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Abstract. Low-dose computed tomography reconstruction is an important issue in the medical imaging domain. Sparse-view 
has been widely studied as a potential strategy. Compressed sensing (CS) method has shown great potential to reconstruct 
high-quality CT images from sparse-view projection data. Nonetheless, low-contrast structures tend to be blurred by the total 
variation (TV, L1-norm of the gradient image) regularization. Moreover, TV will produce blocky effects on smooth and edge 
regions. To overcome this limitation, this study has proposed an iterative image reconstruction algorithm by combining L1 
regularization and smoothed L0 (SL0) regularization. SL0 is a smooth approximation of L0 norm and can solve the problem of 
L0 norm being sensitive to noise. To evaluate the proposed method, both qualitative and quantitative studies were conducted 
on a digital Shepp-Logan phantom and a real head phantom. Experimental comparative results have indicated that the 
proposed L1/SL0-POCS algorithm can effectively suppress noise and artifacts, as well as preserve more structural information 
compared to other existing methods. 
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1. Introduction 

X-ray computed tomography (CT) has been extensively applied in medical diagnosis over the past 
few decades. However, excessive X-ray radiation delivered to the patients during clinical 
examinations may increase a risk of cancer [1-3]. Therefore, it is necessary to minimize the radiation 
risk while maintaining acceptable image quality in clinical practice. Decreasing milliampere-seconds 
(low-mAs) and under-sampling the needed projections (sparse-view) are being studied as important 
strategies to reduce CT imaging dose [4-7]. If the projection data is collected through low-mAs 
modality, the sinograms will contain much noise and CT image reconstructed by filtered back-
projection (FBP) [8] will be degraded. For sparse-view image reconstruction, conspicuous streaking 
artifacts exist in CT images since the FBP algorithms need the number of projections to theoretically 
satisfy the Nyquist sampling rule [9]. Therefore, it is important to develop new algorithms in order to 
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obtain acceptable clinical images from low-mAs or few-view projections. Sparse-view reconstruction 
will be the focus in this work. 

Mathematically, CT image reconstruction from sparse views is an ill-posed problem. In recent years, 
CS theory [10, 11] has been studied in CT reconstruction. Specifically, total variation (TV) 
regularization [12], which is defined as L1-norm of gradient image (GI), has demonstrated great 
potential in CT reconstruction with limited number of x-ray projections [13, 14]. Although TV-based 
methods have achieved efficient results, one shortcoming of TV method is to uniformly regularize the 
image gradient ignoring the structural information. This disadvantage to some extent may lead to 
smoothed edges and blocky effects. Many efforts have been made to address this issue [15-20]. Chang, 
et al. proposed a few-view reweighed sparsity hunting (FRESH) method for CT image reconstruction 
[15]. Tian, et al. proposed an edge preserving TV (EPTV) model [16]. This model can preserve edges 
by bringing different weights in TV according to edges and homogeneous areas in an image. Different 
from the EPTV model, an adaptive-weighted TV model for low-dose sparse-view CT image 
reconstruction was established by Liu, et al. based on the consideration of the anisotropic edge 
property as an image [17]. Zhang, et al. used a high-order norm coupled within TV to overcome the 
disadvantages of traditional TV minimization [18]. Theoretically, a regularization, which is close to L0 
norm which denotes the number of nonzero signal elements, could obtain higher-quality CT images in 
CT reconstruction. Chen, et al. used the sparser L1/2 regularization operator [19] (L1/2-norm of GI) to 
replace the traditional L1 regularization and combined the Split Bregman method to do the 
reconstruction. Although L0 regularization is the sparest and most ideal regularization norm, L0-norm 
minimization problems have been recognized to be NP-hard, and it is difficult to solve equations. Sun, 
et al. has proposed an iterative algorithm (named as IHT-POCS (POCS, projection onto convex sets)) 
based on the L0-norm of GI [20]. Such an approach using a pseudo-inverse transform of GI and 
adapting the IHT algorithm aims to address the challenges introduced by the L0-norm of GI. 
Nonetheless, the sparse level S in IHT-POCS can only be roughly estimated. Moreover, L0 
regularization is susceptible to noise interference. 

In this paper, an iterative algorithm for sparse-view CT image reconstruction based on a combined 
L1 and smoothed L0 regularization was proposed. The reconstruction method is called L1/SL0-POCS 
in this work. Specifically, in L1/SL0-POCS, three steps are involved: 1) POCS reconstruction; 2) TVL1 
(L1-norm of GI) minimization; 3) TVSL0 (SL0-norm of GI) minimization. To assess the proposed 
L1/SL0-POCS algorithm, quantitative and qualitative studies were conducted on a digital Shepp-
Logan phantom and a real head phantom. 

2. Method 

2.1. CT reconstruction with TV minimization from sparse-view data 

Mathematical model [21] of CT image reconstruction can be expressed in a linear equation. 
 

 y Au=                                                                           (1) 
 

where y= (y1,y2, · · · ,yM)T represents the obtained projection data after log-transformation at different 
projection directions, u = (u1,u2, · · · ,uN)T  is the image vector  to be estimated and ‘T ’ is the transpose 
operator. A is a projection matrix with the size of M×N. Numerically, and element ai,j in A can be 
described as the contribution of the pixel j to the x-ray i, and can be calculated by ray tracing 
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algorithm [22]. However, Eq. (1) is an ill-posed problem when the measured data is sparse, and there 
exist infinitely many solutions to Eq. (1). 

To solve this problem, Sidky et al. presented an iterative scheme [13, 14] through POCS with TV 
minimization for few-view reconstruction problem by solving the following constrained optimization 
problem: 

 
min || || | | , 0TVu subject to y Au uε− ≤ ≥                                             (2) 

 
where � is a parameter which describes the inconsistency between the measured projection data and 
the estimated data. The expression of TV, i.e. ||u||TV, is defined as: 
 

2 2
1 , 1, , , 1

,
|| || || || ( ) ( )TV s t s t s t s t

s t
u u u u u u− −= ∇ = − + −�                                            (3) 

 
where s and t are the indices of the location of the discrete image, and u is the gradient image. Eq. 
(2) can be effectively solved by TV-POCS [13] and ASD-POCS [14] which consist of POCS and 
gradient descent in each iteration. 

Although the TV model has been successfully applied to reconstruct high-quality CT images, edges 
with low-contrast tend to be over-smoothed. In addition, TV suffers from the notorious blocky effect 
which limits the clinical practice of TV. 

2.2. Smoothed L0 regularization (SL0) 

In CS theory, L0 norm is the most ideal regularization norm, but it is difficult to solve equations 
with L0 norm which is sensitive to noise in CT reconstruction, so L0 norm is usually replaced by L1 
norm. It should be noted that conventional TV is the L1 norm of gradient image (GI). Theoretically, 
applying a regularization norm closer to L0 norm will help reconstruct higher-quality CT images. 
Therefore, replacing L0 norm with a norm much closer to L0 will yield desirable images. 

In fact, the problem of using L0 norm is due to the fact that the L0 norm of a vector is a 
discontinuous function of that vector. Mohimani, et al. has presented smoothed L0 norm (SL0) to 
approximate this discontinuous function by a suitable continuous (smoothed) one [23]. 

Define 
 

2 2( ) exp( / 2 )f t tσ σ= −                                                               (4) 
 

Then  
 

0

1 0
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where � is a parameter used to specify trade-off between accuracy and smoothness. N is the number of 
elements in vector s. 

In literature [23], the smoothed L0 norm (SL0) provides a smooth measure of sparsity, and the 
problem of high sensitivity of L0 norm to low-level of noise is solved. It has been applied in 
compressible sensing MRI imaging. SL0 is able to recover or reconstruct image well in the presence of 
low-level of noise. However, if the image to be processed contains a higher level of noise, SL0 cannot 
balance the relationship between noise and reconstruction precision, which degrades the image and 
produces apparent noise points. 

2.3. The proposed CT image reconstruction method (L1/SL0-POCS) 

The goals of the proposed combination of L1 and SL0 is, firstly to use L1 regularization to remove 
most of the noise in noisy images, and then to apply SL0 regularization to remove the rest of the noise 
in the images regularized by L1 and preserve the detailed structure information. The proposed method 
makes full use of respective advantages from L1 and SL0 to regularize noisy images to a maximum 
extent. In this study, CT reconstruction problem can be expressed as  

 
{ } { }1 0 0min || || || || min || || || || | | , 0L SL TV TVSLu u u u subject to y Au uε∇ + ∇ = + − ≤ ≥                   (7) 

 
To solve the optimization problem of Eq. (7), three iterative steps are involved: 1) POCS 

reconstruction; 2) TVL1 minimization; 3) TVSL0 minimization. In POCS of step 1, SART algorithm [24, 
25] and positivity constraint are used to update an estimated image. 

TV minimization and TVSL0 minimization can be implemented using the gradient descent based 
method. The image TV (||u||TV) is defined as shown in Eq. (3) and the image TVSL0 can be expressed as  

 
2 2

0 0 , 1, , , 1
,

|| || || || ( ( ) ( ) )TVSL SL s t s t s t s t
s t

u u N f u u u uσ − −= ∇ = − − + −�                                      (8) 

 
where f�(t)=exp(-t2/2�2), � is a parameter for small positive smoothing , and N is the number of pixels 
in a two-dimensional (2D) image. 

Accordingly, the derivatives of ||u||TV and || u||TVSL0 are respectively: 
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where � is the  number of small positive to keep the denominator not equal to zero. 

In summary, the formulas for TV and TVSL0 minimization are shown respectively as follow: 
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Table 1 

Implementation steps of L1/SL0-POCS reconstruction 

Algorithm of L1/SL0-POCS 
Initialization: 
Give A, y, K, Q1, Q2 and w. 
Main loop for k=1,2,…,K 
1. Reconstruction by SART 

,1
,

1 1, ,

( )
M N

i jk k k
j j i i j j

i jj i

Awu u y A u
A A

+

= =+ +

= + −� �  

2. Positivity constraint 
1,1 1max( ,0)k ku u+ +=  

3. TV minimization loop 
1,

1, 1 1,
1 1,

|| ||
|| || || ||

k q
k q k q TV

k q
TV

u
u u u

u
α

+
+ + +

+

∇
= − ⋅ Δ ⋅

∇
 

for q=1,2,…,Q1 
4. 1, 1,1 1, 1k Q k Qu u+ +=  
5. TVSL0 minimization loop 

1, 1,
1, 1, 1 1, 1, 0

2 1, 1,
0

|| ||
|| || || ||

k Q q
k Q q k Q q TVSL

k Q q
TVSL

u
u u u

u
α

+
+ + +

+

∇
= − ⋅ Δ ⋅
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for q=1,2,…,Q2 
6. 2 1, 1, 2k k Q Qu u+ +=  
7. Return to Step 1 until the stopping criterion is 
satisfied. 
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1

|| ||
|| || || ||

p
p p TV

p
TV

u
u u u

u
α+ ∇

= − ⋅ Δ ⋅
∇

     1 0
2

0
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TVSL

u
u u u
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α+ ∇

= − ⋅ Δ ⋅
∇

                             (11) 

 
where �1, �2 are the step sizes and p, q are the iteration indexes. �u is the difference between the 
reconstructed images at the kth and (kth+1) iterations. The image reconstructed by SART at the kth 
iteration is used as an input for TV minimization, and the image after TV minimization is employed 
for TVSL0 minimization. The implementation steps of L1/SL0-POCS reconstruction are shown in 
Table 1. 

2.4. Parameter selection for proposed L1/SL0-POCS 

It is important to determine the optimal parameters for L1/SL0-POCS. For w in SART, it is often set 
to be 1.0 in SART based on reconstruction methods [19, 24, 25]. For �1 and Q1 in TV minimization, 
they are set to be 0.2 and 5 respectively, which is done similarly in TV-POCS method [13, 14]. 
Through extensive experiments, we found parameters �2 and Q2, which are also set to be 0.2 and 5 
respectively, could achieve a good compromise between noise suppression and computational 
efficiency. 

For iteration cycle K, in our experiments, it is sufficient to produce good and acceptable results 
when K equals to 100. More iteration number could not make the reconstructed image improve 
apparently. Therefore, we believe the reconstruction will be stopped mandatorily if the iteration index 
k reaches 100. This type of stopping criterion is often used in CT reconstructions.  
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For smooth parameter � in ||u||TVSL0, it is related to standard deviation of the image noise, but the 
noise distribution during reconstruction is non-stationary and unknown. Therefore, it is also 
empirically set (�=10-3) in this study. 

The parameters in our L1/SL0-POCS are set empirically by using setups from similar methods and 
through extensive experiments by visual inspection and quantitative measures, which is time-
consuming. The main goal of this work is to demonstrate the effectiveness of the proposed 
regularization. How to select optimal parameters effectively is a significant research in the future. 

3. Experiments 

3.1. Numerical simulation 

In this section, we conduct a numerical experiment to study FBP, SART, TV-POCS and L1/SL0-
POCS algorithms. Shepp-Logan phantom with size of 256 × 256 is used. Without losing generality, a 
fan beam imaging geometry is chosen to acquire the projection data. The distance between X-ray 
source and rotation axis is 40 cm and the distance between detector and rotation axis is 40 cm. The 
image is 25.6× 25.6 cm2. The detector with a length of 61.44 cm is a line array consisting of 512 
elements. X-ray projections are simulated using ray-driven method [24]. A total of 30 projections are 
equally distributed over a 360 degree range. The tests in this paper are implemented by MATLAB 
programming language on a PC with Intel(R) Core(TM) 2 Quad CPU 2.50 GHz and 3.25 GB RAM. 

The reconstructed images are shown in Figure 1. It can be observed that serious streak artifacts exist 
in the CT image reconstructed by FBP algorithm. Obviously, there are also serious streak artifacts and 
noticeable smoothing effect in SART image. The TV-POCS reconstruction is shown in Figure 1(c) 
and the blocky artifacts in the homogeneous regions are obvious and the edges are partially over-
smoothed. Figure 1(e) shows the proposed L1/SL0-POCS reconstruction. It can be noticed that the 
L1/SL0-POCS algorithm performs great potential in suppressing artifacts and preserving edges 
information by using SL0 regularization. 

Figure 2 shows the zoomed-in views of two ROIs corresponding to Figure 1, respectively. It can be 
found that image reconstructed by L1/SL0-POCS algorithm is comparable with the ground true image 
and achieves better gains in terms of noise suppression and edges preservation. 

 

(a) (b) (c) (d) 

Fig. 1. Reconstructed images of Shepp–Logan phantom from 30 projections. (b)–(d) correspond to the reconstructions 
using SART, TV-POCS, and L1/SL0-POCS, respectively. (a) is the original phantom. 
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(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Fig. 2. Zoomed-in views of two ROIs shown in Figure 1. (b)–(d) correspond to the reconstructions using SART, 
TV-POCS, and L1/SL0-POCS, respectively and (a) is the original phantom. (f)–(h) correspond to the 
reconstructions using SART, TV-POCS, and L1/SL0-POCS, respectively and (e) is the original phantom. 
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Fig. 3. The MAE (a) and SNR (b) curves of reconstructed images with different reconstruction algorithms at 30 
projection angles and different iteration numbers, and the iteration numbers range from 1 to 100. 

 
To evaluate the reconstructed images, the mean absolute error (MAE) and signal to noise ratio 

(SNR) are used. As shown in Figure 3, our proposed L1/SL0-POCS algorithm achieves lower MAE 
and higher SNR compared with the other two methods, which means that L1/SL0-POCS can 
reconstruct high-quality images in less iteration numbers. 

3.2. Real data experiment 

3.2.1. Pseudo-real data 
In this section, previously reconstructed CT volume is used to study the proposed method. The CT 

volume (512 × 512 × 25) is scanned with tube voltage of 130 KeV and reconstructed. The pixel size 
and a slice size are 0.29 mm and 2.0 mm respectively. A slice is used and projected forward 
respectively into 40 projections in 360 degree by using Siddon’s ray-driven algorithm. The proposed 
method will be made comparison with SART and TV-POCS.  
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The reconstructed images from the 40-view data by using SART, TV-POCS, and L1/SL0-POCS 
algorithms are displayed in Figure 4. Visual inspection of reconstructions suggests that the TV-POCS 
and L1/SL0-POCS algorithms can effectively suppress streak artifacts and noise observed in SART 
images. It could be found that the images reconstructed by L1/SL0-POCS preserve more structural 
edged details than images using TV-POCS. Moreover, the blocky effect caused by TV is suppressed 
efficiently in Figure 4(d), compared to Figure 4(c). 

3.2.2. Real data  
To evaluate the performance of proposed algorithm for X-ray CT, reconstruction study with real CT 

projection data is also performed. Single circle scan and fan beam imaging geometry are used to 
obtain the projections in our developed laboratory CT scanner. A head phantom as scanned object is 
used. 360 projections are evenly captured over a 360 degree range. Image reconstructed by FBP using 
360 projections is shown in Figure 5(d) as true reference image.  

The projections are down-sampled to 90 views, about one-fourth of the full views. The 
reconstructions from 90 projection views are shown in Figure 5. Reconstructed images are of 512 × 
512 pixels. These reconstructed images demonstrate that the proposed method can significantly 
improve image quality. Teeth are clearly preserved and observed while homogeneous regions are 
smoothed well. 

4. Conclusion 

In this paper, a L1/SL0-POCS method for low-dose CT reconstruction from few-view projection 
 

(a) (b) (c) (d) 

Fig. 4. Reconstructed images of head phantom from 40 projections. (b)–(d) correspond to the reconstructions using SART, 
TV-POCS, and L1/SL0-POCS, respectively, and (a) is the first original image. 

(a) (b) (c) (d) 

Fig. 5. Reconstructed images of a head phantom. (a) to (c) correspond to the reconstructions using FBP, TV-POCS and 
L1/SL0-POCS from 90 projections. (d) corresponds to the reconstruction using FBP from 360 projections. 
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data is proposed. The main contribution of the method is to minimize a combined L1 and smoothed L0 
(SL0) regularization instead of traditional TV regularization. The performance of the proposed method 
is compared to SART and TV-POCS methods on Shepp-logan phantom and a real head phantom. 
Experimental results show that the proposed L1/SL0-POCS algorithm is able to achieve better 
performance compared with other existing methods in the MAE, SNR and edge information 
preservation. One issue that should be paid attention to is the computation cost. From the numerical 
scheme of the proposed method, it can be clearly seen that the computational cost of L1/SL0-POCS is 
on the same level of TV-POCS. In one iteration of TV-POCS and L1/SL0-POCS methods, the 
computation time are 40.48s and 44.33s respectively for Shepp-Logan phantom, which is possible to 
use some acceleration strategies to overcome their drawbacks of time-consuming computation. 

Many clinical conditions are not considered in our present study due to the limitation of the 
experimental conditions. Future work will focus more on verifying the proposed algorithm in real 
clinical projections. Moreover, the presented algorithm can be easily extended to cone beam CT 
(CBCT) geometry due to its iterative-correction property. Meanwhile, low-dose CBCT reconstruction 
by the proposed GPU-acceleration method will also be studied in CBCT system in the future research. 
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