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Abstract. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used for breast lesion differentia-
tion. Manual segmentation in DCE-MRI is difficult and open to viewer interpretation. In this paper, an automatic segmenta-
tion method based on image manifold revealing was introduced to overcome the problems of the currently used method. 
First, high dimensional datasets were constructed from a dynamic image series. Next, an embedded image manifold was re-
vealed in the feature image by nonlinear dimensionality reduction technique. In the last stage, k-means clustering was per-
formed to obtain final segmentation results. The proposed method was applied in actual clinical cases and compared with the 
gold standard. Statistical analysis showed that the proposed method achieved an acceptable accuracy, sensitivity, and speci-
ficity rates.
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1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a technology that enables 
the analysis of tumor blood vessels. After an initial scan is taken, a contrast agent is injected, and sev-
eral dynamic scans are taken sequentially in regular intervals. By comparing the pre-contrast and post-
contrast images, clinicians are able to identify cancerous areas and evaluate the extent of disease [1, 2].

Lesion segmentation plays an important role in breast-imaging interpretation. In a clinical setting, it 
is usually performed in subtracted images by manual delineation. Pre-contrast images are subtracted 
from post-contrast images to make lesion areas easier to recognize. However, it is labor-intensive and 
costly, and the segmentation results are subject to significant viewer interpretation.

Computer aided diagnosis (CAD) is helpful for breast-imaging translations [3-5]. Low level tech-
niques include threshold and region growing [6]. The use of these methods is not very effective, and 
they are gradually becoming a preprocessing step completed before more advanced segmentation 
techniques are applied [7]. Automatic image segmentation relies on optimization procedures, and
Markov random field (MRF) [8, 9], C-means cluster analysis [10], and level-set methods [11] are ex-
tremely data-dependent. These methods cannot guarantee that the segmentation results are anatomical-
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ly correct and can lead to misclassification. Alireza, [12] et al. compared different nonlinear dimen-
sionality reduction methods in breast lesion segmentations and obtained highly accurate results. The 
technique involves images of different parameters, and the basis of the method is the segmentation 
result in the post-contrast image and itself is part of the input of the method, which seems not so rea-
sonable.

To overcome the limitations of other methods, this paper proposed a new approach of manifold re-
vealing to achieve better segmentation results with DCE-MRI data. Based on high dimensional dataset 
construction and nonlinear dimensionality reduction [13], the related idea is described in a previous 
study [14] on multi-modal image registration and it also proved to be effective for DCE-MRI segmen-
tation. 

2. Methods

2.1. Data acquisition

Clinical cases of 36 breast DCE-MRI were collected and analyzed as part of the research in this 
study. It was approved by the ethics committees of hospitals in December 2013. No informed consent 
was required because the clinical cases were analyzed anonymously. The images were obtained on a 
Siemens Magnetom Essenza 1.5T MR System and a Siemens Magnetom Verio 3T MR system from 
two different hospitals. Fast low angle shot (FLASH) MR sequences (TR = 4.67 ms, TE = 1.66 ms, 
flip angle =10� ) were employed. After the pre-contrast image was obtained, gadopentate dimeglumine 
(Gd-DTPA) was injected as a contrast agent (0.2 mmol/kg) at the flow rate of 3 ml/s, followed by a 20
cc saline flush. Five post-contrast images were obtained with an interval of 50 s. The sizes of the im-
age matrices varied from 384 384� to 768 768� , depending on the clinical needs. All images were 
corrected for bias field after acquisition, and a registration step in the Siemens Syngo workstation was 
performed for patient motion correction after the acquisition of the 4D MR series.

All the experiments were performed with an Intel i5-3470 multi-core processor, and results were 
produced in Matlab R2013b.

2.2. Overview of manifold learning

Manifold learning can be explained as follows: Consider a high dimensional dataset X denoted by 
a n D� matrix, where n is the number of points in the dataset, and D is the size of dimensionality;
X consists of � � ( 1, 2,..., )D

ix R i n� � . Assume there is redundant information in the original D

dimensional matrix, and in fact, X lies on a d -dimensional manifold M which is embedded in DR
( )d D�� . With the approach of manifold learning and revealing, the original dataset X will be 
transformed to the d -dimensional space dR , preserving the geometry of the dataset as much as pos-
sible. The new dataset can be denoted by � � ( 1, 2,..., )D

iy R i n� � .

2.3. High dimensional dataset

For every pixel in the region of interest (ROI) in a DCE-MRI, a unique time intensity curve (TIC) is
formed by collecting the intensity values from different time points. Pixels with similar TIC types are 
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very likely to be the same type of tissue. To make the differentiation of lesion areas easier, a high di-
mensional dataset was built by collecting the TIC of every pixel in the ROI. For one DCE-MRI case, 
T is defined as the total number of time points, including the pre-contrast scan, and n is the total 
number of pixels in the selected ROI. TIC for each pixel can be thought of as a data point in a T -
dimensional space, with each dimension corresponding to the intensity value of one time point. There-
fore, time series of the ROI can be represented as a n T� matrix in which each TIC is denoted by

� � ( 1,2,..., )T
ix R i n� � .
Typical TIC types are shown in Figure 1. Although the shapes of TIC can vary across a wide range 

of patterns [15, 16], in most cases, the TIC of the lesion area will appear to be like one of the typical 
curves. These TICs are assumed to be within a non-linear t -dimensional manifold M embedded in

TR . Here, t T�� . Afterward, the dataset is transformed to a low-dimensional representation.

2.4. Manifold revealing and feature image production

Various nonlinear dimensionality reduction methods have been proposed for revealing the essence 
of manifold. Among the methods, Laplacian Eigenmaps (LE) [13] is relatively computationally effi-
cient and effective, and was adopted for multi-modal image registration in previous work [14].

The algorithm of LE can be described in the following three steps:
Step 1: Construct a neighborhood graph G from the original dataset X in which each data point 

ix is connected to its k nearest neighbors.
Step 2: The weight of Gaussian kernel function is computed if two data points are connected, and it 

is assigned to the edge between them:

2

2
|| ||

2
i jx x

ijw e �

	
	


 (1)

Where � is the variance. Otherwise, 0ijw 
 .
Step 3: Compute low-dimensional representation by minimizing the cost function:

2( ) || ||i j ij
ij

Y y y w� 
 	� (2)

Fig. 1. Typical TIC types of DCE-MRI.
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The LE technique was performed on the high dimensional dataset constructed by pixel TIC and 
mapped from T -dimensional space to t -dimensional space. In this paper, t was set to 3. This means
the 3D dataset was obtained and can be represented by RGB channels of the generated feature image 
while keeping the vascularity characteristics of the breast lesions unchanged.

2.5. Segmentation and evaluation

After manifold revealing, k-means clustering technique was performed on the generated 3D dataset 
for lesion differentiation. To evaluate the accuracy of this automatic method, the ground truth for seg-
mentation was built first. In this study, a pre-step of auto threshold was carried out in subtracted imag-
es. After that, manual adjustments from three experienced specialists were performed on the results to 
obtain the gold standard.

Measurements of the accuracy rate, sensitivity, and specificity were given for quantitative evalua-
tions. The intersection part of the proposed method and gold standard were denoted as True Positive 
(TP), the area of the proposed method outside the gold standard was False Positive (FP), the area of 
gold standard outside the proposed method was False Negative (FN), and the part outside both was 
True Negative (TN). 

The accuracy rate (AR), sensitivity (SE), and specificity (SP) were defined as follows:

= 100%TP TN
AR

TP TN FP FN


�
  

(3)

100%TP
SE

TP FN

 �


(4)

100%TN
SP

TN FP

 �


(5)

3. Experiment and results

3.1. Clinical case study

The proposed method was applied on actual clinical studies for qualitative analyses. Figure 2 shows 
one case of an original breast DCE-MRI. The image marked ‘0’ is the No. 19 slice of the pre-contrast 
volume from a patient, and images marked from ‘1’ to ‘5’ were taken from post-contrast scans. It can 
be seen that there is a lesion area in the breast with blurred boundaries. It is very difficult and time-
consuming for manual delineation of the lesion using the original time series. 

Figure 3 shows the image processing results and the segmented lesion area. The subtracted image 
was produced by Image 2 and Image 0 in Figure 2. This is widely used in hospitals to help radiologists 
perform segmentation. The lesion area is more obvious in the subtracted image than the original series, 
but is still not clear enough for precise segmentation. To make segmentation less time-consuming, a 
feature image in RGB mode is produced to reveal the essence of the image manifold. The boundary of 
the lesion area is much clearer than in the subtracted image, and only the lesion area and the heart are 
highlighted in yellow, which reflects these two areas have similar contrast agent permeability. After a 
ROI is selected, k-means clustering technique is applied to the generated 3D dataset, and the breast 
lesion area is then segmented. The image of “Lesion Area” in Figure 3 shows the contours produced 
by the proposed method (in red) and the ground truth (in green). The two contours almost overlap.
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Fig. 2. Original DCE-MRI series.

Fig. 3. Image processing results and segmented lesion area.

Scatter plots are shown in Figure 4. All of the pixels of the feature image were plotted as circles in 
the 3D coordinate system, with each axis representing one RGB channel. The RGB color value of the
pixel was assigned to the corresponding circle in the scatter plot. It gave a visual guide to the locations 
of the lesion area and the heart. With the help of k-means clustering technique, the locations (green 
circles in the right image of Figure 4) were differentiated from other parts of the breast.

3.2. Quantitative evaluation

A two-step procedure was applied to each clinical case to build the gold standard for lesion segmen-
tation: 

Step 1: Threshold-based auto segmentation was performed on the subtracted images to generate the 
initial input. 

Step 2: Three experienced radiologists consulted on the initial input to make manual adjustments to 
the segmented lesion boundary.

The segmentation results of the proposed approach were compared to the generated gold standard. 
The accuracy, sensitivity, and specificity rates were calculated according to Eqs. (3)-(5). The statistical 
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results are listed in Table 1. For the 36 clinical cases, the proposed method yielded a high average ac-
curacy rate of 0.97� 0.01. Also, it was found to have high specificity (0.98� 0.01) and acceptable 
sensitivity (0.90� 0.04). The computational time of the entire process varied from 3 to 12 s, depending 
on the size of the image and the ROI.

4. Discussion and conclusions

Lesion areas in DCE-MRI usually have ambiguous boundaries, which are difficult to segment.
Manual delineation is time-consuming and costly, and also allows for significant viewer variability. In 
this paper, an automatic manifold-based approach was proposed to solve these shortcomings. Pixel 
values from the time series of DCE-MRI were collected and constructed into a high-dimensional da-
taset. Nonlinear dimensionality reduction technique was employed to reveal the embedded image 
manifold. Then, 3D representation was obtained to build RGB channels of feature images, which were 
helpful for the differentiation of tissues with different permeability levels. After the completion of k-
means clustering, the lesion areas were segmented successfully. 

Although vascularity and permeability varies across different types of lesions and individuals, they 
remain constant for the same tissue in the same patient. Lesion areas and normal tissues will have en-
tirely different TIC in the same DCE-MRI series, which are differentiable in feature images. The pro-
posed approach was validated in clinical cases and proved to be effective in reflecting the essential 
nature of the original dynamic image series. This method presented clear lesion boundaries in the gen-
erated feature images, as well as heart regions. This was due to the fact that lesion areas and hearts
have similar tissue permeability and can be distinguished from other parts of the image.

Fig. 4. Scatter plots and clustering technique.

Table 1
Mean value and standard deviation of AR, SE and SP*

AR (Mean � SD) SE (Mean � SD) SP (Mean � SD)

0.97 � 0.01 0.90 � 0.04 0.98 � 0.01

Note: *36 clinical cases were collected; � =0.8 in Gaussian kernel; AR: accuracy rate; SE: sensitivity; SP: specificity.
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The proposed method was also compared to a gold standard for quantitative evaluation and per-
formed well statistically. Gold standard was established by the manual adjustments of three experi-
enced radiologists on threshold-based segmentation results in subtracted images. Direct delineations in 
subtracted images were not performed because human interaction tends to produce smooth edges,
which is often far from reality, and a pre-segmentation procedure also helps to lower labor costs.

Certainly, there are some limitations to this study. The algorithm has not been applied to 3D seg-
mentation because the building of the ground truth for 3D segmentation is much more labor intensive,
and requires more computational time using the proposed method. Improvements continue to be made 
on the performance of the algorithm, and will soon expand to 3D segmentation of full slices.

In summary, the proposed method introduces manifold learning in the construction of high-
dimensional datasets and reveals the essence of vascularity and permeability in breast DCE-MRI seg-
mentation. It was applied on actual clinical cases and acquired acceptable accuracy, sensitivity, and 
specificity rates.
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