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Abstract. An automatic method for estimating the density of cell nuclei in whole slide images (WSI’s) of hepatic histological 
sections is presented. The method can be applied to hematoxylin-eosin (H&E) stained sections with slight histological 
atypism, such as early well-differentiated hepatocellular carcinoma (ewHCC). It is shown that measured nuclear density is 
affected by the nuclear size due to fragments of nuclei. This size-dependent problem has been solved by estimating the 
standard nuclear area for each image patch. The method extracts typical nuclei, which are used to automatically adjust the 
parameters, including the standard nuclear area. The method is robust for variations in contrast, color, and nuclear size. 40 
image patches sampled from 20 WSI’s of surgical sections were used for accuracy evaluation. The mean absolute percentage 
error of estimated nuclear densities was 8.2%. It was also confirmed that the distributions of nuclear density were 
successfully estimated and visualized for all 20 WSI’s. The computation time for a WSI of typical surgical section (754 mm2, 
about 1,280,000 nuclei) was about 57 minutes on a PC. 
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1. Introduction 

Because the differential diagnosis of borderline lesions is left to the pathologist’s discretion, this 
form of diagnosis has become a serious problem. Quantitative information is necessary, because most 
pathological diagnosis is based on the subjective opinion of pathologists [1]. It is therefore important 
to analyze histological images that provide important quantitative information for diagnosis. 
Specifically, nuclei detection and segmentation are important for cancer diagnosis and grading [2]. 
Among features related to nuclei, the nuclear density, which is defined as the number of cell nuclei per 
unit area, is one of the key features to be observed. Figure 1 shows microscopic images of early well-
differentiated hepatocellular carcinoma (ewHCC) and non-cancer. The histological atypism of the 
ewHCC is so slight that it is very difficult to differentiate from benign nodules [3]. The nuclear density 
is reported to be one of the important features to observe while differentially diagnosing ewHCC, 
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Fig. 1. Sample images of H&E stained hepatic histological section: (a) early well-differentiated hepatocellular carcinoma 
(ewHCC) and (b) non-cancer. 
 
because the nuclear density of ewHCC is usually higher than that of non-cancerous areas [4]. Thus, a 
support system was developed for estimating nuclear density and diagnosing ewHCC [5]. The system 
can extract nuclear positions in hematoxylin-eosin (H&E) stained hepatic histological sections. 
Incorrect positions can be fixed by the users using a graphical user interface, and the corrected nuclear 
positions are used to calculate the nuclear density. The system is useful for obtaining the nuclear 
density of one ROI. However, the system is not automatic. Deciding the ROI is also problematic, 
because the nuclear density fluctuates within a single nodule. Although this problem might be relieved 
by increasing the number of ROI’s, this requires more effort from the user; it takes about 2 minutes to 
extract and correct the nuclear positions in one ROI (0.30 mm × 0.23 mm) [5]. It would be useful if 
the feature distribution were calculated fully automatically in whole slide images (WSI’s) of large 
sections, such as surgical specimens. In this paper, a method to automatically calculate and visualize 
the distribution of nuclear density in whole slide images of ewHCC is proposed. 

A review [2] reports automated methods for detection and segmentation of nuclei for H&E stained 
histological images. Many of them are, however, designed for use with breast cancer, and the 
literatures for liver images are limited [6, 7]. Intensity-based methods, such as [8], are common for 
segmenting nuclei, because nuclei usually have darker colors than their background. This approach is 
not appropriate for hepatic nuclei, because the intensity varies both on the boundaries of nuclei and 
within nuclei [6], as shown in Figure 1. Wienert proposed a cell nucleus segmentation method which 
uses minimal a prior knowledge and is applicable for several kinds of tissues, including normal liver 
tissue [7]. The method uses the staining intensity to classify the objects into cell nuclei. In the case of 
liver tissue, nuclear fragments sometimes have light colors, as shown in Figure 1. Since some of those 
nuclei would be ignored by this method, there are many unextracted nuclei observed in the resultant 
image for liver tissue [7]. Huang proposed a method for segmenting cell nuclei and grading 
hepatocellular carcinoma [6]. The method, however, achieves poor segmentation when the nuclei have 
light colors or vague contours. Although the method can be used for grading, it would be difficult to 
use for counting cell nuclei and estimating the nuclear density. Processing time would also be a 
serious problem when applying these methods for large WSI’s, because the number of image patches 
is upwards of tens of thousands in the case of surgical sections.  

Dealing with small nuclear fragments is another serious problem for estimating the nuclear density. 
The thickness of H&E stained sections is usually 3 μm to 4 μm, which is less than the diameter of 
hepatocellular nuclei (~7 μm). As a result, almost all of the cell nuclei in the sections are cut. The 
small fragments of nuclei cut near the end (Figure 1) make it difficult to estimate the nuclear density, 
because it is difficult to judge whether they are actually nuclei [9]. A constant lower limit on the area 
has sometimes been used to remove the small objects, including nuclear fragments [7]. Using a 
constant value for the lower limit is not appropriate, however, because the estimated nuclear density 
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depends on the nuclear size, which fluctuates within the section. For example, if the nuclear size is 
smaller, more nuclear fragments are ignored, and less nuclear density is observed. In the proposed 
method, this problem has been solved by estimating the standard nuclear size and setting the lower 
limit based on the estimated size in each image patch. The parameters used in the method were also 
automatically adjusted to improve the robustness. The method was successfully applied for the WSI’s 
of ewHCC surgical sections. The method is automatic in the sense that no manual parameter tuning is 
necessary.  

2. Methods 

2.1. Outline of the method 

The method used in the diagnosis support system [5] was modified and improved to create fully 
automated estimation and visualization of nuclear density. The proposed method consists of pre-
processing, nuclear candidate extraction, contour extraction, estimation of the standard nuclear area, 
selection of nuclei, and visualization. First, a WSI is divided into image patches to estimate the nuclear 
density. After extracting the candidate positions for cell nuclei, contours are extracted for each 
candidate position. Extracted contours are used to select the objects that are more likely to be nuclei. 
The selected nuclei are used for both estimation of the standard nuclear area and adjustment of the 
parameters in the method. The nuclei are then selected again from all the candidate positions to 
estimate the nuclear density. Finally, estimated nuclear densities are visualized as color distributions. 

2.2. Lower limit for nuclear area 

Since the thickness of the section is less than the diameter of the cell nuclei, all the cell nuclei are 
cut. As a result, observed nuclei have a variety of areas. The distribution of nuclear areas was 
estimated by assuming an appropriate model for the nuclear size and the section thickness. The shapes 
of the nuclei were assumed to be spherical, because cellular atypism of ewHCC is slight. The variation 
of the nuclear diameter was assumed to follow a normal distribution. Figure 2 shows the distribution 

 

  
(a) (b) 

Fig. 2. Simulated distribution of nuclear areas. The nuclear area is normalized by the standard 
nuclear area given by � × (average nuclear radius)2. (a) Distribution of normalized nuclear 
area. (b) Cumulative probability for normalized nuclear area. 
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of nuclear areas simulated using typical parameter values (average nuclear radius: 3.5 μm, standard 
deviation of nuclear radius: 0.13 μm, thickness of the section: 3.0 μm). Normalized nuclear area is the 
nuclear area normalized by the standard nuclear area which is given by ��× (average nuclear radius)2. 
As shown in Figure 2(b), about 20% of nuclear areas are smaller than half of the standard nuclear area. 
Therefore, defining the lower limit for the nuclear area proves to be a serious problem. If a constant 
value is used as the lower limit, measured nuclear density changes depending on the standard nuclear 
area. For a case where 75% of the standard nuclear area is used as the lower limit for a certain image 
patch P1, the nuclear density is calculated using about 65% of the nuclei, as the cumulative probability 
at the normalized nuclear area of 0.75 is about 35% in Figure 2(b). For another image patch P2 whose 
standard nuclear area is 90% of P1, the lower limit used for P1 corresponds to about 83% (= 0.75/0.9) 
of the standard nuclear area of P2. If the same constant lower limit is applied for P2, the percentage of 
the nuclei used for calculating the nuclear density is reduced to about 58% (cumulative probability of 
42%). The nuclear density is underestimated by about 11% (= |0.58 – 0.65| / 0.65). In this case, 10% of 
change in the standard nuclear area causes about 11% of error in the nuclear density if a constant 
lower limit is used. The standard nuclear area was experimentally found to vary widely in a section. 
For example, the average and the standard deviation of the standard nuclear areas were estimated to be 
40.7 μm2 and 6.9 μm2, respectively, in the first WSI in section 3.3. The standard deviation corresponds 
to about 17% of the average. In the second WSI in section 3.3, the ratio of the standard deviation to 
the average was as high as 26%. Thus, a constant value is not appropriate as the lower limit. Therefore, 
the lower limit was decided based on the standard nuclear area estimated in each image patch. In this 
paper, 75% of the standard nuclear area was used as the lower limit. The method for estimating the 
standard nuclear area is described in section 2.6. 

2.3. Pre-processing 

First, a WSI is divided into a collection of image patches. Each image patch is then converted to an 
image with a resolution of 0.24 μm/pixel for further processing. Next, the background color (the color 
of pixels without tissues) is automatically estimated using the WSI as the pixel value at the maximum 
peak in each histogram of R, G, and B. If the pixel value is larger than 91% of the background color in 
all three channels, the pixel is judged as the background. If the area of background pixels is more than 
30% of the image area, the image patch is judged as background image patch and is excluded from the 
following processes.  

2.4. Nuclear candidate extraction 

The image patch is converted to a grayscale image as a weighted sum of color components. Then, 
the image is scaled down to 1/25 of its original size. After a Laplasian filter is applied, the image is 
binarized. Small areas are then removed to reduce noises, and small holes are filled up to remove the 
vacuoles in the nuclei. Opening and smoothing processes are applied to the resultant areas, and the 
positions where the pixel values have locally the peak value are extracted as the candidate positions. 

2.5. Contours extraction 

Contours are extracted for each extracted candidate position using the image without scaling down. 
Figure 3(a) shows the concept of the method.  
(a) Setting the central point 
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(a) (b) (c) (d) 

Fig. 3. Nuclear contours extraction. (a) Concept of the method (cross: central point, white dots: possible points, black 
dots: contour points). (b) A filter to calculate the gradient of the pixel value. (c) Distance dl between adjacent contour 
points and the angle � l formed by adjacent contour lines. (d) Extracted contours and central point. Blue contours denote 
true nuclei to be detected, and green contours denote other objects or small nuclear fragments. 
 
One point, which we call central point, is initially set at the candidate position. 

(b) Setting radial lines 
Radial lines are set from the central point with an even angular interval. 

(c) Setting possible points 
Possible points, which are the candidates for contour points, are selected for each redial line. Several 

positions, where gradient of image intensity in the radial direction are larger than those of other 
positions on the same radial line, are selected as the possible points. Since the selection is based on 
relative amplitude, weak edges of fragment nuclei having light colors can be detected. 
(d) Selection of contour points 

An initial contour point is randomly selected from the possible points for each radial line. The 
selection of contour points is improved so as to increase the energy function Etotal defined in Eq. (1). 
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L is the number of contour points (radial lines), and �, �, ���and � are weight parameters. Eimg is the 

energy of the image, and it is calculated as the gradient of the pixel value I in the radial direction. A 
Sobel-like filter shown in Figure 3(b) was used to calculate the gradient. By using this filter, unwanted 
effects caused by both noise and partial lack of contours can be reduced. Eimg works so that the 
possible points having larger gradient value are apt to be selected as contour points. Edist works so that 
the distance between adjacent contour points dl falls inside or near a range [dmin, dmax] and prevents the 
selection of wrong possible points, which sometimes have long or short contour lines. � l in Eq. (4) is 
the angle formed by two adjacent contour lines, as shown in Figure 3(c). Eang works so that the contour 
approaches a circle, because Eang becomes the maximum when (� l - 2��L) = 0. Since the cosine 
function makes little difference around a value of zero, this restriction on the shape is not highly strict. 
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The contours can be adapted to various shapes similar to a circle, as shown in Figure 3(d). In Eq. (5), 
I[i][l] is the pixel value of i-channel (i=R, G ,B) at the l-th contour point, and AVE_I[i] is the average 
pixel value of all contour points for i-channel. Ecol becomes the maximum when all the contour points 
have the same color. Since the contours of the same nucleus have the similar color, Ecol prevent the 
selection of wrong possible points having different colors. The improvement of the contour points is 
repeated until convergence or for a predetermined number of iterations. 
(e) Improvement of the central point 

The position of the central point is updated as the center of bounding rectangle of the contour points, 
and steps (b) to (d) are repeated using the improved central point. This step is repeated for a 
predetermined number of iterations, and the best result having the largest energy is selected. The 
resultant contour points are interpolated to make the final contours. Figure 3(d) shows an example 
result.  

2.6. Estimation of standard nuclear area 

The area of each object (nuclear candidate) is calculated as the number of pixels on and inside the 
contours. Figure 4 shows the combination of the energy Etotal and the area for all the objects in one 
image patch. Blue circles are true nuclei to be counted, and green triangles correspond to either other 
objects or nuclei whose areas are less than the threshold (75% of the standard nuclear area). Although 
automatically-extracted contours include wrong contours, most of the objects having large energies are 
true nuclei. It would be expected that most contours of those nuclei are correctly extracted. Thus, the 
objects having the energy of the top Renegy% are selected as true nuclei and are used to estimate the 
standard nuclear area.  

Two methods were examined to estimate the standard nuclear area using the selected objects: 
(a) Mode of area histogram 

Figure 2(a) shows the mode of the histogram is almost the same as the standard nuclear area. 
Therefore, the mode of the area histogram of the selected objects was used as the standard nuclear area. 
(b) Average area of the objects 

Since the number of the selected objects is limited, the mode of the area histogram might fluctuate 
due to statistical error. The objects having the size between the top Rsize1% and the Rsize2% were 
selected, and the average of those areas was used as the standard nuclear area. This method would be 
more stable than the method that uses the mode. 

 

 
Fig. 4. Energy Etotal and area of all candidate positions. Blue circles: true nuclei to be detected, green triangles: other objects 
or small nuclear fragments. 
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Fig. 5. Hepatocellular nuclei sampled from 20 images. 

2.7. Selection of nuclei 

After eliminating the objects whose area is less than the threshold (75% of the standard nuclear 
area), the objects whose energy is less than a threshold are also eliminated. The number of resultant 
objects is then divided by the area of the image patch to calculate the nuclear density. An energy Eselect 
used for this selection process is the same as the energy Etotal defined by Eq. (1), except for the 
normalization of the weight parameter, �. Since the energy of the image Eimg is proportional to the 
edge intensity, the portion of Eimg in the energy Etotal is affected by the edge intensity at the nuclear 
contours, which may vary widely (Figure 5). In order to avoid this undesirable dependency, the weight 
parameter, ��� was normalized for each image patch to be inversely proportional to the edge intensity 
at the nuclear contours. The nuclei selected for the estimation of standard nuclear area (2.6) was used 
to estimate the edge intensity for each image patch.  

2.8. Visualization 

The distribution of the nuclear density is visualized by assigning an appropriate color for each 
image patch depending on the nuclear density. Histogram equalization was employed for color 
assignment, because the variance of nuclear densities among sections is very large. The number of 
levels is the only parameter that can be changed by the user if desired. The same color is automatically 
assigned to the same number of image patches, except for background patches. 

3. Experimental results 

3.1. Materials 

H&E stained surgical specimens of ewHCC were scanned using the digital slide scanner 
NanoZoomer (Hamamatsu Photonics K.K.) with a 20× objective lens. 20 specimens obtained from 20 
patients were used in the experiment. The image size ranged from 24.2 mm × 24.5 mm 
(53,248×54,016 pixels) to 45.6 mm × 24.5 mm (100,352×54,016 pixels), and the image resolution was 
0.455 μm × 0.455 μm. Each WSI was divided into about 7000 to 13,400 image patches (635×635 
pixels), and each image patch was converted to 1200×1200 pixels (0.24 μm/pixel). 

To evaluate the accuracy, two image patches, one from ewHCC and one from non-cancer, were 
randomly selected from the hepatocyte region for each of 20 WSI’s. 5094 hepatocyte nuclei from 40 
images were labeled by the authors under the supervision and check of the pathologist (M. Nakano), 
who is a specialist in liver pathology. Figure 5 shows typical nuclei of hepatocytes sampled from 20 
images. These nuclei were successfully extracted in the experiments. The experimental data set 
includes nuclei having a variety of color, contrast, nuclear size, shape, and textures. 

3.2. Evaluation 

The accuracy of the method was evaluated using the 40 images by 4-fold cross validation. The mean  
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Table 1 

Mean absolute percentage error of nuclear density 

Method     Mean absolute percentage error 
Using “Average area of objects”    8.2 %                                         
Using “Mode of area histogram”      13.3 % 
Without normalization of weight parameter   13.8 % 
Constant standard nuclear area   12.2 %   

 
absolute percentage error (the average of |measured density–correct density|/correct density) was 
evaluated for test images using the parameters optimized for training images. The result is shown in 
Table 1. As the method to estimate the standard nuclear area (2.6), “Average area of objects” showed 
better result of 8.2% than “Mode of area histogram”. Thus, “Average area of objects” was used in 
other experiments. Concerning the improvements employed in the energy Eselect, the error was 
degraded to 13.8% if the normalization of the weight parameter � was excluded, showing the 
effectiveness of the parameter normalization. The accuracy was also evaluated using a constant value 
for the standard nuclear area. Although the constant value was optimized in order to minimize the 
mean absolute percentage error, the error was degraded to 12.2%. Therefore, estimating and using the 
standard nuclear area was shown to be effective. 

3.3. Visualization of nuclear density 

The proposed method was applied to all the image patches, and it was confirmed that the 
distribution of the nuclear density in each WSI was successfully visualized. Figures 6(b) and 6(d) 
show two samples of visualized density distributions where the number of levels is set to the default 
value of 7. In the case of Figures 6(a) and (b), the physical dimension of the WSI is 35.3 mm × 24.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. (a) (c) WSI’s and (b) (d) visualized distribution of their nuclear densities, respectively. 
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mm (77,824×54,016 pixels). The WSI was divided into 10,578 (=123×86) image patches. 1483 image 
patches were judged as the background, and the nuclear densities of the resultant 9095 image patches 
(754 mm2) were estimated. The number of nuclei counted was about 1,280,000. The calculation time 
for this WSI was about 57 minutes on a PC (Intel Core i7-3930K, 6 cores, 12GB memory). 

In both sample results of Figures 6(b) and (d), ewHCC regions have darker colors compared to their 
surroundings. Some other dark regions, mainly at outer regions, might be present due to artifacts. 
Visualized distribution may help the user easily notice the areas having nuclear densities different 
from others. In Figure 6(d), the central region of the ewHCC nodule has light colors similar to the 
background non-cancerous area. If the ROI’s are selected from this central region, the difference of the 
nuclear density would be very small. Therefore, visualizing the nuclear distribution is important to 
relive this sampling problem. 

4. Conclusion 

A method for estimation and visualization of nuclear density in whole slide images of H&E stained 
hepatic histological sections is presented. The method is automatic and computationally efficient. A 
WSI with the tissue area of 754 mm2 was processed in about 57 minutes. Experimental results using 
40 image patches sampled from ewHCC and non-cancerous regions showed good accuracy. Future 
work will include extraction and visualization of other features such as morphological features. 
Applying the method for more advanced cancer would be promising. Reduction of the computation 
time would also be possible by optimizing the program. 
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