictionaries for the proposed SR reconstruction 

scheme and SR-KF were trained from 106
 patches of size 9 × 9 sampled independently from the 

training datasets of brain MR images. Unless explicitly mentioned, the size of the dictionary was 

maintained as 2
10

 in all experiments. We modified the algorithm of SR-KF [11] according to the 

experiment as it was designed for key-frames extracted from video sequence captured via wireless 

sensor network. 

Figure 2 shows the qualitative evaluation of the proposed scheme, compared with a standard bicubic 

scheme and with our previous SR scheme, SR-KF [11]. Both SR-KF and the proposed SR schemes 

have the capability of SR and denoising simultaneously. However, bicubic technique lacks this 

property of denoising and can only scale up the input image. The visual quality of the proposed 

scheme is much better than bicubic, but slightly better than SR-KF. This superiority of the proposed 

scheme was also quantitatively proved, computing peak signal to noise ratio (PSNR) and structure 

similarity index metric (SSIM) [19] as shown in Table 1.  

 

 
Fig. 2. Qualitative evaluation of the proposed technique on noisy (standard deviation Gaussian noise: µ = 0, σ = 0.01) brain 

MR images. The cropped part of the distorted brain MR image is reconstructed 3×  using bicubic, SR-KF, and the proposed 

schemes. 

 
Table 1 

Quantitative evaluation: Accuracy supremacy of the proposed scheme over bicubic and SR-KF 

Brain MR images 1 2 3 4 5 6 7 8 9 10 

Bicubic PSNR 19.71 20.30 18.78 22.33 17.91 19.28 23.98 16.01 17.13 23.59 

SSIM 0.681 0.701 0.647 0.726 0.616 0.631 0.678 0.502 0.612 0.698 

SR-KF PSNR 25.46 26.50 24.02 27.53 23.50 24.39 28.98 25.77 26.50 28.94 

SSIM 0.829 0.837 0.792 0.857 0.706 0.730 0.750 0.706 0.760 0.852 

Proposed PSNR 28.34 29.11 27.90 30.12 26.39 26.82 31.18 28.28 29.14 31.94 

SSIM 0.881 0.894 0.864 0.911 0.796 0.851 0.868 0.781 0.865 0.958 

 

Coronal View of Brain MR Image Bicubic SR-KF Proposed

Bicubic SR-KF ProposedAxial View of Brain MR Image
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Fig. 3. Area under ROC curve (AUC) achieved by N-Cut and MIPS segmentation techniques. SR directed means that the 

segmentation technique was applied on the brain MR image super-resolved by the proposed SR technique. 

 

Furthermore, the boosting effect of the proposed SR technique was evaluated in segmenting the 

brain tumor in MR images. The collected brain MR images were distorted by Gaussian noise, and two 

state-of-the-art segmentation schemes normalized cut (N-Cut) [20] and medical image perception-

based segmentation (MIPS) [21] were taken into account to segment them. A standard parameter area 

under ROC curves (AUC) [21] was used for the objective assessment of the brain tumor segmentation 

results. Readers can find more detail about AUC in our recent article [21]. AUC computes a value in 

the range 0-1. A value approaching 1 indicates perfect segmentation and AUC=0 shows that the 

segmentation is completely incorrect, no overlap on tumor region (i.e., ground truth). AUC scores 

listed in Figure 3 depict the effect of the proposed SR technique as a pre-processing step in improving 

significantly the accuracy of two recent segmentation techniques. It can be easily concluded that the 

proposed SR technique makes the segmentation process more accurate.  

4. Conclusion  

This paper presented a novel scheme toward brain MR image SR reconstruction using the modified 

version of K-SVD trained dictionary. The sparse coding algorithm of the K-SVD is replaced by an 

efficient regularized OMP which has the transparency and greediness of OMP and the robustness of 

the L1-minization. This two in one nature of ROMP enhances the learning process of the K-SVD 

dictionary in terms of features learning. In the SR reconstruction step of the proposed scheme, ROMP 

is used to determine the vector of sparse coefficients of the underlying patch. This vector of sparse 

coefficients is multiplied with trained dictionary to generate the HR output. The final HR image of 
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high-quality is generated through optimization process over learned dictionary. Both qualitative and 

quantitative analysis proved validity of the proposed SR reconstructed scheme. 

In future work, we will investigate enhancing the capability of the dictionary to handle various types 

of distortion such as motion noise. The proposed algorithm will be elaborated for use in other 

applications such as video SR and de-noising, compressive sensing and representation and synthesis of 

visual texture. There are also additional improvements that can be made to the sparse coding 

Algorithm. 
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