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Abstract. In this paper, a fully automatic scheme for measuring liver volume in 3D MR images was developed. The 
proposed MRI liver volumetry scheme consisted of four main stages. First, the preprocessing stage was applied to T1-
weighted MR images of the liver in the portal-venous phase to reduce noise. The histogram of the 3D image was determined, 
and the second-to-last peak of the histogram was calculated using a neural network. Thresholds, which are determined based 
upon the second-to-last peak, were used to generate a thresholding image. This thresholding image was refined using a 
gradient magnitude image. The morphological and connected component operations were applied to the refined image to 
generate the rough shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the rough shape in order 
to more precisely determine the liver boundaries. The liver volumes determined by the proposed automatic volumetry were 
compared to those manually traced by radiologists; these manual volumes were used as a “gold standard.” The two 
volumetric methods reached an excellent agreement. The Dice overlap coefficient and the average accuracy were 91.0 ±2.8% 
and 99.0 ±0.4%, respectively. The mean processing time for the proposed automatic scheme was 1.02 ±0.08 min (CPU: Intel, 
core i7, 2.8GHz), whereas that of the manual volumetry was 24.3 ±3.7 min (p < 0.001). 
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1. Introduction 

Over the past decades the field of transplantation has made great strides, leading to huge increases 
in survival rates. One assessment that is critical for a successful transplantation procedure is the 
estimation of the total and segmental liver volume; this calculation is indispensable because the liver 
size is one of the major predictors for the safe outcome of both the donor and recipient. Therefore, 
accurate and noninvasive liver volumetry is important in planning a liver transplantation [1-4]. 
Although the manual tracing of a liver boundary on each image can give accurate results, it has its 
limitations and is both subjective and time-consuming. It also has relatively large intra- and inter-
observer variations. Therefore, to address these issues, a number of schemes for computerized liver 
segmentation have been developed, and it has become an important research topic investigated by 
research groups worldwide. 

To date, a number of researchers have developed schemes for computerized liver segmentation on 
CT images including feature analysis [5], image-processing techniques [6-8], region-growing [9-11], 
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shape constrained segmentation [12-15], rule-based segmentation [16], graph-cut [17], and level-set 
segmentation [18-19]. Compared to CT-based schemes, there have been fewer studies conducted on 
computerized liver segmentation for MR images despite there not being a risk of ionizing radiation. 
This discrepancy is likely because MR liver volumetry is believed to be more difficult and to have 
more variations than CT volumetry. The research that has been conducted in this field includes that of 
Karlo, et al. [20], whose work compared the CT- and MRI-based volumetry of resected liver 
specimens with intraoperative volume and weight measurements to calculate conversion factors. 
Furthermore, Farraher, et al. [21] developed a semi-automated dual-space clustering segmentation 
method. Their method required manually drawing a small region-of-interest (ROI) on the liver; then, it 
iteratively evaluated temporal liver segmentations with the repeated adjustment of parameters to 
obtain the final liver segmentation result. The performance of their method was evaluated on eighteen 
normal and nine abnormal cases. Ruskó, et al. [22] proposed a scheme to represent the liver based on a 
partitioned probabilistic model. In this method, the liver was partitioned into multiple regions, and 
different intensity statistical models were applied to these regions. This particular scheme’s 
performance was evaluated on six abnormal and two normal cases. Gloger, et al. [23] developed a 
three-step segmentation method based on a region-growing approach, probability maps, and linear 
discriminant analysis. Their method was evaluated with twenty normal cases and ten fatty cases. In a 
previous study, the authors proposed a computerized scheme using the fast marching algorithm, and a 
geodesic active contour model. Its performance was evaluated on twenty-three cases [24]. 

The aforementioned studies showed significant promise; however, improving liver volumetry is still 
a priority. In this study, a fully automatic liver segmentation scheme in 3D MR images based on the 
thresholding method and geodesic active contour segmentation was developed. The performance of 
the proposed scheme was evaluated on ten cases, and a comparison between the proposed automatic 
volumetry and the gold-standard manual volumetry was performed.  

2. The fully automatic scheme for liver segmentation 

The proposed scheme for liver volumetry on a 3D MR image is shown in Figure 1. In order to 
reduce noise, an anisotropic diffusion filter is used [25]. This filter follows a differential equation 
called a modified curvature diffusion Equation [26]: 
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where � is the gradient operator, and  is the diffusion coefficient controlling the sensitivity of the 
edge contrast (K is a user-specified conductance parameter that was set to 2.0 in this scheme). This 
algorithm reduces the noise in the image while simultaneously preserving the major liver structures, 
such as major vessels and liver boundaries.  

A gradient magnitude filter is applied to the reduced-noise images to enhance the boundaries and 
create an edge image. The scale of enhancing edges is controlled by a standard deviation of a Gaussian 
filter applied to the reduced image. The magnitude of the image gradient at each voxel is calculated by 
the following equation: 
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where IG is the Gaussian filtered image. 

Fig. 1. Overview of the proposed automatic liver volumetry scheme. 
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The histogram of the 3D MR image is calculated, and then a generalized regression neural network 
is applied to smooth the curve, as shown in Figure 2. The peaks of the curve are determined. Let lpk be 
the intensity value corresponding to the second-to-last peak of histogram; the intensity distribution of 
the liver is around this value. 

The segmentation of the liver from a MR image is accomplished by a two-step process involving 
rough approximation and precise refinement. First, a thresholding method is employed to create the 
thresholding image. Two thresholds are calculated by the following: 

 

,
lowerThreshold lpk
upperThreshold lpk

τ
ζ

= −
= +

 (3) 

 
where � and � are user-defined parameters (set to 150 in this scheme).  

Due to the voxel level similarity, the thresholding image may include other organs from among 
which the liver has the largest volume. Therefore, in order to separate the liver from any remaining 
organs, the thresholding image is refined using the magnitude of the image gradient. The value of the 
refined image at each voxel p is updated by: 
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where IT is the refined image, Ith is the thresholding image, λ is an user-defined parameter (set to 20 in 
this scheme), and  u is the unit step function defined by: 
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The opening and connected component operations are applied to the IT image, and then the largest 

volume region is filtered out. The closing operation is then applied to this filtered region in order to 
create the rough shape of the liver. Note that the structuring element used in the opening and closing 
operations is a ball (with a radius of 1 in this scheme).  

 

 
Fig. 2. Histogram of a 3D MR image. 
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A geodesic active contour level-set segmentation is applied to refine the initial surface determined 
by the rough liver shape so as to more precisely determine the liver boundaries. Let �(p, t) be a level 
set function with the initial surface corresponding to �(p, t=0). The evolution of the level set function 
is controlled by the partial differential equation [27]: 
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where A(�) is an advection vector function, F(�) is a propagation (or speed) function, and Z(�) is a 
spatial modifier function for the mean curvature �. The spatial modifier term controls the smoothness 
of the surface where regions of high curvature are smoothed out. The scalar constants �, �, and � allow 
trading off among three terms: advection, propagation, and curvature; in this scheme, �=1.5, �=1.3, 
and �=0.8. The algorithm requires an initial zero-level set that contains a rough approximation of liver 
boundaries. In this scheme, the initial zero-level set is obtained from the rough shape of the liver. The 
approximated surface is propagated with speed and direction (outwards, inwards) that is controlled by 
the propagation function. This algorithm used the liver-parenchyma-enhanced image obtained from 
the gradient magnitude image as the propagation (or speed) term for the evolution of the front. With 
this image, the front moves rather fast in the low-gradient regions and moves very slowly in the high-
gradient regions. The level set evolution is terminated when either the convergence criterion or the 
maximum number of iterations is reached. 

3. Experimental results 

3.1. MRI cases 

The database of this study consisted of 10 cases of 3D MRI scans in the supine position with 1.5T 
MRI scanners (Avanto, Siemens) at the Medic Medical Center, which is one of the largest diagnostic 
imaging centers in Viet Nam. Post-contrast MR images were obtained by using the T1-weight 
volumetric interpolated breath-hold examination (VIBE) sequence. A flip angle of 10 degrees was 
used with TR= 4.74 and TE= 2.38. The scanning parameters included collimation and reconstruction 
intervals ranging from 3.5 to 4 mm. Each MRI slice had a matrix size of 230x320 pixels with an in-
plane pixel size ranging from 1.18 to 1.4 mm. 

On each MRI slice that contained the liver, a board-certified abdominal radiologist carefully 
manually traced the liver contours. The number of slices in each case ranged from 44 to 56. The liver 
volume was calculated by multiplying the areas of the manually traced regions in each slice by the 
reconstruction interval. The total liver volume in each case was determined by the summation of the 
volumes in all of the slices. The times required to complete the manual contour tracing were recorded. 

3.2. Evaluation criteria 

The liver volumes obtained by the proposed scheme were compared to the “gold-standard” 
manually determined liver volumes. The true positive (TP), false positive (FP), true negative (TN), 
and false negative (FN) segmentation were determined for detailed analysis. The segmentation 
accuracy can be calculated by: 
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Fig. 3. 77-year-old man; intermediate results of the proposed scheme for a sample case are shown (slices contain a large 
region of liver): (a) Original MR image; (b) Anisotropic diffusion noise reduction; (c) Gradient magnitude calculation; (d) 
Thresholding image; (e) The opening operation using a ball structuring element; (f) The largest volume region extraction (the 
accuracy and Dice coefficient are 98.2% and 75.3%, respectively); (g) Geodesic active contour segmentation (the accuracy 
and Dice coefficient are 99.2% and 91.6%, respectively); (h) Comparison between the automatic liver extraction (white 
contours) and the “gold-standard” manual liver extraction (black contours). 

 
ITNTPAccuracy /)( += , (7) 

 
where I is the entire image. The Dice measurement representing the fraction of the overlapping 
volume and the volume of the two segmentation methods is given by: 
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The percentage volume error (E) for each automated volume (Va) and the gold standard manual 

volume (Vg) were also defined as: 
 

     gga VVVE /)( −=  (9) 

3.3. Results 

Figure 3 illustrates the intermediate results of the proposed scheme for an example case with slices 
in which the liver region was large. The noise of the original MR image in Figure 3(a) was reduced by 
using an anisotropic diffusion filter, as shown in Figure 3(b). A gradient magnitude filter was applied 
to the reduced-noise image in order to enhance the boundaries and create an edge image, as shown in 
Figure 3(c). A thresholding method was employed to create the thresholding image, as shown in 
Figure 3(d). The opening operation using a ball structuring element was applied to the thresholding 
image (after binarization) to separate the liver from the other organs, as shown in Figure 3(e). The 
connected component operation was applied and the largest volume region was filtered out, as shown 
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in Figure 3(f). The closing operation was applied to generate the rough shape of liver. Finally, the liver 
was more precisely segmented using the geodesic active contour algorithm, as shown in Figure 3(g). A 
comparison of the automatic liver segmentation with the “gold-standard” manual liver segmentation is 
illustrated in Figure 3(h), in which the black contours are from the manually tracing method, and the 
white contours are from the automatic scheme. The liver volume was computed from the segmented 
regions. 

Figure 4 illustrates intermediate results of the proposed scheme used for another example case with 
slices in which the liver region was small. The noise of the original image in Figure 4(a) was reduced, 
and a threshold method was used to create the thresholding image that is shown in Figure 4(b). Figure 
4(c) was obtained after applying the geodesic active contour algorithm. A comparison of the automatic 
liver segmentation with the “gold-standard” manual liver segmentation is illustrated in Figure 4(d), in 
which the black contours are from the manually tracing method, and the white contours are from the 
automatic scheme.  

Compared to the manually tracing method, the proposed automatic scheme obtained a percentage 
volume error of 8.7%. The overall mean of the Dice coefficients was calculated at 91.0 ±2.8%, and the 
accuracy of the liver segmentation was 99.0 ±0.4%. The average processing time of the proposed liver 
segmentation scheme was 1.02 ±0.8 min per case on a PC (CPU: Intel, core i7, 2.8 GHz), whereas that 
of the manual method was 24.3 ±3.7 min per case. The difference was statistically significant (p < 
0.001). 

4. Discussion 

An important factor to consider in hepatectomy is liver volumetry. It is crucial for ensuring the 
success of a liver transplantation; and for a successful transplant, the recipient must receive a 
minimum of 40% of the standard liver mass, whereas the donor must retain 30-40% of the original 
volume in order to survive [28]. However, in some complicated cases, such as those involving chronic 
liver disease, an even greater liver volume is likely required.  

To date, researchers have proposed several schemes for CT image-based liver volumetry. However, 
there remain a limited number of proposed MRI-based liver volumetry schemes. Thus, it is essential to 
investigate the potential of a computerized volumetry for liver MR images, and it is believed that 
computerized MR liver volumetry will prove to be highly beneficial in the field.  

At present, there are schemes for liver volumetry on MR images based on the fast marching and 
level set algorithms, but these schemes require initial seed points, and choosing the appropriate seed 
points remains problematic. Not only is this time consuming, but may also impact the final results.  

 

Fig. 4. 37-year-old woman; intermediate results of the proposed scheme for a sample case (slices contain a small region of 
liver): (a) Original MR image; (b) Thresholding image; (c) Geodesic active contour segmentation; (d) Comparison between 
the automatic liver extraction (white contours) and the “gold-standard” manual liver extraction (black contours).   
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Therefore, it is essential to investigate approaches that reduce user interactions. 
The scheme proposed in this study has several parameters. As done in the previous studies, these 

parameters were determined based on experiments. In this scheme, one case was used to determine the 
values of these parameters and these values were kept for the remaining cases. 

Although the proposed scheme can obtain a high accuracy in comparison to the “gold-standard” 
manually tracing method, the correlation between the two does not meet the minimal variation 
obtained in CT volumetry between expert radiologists, which was reported as 0.997 [29]. (Although a 
study reporting the variation in MR volumetry was not found, it is expected that it would be larger 
than that in CT). The overall accuracy can be further improved by manually correcting the false 
negative and false positive segmentations, and this can be accomplished quickly by routine 
manipulations. The proposed automatic scheme saved a substantial amount of time with a small error 
rate (an average processing time of 1.02 min per case with an average percentage volume error of 
8.7%) compared to the manually tracing method (an average processing time of 24.3 min per case). 

5. Conclusion 

The increasing use of liver MRI as the single exam for liver resection and transplantation has led to 
imperative demands for automatic MRI liver volumetry. However, there are currently only a few 
studies that have explored this challenging task. In the authors’ previous study, a scheme was 
proposed that used the fast marching algorithm and required seed points chosen by users. However, in 
this study, a fully automatic scheme for liver volumetry in MR images was developed by employing 
the thresholding methods combined with geodesic active contour segmentation. This approach does 
not require users to choose seed points. Furthermore, the time required for the proposed volumetry 
scheme is significantly reduced from 24 minutes per case to just one minute per case. Compared to the 
“gold-standard” manually tracing method, the proposed scheme can obtain very high accuracy and 
Dice coefficient. 
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