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Abstract. For quantitative analysis of glioma, multimodal Magnetic Resonance Imaging (MRI) signals are required in 
combination to perform a complementary analysis of morphological, metabolic, and functional changes. Most of the 
morphological analyses are based on T1-weighted and T2-weighted signals, called traditional MRI. But more detailed 
information about tumorous tissues could not be explained. An information combination scheme of Diffusion-Weighted 
Imaging (DWI) and Blood-Oxygen-Level Dependent (BOLD) contrast Imaging is proposed in this paper. This is a 
non-model segmentation scheme of brain glioma tissues in a particular perspective of combining multi-parameters of DWI 
and BOLD contrast functional Magnetic Resonance Imaging (fMRI). Compared with traditional MRI, a promising advantage 
of our work is to provide an effective and adequate subdivision of the related pathological regions with glioma, by 
incorporating both knowledge of image graylevel and spatial structure. Furthermore, it is an automatic segmentation method 
without needs of parameter selection and model fitting for the extracted tissues. By the experiments in patients with glioma, 
the proposed method has achieved the average overlap ratios of 83.6% in the whole tumor region and 82.5% in the 
peritumoral edema region with the manual segmentation as “ground truth”. 
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1. Introduction 

Gliomas are the most common primary tumors in the brain or spine which originate from the glial 
cells. Statistical results from existing studies show that gliomas account for nearly 77% of all 
malignant tumors in the brain, and therefore arouse great concern. The WHO has categorized gliomas 
into 4 grades according to pathologic evaluation of their malignancy. Due to their characteristics of 
infiltrative growth, different malignant grades make gliomas own a diversity of shapes and 
compositions in or around them. These gliomas further perform quite differently in medical imaging. 
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For example, the low-grade astrocytoma almost appears as solid or cystic with unclear boundary to the 
normal tissue in conventional MRI and CT scans. But due to the rapid growth of glioblastoma 
multiforme, there might be some internal necrosis or bleeding accompanied by large edema 
surrounding the tumor. 

Using a variety of medical imaging examinations [1,2] can help doctor better treat brain tumors, 
including preoperative localization, pathological assessment and postoperative recovery. Especially a 
joint analysis that combines various medical imaging modalities to represent the structural or 
functional characteristics of different brain tissues can provide more effective, objective and valuable 
diagnostic information. MRI provides a non-invasive way to characterize the microstructure and 
micro-dynamics of the organ or tissue in vivo. It is utilized for brain tumor diagnosis during routine 
examinations. In particular, 2 newcomers - DWI (Diffusion-Weighted Imaging) and fMRI (BOLD 
functional MRI) can provide some different potentialities than traditional T1-weighted or T2-weighted 
MRI. Some parameters derived from DWI, such as ADC (Apparent Diffusion Coefficient) and 
FA(Fractional Anisotropy) are considered to reflect not only the cytopathic effect of the glioma but 
also the fiber changes in its vicinity, such as displacement, destruction or infiltration. On the other 
hand, fMRI seems to have a better ability to reflect the dysfunction by tumor space occupying.  

There have been several studies on brain tumors by MRI, some distinguish between tumors and 
normal tissues [3-5], some classify different tumor types [6-8] and some other grade certain tumor 
types [9,10]. In this paper, we mostly focus on detection and segmentation of gliomas in the brain. A 
generally recognized baseline is that the related tissues with glioma could include solid region, 
necrosis and peritumoral edema, which have quite different imaging representations. A variety of 
segmentation algorithms [11,12] has been suggested by using T1-weighted or T2-weighted MRI. 
Although these algorithms have the advantage of high image resolution, some arguments or problems 
still exist. For example, in both of the two modalities, the solid region of glioma has high similarities 
to cerebrospinal fluid, but significant differences with necrosis. This might lead to the failure of some 
algorithms based on image intensity [13] to segment the full tumor region. 

In this paper, a new view of combining DWI and fMRI is attempted. A non-model segmentation 
scheme by multi-parameters of DWI and fMRI is proposed to distinguish the related tissues of brain 
glioma, including solid region, necrosis and peritumoral edema. By incorporating the knowledge of 
image graylevel and spatial structure, our method can achieve an automatic segmentation that does not 
require parameter selection and model fitting to the corresponding regions. Therefore, it has the 
advantages of efficiency and universality. 

2. Materials 

2.1. Data acquisition 

The data from 10 patients diagnosed with brain glioma, provided by Beijing Tiantan Hospital, is 
used in this study. Their DWI and resting-state BOLD fMRI data were acquired by a Siemens 3.0T 
MR system with the following scanning parameters. 

DWI: diffusion sensitization of b=1000 s/mm2; gradient field directions of 64; repetition and echo 
times of TR/TE=3600/95 ms; matrix size =128×128; number of slice = 25; image resolution = 1.80 
mm×1.80 mm×5.20 mm. 

fMRI: repetition and echo times of TR/TE=2070/30 ms; matrix size = 64×64; number of slice = 32; 
image resolution = 3.75 mm×3.75 mm×5.00 mm ; time sequence length of 240. 
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2.2. Image preprocessing 

The preprocessing steps of the raw DWI data include brain skull removing, head correction and 
tensor eigenvalue calculation. These were performed by the software DTI Studio 
(https://www.mristudio.org/wiki/installation). Next, the three related parameters [14] required were 
obtained as follows: 
1) Apparent Diffusion Coefficient (ADC) 

 
                           (1) 

 
2) Fractional Anisotropy (FA) 
 

 
(2) 

 

 
3) Trace-Weighted (TraceW) 
 

                       (3) 
 
where  denote the eigenvalues, and  denotes the original signal without diffusion 
sensitization. 

The preprocessing steps of the fMRI data include slice timing and realigning, which were performed 
by the software SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Then the time mean of fMRI 
sequence is used in this paper: 
 

                                (4) 
 
where  denotes the tth sample of fMRI signal, and T is the length of the total sequence. 

As the X-Y space resolution of the DWI image is higher, the fMRI image is co-registered to its 
image space. To facilitate the following presentation, for a given voxel,  is used as its 
coordinates in the unified space. And italic capital letters ,  and  denote the 
corresponding values of ADC, FA and TraceW, while  denotes the time mean of fMRI signal. 
All these parameters are finally normalized to the range [0, 1]. 

3. Method 

3.1. Overview of the proposed algorithm 

Based on the above analysis of parameter characteristics, this paper proposes a non-model automatic 
segmentation scheme that combines DWI and fMRI. The entire workflow of glioma tissue 
segmentation is illustrated in Figure 1. After the two modalities of MRI images, they are preprocessed 
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Fig. 1. Segmentation flowchart of brain glioma tissues. 

 
singly and co-registered. The 3 DWI parameters (ADC, FA and TraceW) are calculated and utilized 
jointly for glioma detection and segmentation. Then, the entire tumor region is evaluated in the 
presence of internal necrosis by fMRI. If it is yes, then the tumor is further subdivided into necrosis 
region and solid region. On the other side, the topological information of the tumor region is also 
provided for the next peritumoral edema extraction by ADC. 

3.2. Glioma segmentation using DWI multi-parameters 

3.2.1. Bi-normalized probability mapping 
Here a definition of bi-normalized probability mapping is given at first. Taking ADC for example, 

the distribution histogram of the whole brain voxels is counted: 
 

               (5) 
 

Then the bi-normalized probability mapping can be calculated: 
 

                              (6) 

 
where the boundary  denotes the value with the highest probability distribution in : 
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(a) ADC (b) FA (c)TraceW 

 

 

 

(d) Color map with positive , negative  and negative  

Fig. 2. Color mapping of bi-normalized DWI parameters. 
 

                         (7) 
 

Similarly, the probability function of FA and TraceW can be also obtained as  and . 
For CSF and the solid region of glioma, their voxels mostly belong to a joint distribution range of 

positive , negative and negative . If a RGB image is used to map their 
corresponding values, the mapping effect is given in Figure 2. 

3.2.2. Region growing in FA 
In Figure 2, it is obviously seen that the solid region of glioma is nearly yellow while CSF trends to 

be pink. So a rough region of the solid region is obtained: 
 

                     (8) 
 

 is defined as the ith topological connected component of the voxel set  sorted in descending 
size of each component. In this way, the largest one is selected as the seed of the next region growing: 

. Then the algorithm is described as the following steps: 
 
Input: the FA mapping image ; the seed voxel set ; the stopping threshold  
Output: the voxel set of the whole glioma  
Steps: 
1) Initialize:  
2) Get new neighbor voxel set of : 

 
where  denotes the neighbor set of voxel . 
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3) Find new voxels that meet these 2 conditions below from the set , and add them into 
the set . 
a.  
b.  and  
4) Repeat the above steps 2 and 3 until matching one of the stopping conditions. 
a.  
b. Exceeding the maximum number of iterations 

 
A suggested way to determine the range of thr1 is provided: . 

Let  be the value with the highest probability distribution of  in seed voxel set , and  
be the average bias of  lower than  in : 
 

                 (9) 

3.3. Necrosis detection 

When the glioma deteriorates to a certain extent, some cells appear to stop metabolism and lose 
function, which is called as necrosis. This is an important indicator of glioma malignancy and is 
reflected as dark area in the fMRI signal. Therefore, the algorithm of necrosis detection is: 

 
Input: the ADC probability mapping ; the glioma voxel set ; the threshold  and 

 
Output: the voxel set of the necrosis  
Steps: 
1) Find the candidate voxel set of necrosis: 

 
2) Initialize the necrosis set as null:  
3) While connected component exists: 
If  satisfies , then 

 
i=i+1; 

 
The range of thr2 can be obtained similar to thr1: . Let  

be the value with the highest probability distribution of  in seed voxel set , and  be the 
average bias of  higher than  in . And the threshold thr3 is an empirical value using the 
maximum of the average  in necrosis of 12 patients, which is 0.32 in our experiment. After this, 
the rest of  is considered as the solid region: 

 
                          (10) 

3.4. Peritumoral edema extraction 
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Another related diseased tissue that always occurs around the tumor is edema. Previous studies have 
shown that the ADC value in edema is between WM and CSF with significant differences. By 
utilizing the features in topological structure and value information, the edema region can be identified 
as: 
 

                      (11) 
 

Tests performed in all the patients revealed that the fixed values for thr4 and thr5 could make better 
segmentations than some adaptive values. Their referential ranges are also provided here: 

,  

4. Results and discussion 

4.1. Experimental results 

We use the proposed method to segment the corresponding diseased regions in 10 patients with 
gliomas. In some cases that have small tumor region, the thresholds based on histogram may result in 
failures of the segmentation. So the following group of values is provided as default that has been 
checked to be feasible in all patients: 

 
, , , ,  

 
The proposed method is compared with other methods, such as an automatic method using fuzzy 

model [13], and two semi-automatic methods using active contour model [15] and GICOV-DP snake 
 

  
(a) Sub.1 with no necrosis in glioma and slightly edema (b) Sub.2 with necrosis in glioma and massive edema 

Fig. 3. Segmentation results of the proposed method and other comparative methods. Marking colors: red - solid region; 
blue - necrosis region; yellow - peritumoral edema. Rows: 1 - DWI b0 image; 2 - segmentation of the proposed method; 3 - 
segmentation of the method [13]; 4 - segmentation of the method [15]; 5 - segmentation of the method [16]. 
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[16]. The segmentation results of 2 patients are shown in Figure 3. It is seen that the 2 reference 
methods would only handle the case in which the glioma only has the solid mass, but fail if there is 
some necrosis. Besides, they could not reach a subdivision of the extracted glioma region. On the 
other side, our method can solve the problems and achieve more accurate results. 

For a more comprehensive evaluation, we make a comparison between the proposed segmentation 
and the manual segmentation using the following criteria: 
1) Ratio of Overlap (ROLP) [3]: 
 

                                  (12) 
 
where the set S denotes the voxel set of one segmented region using our proposed method, and the set 
R denotes the one using manual segmentation. 
2) Hausdorff Distance (DH)[3]: 
 

                (13) 
 
where sup and inf represent the supremum and the infimum,  denotes the Euclidean distance 
between voxel u and v. 
3) Root Mean Squared Error (RMSE)[15]: 
 

                              (14) 

 
where  and  are the contours of S and R. 

Two regions of the whole tumor and the peritumoral edema are selected for the quantitative 
evaluation in 6 patients, and the results are listed in Table 1. Both DH and RMSE are in voxel units. An 
image result of patient Sub.3 is given in Figure 4. 

4.2. Discussion 

Major MRI modalities in the current literature for brain tumor segmentation are focused on 
traditional T1-weighted or T2-weighted MR images. However, a common problem associated with 
these studies is the failure or insufficiency to fully segment the related regions of the tumor. In this 
 

Table 1 

Comparison results with the manual segmentation 

Subject 
No 

Whole Tumor Region Peritumoral Edema Region 
ROLP DH RMSE ROLP DH RMSE 

Sub.1 0.834 6.32 1.48 0.816 6.08 1.43 
Sub.2 0.951 1.41 0.25 0.690 8.54 1.62 
Sub.3 0.950 4.12 0.81 0.889 15.52 2.51 
Sub.4 0.850 6.32 1.06 0.886 6.00 1.14 
Sub.5 0.838 4.00 1.83 0.828 13.45 2.17 
Sub.6 0.595 17.42 5.92 0.840 9.22 3.23 
Average 0.836 6.60 1.89 0.825 9.80 2.02 
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Fig. 4. Comparison result of Sub.3 with the manual segmentation. Marking colors: red - solid region; yellow - peritumoral 
edema. Rows: 1 – DWI b0 image; 2 - the manual segmentation; 3 - the proposed method. 
 
paper we utilized different MRI modalities to compensate for the above-mentioned weakness. The 
results in Figure 3 demonstrated two advantages of our work. First, in the cases without necrosis (see 
Sub.1), our method can efficiently differentiate between the tumor cells and the edema. This feature is 
unavailable in the other comparative methods. Second, when there is necrosis in the tumor (see Sub.2), 
our method utilize the consistent low FA values in both tumor solid and necrosis, to obtain the 
complete area. Moreover, combining these results with fMRI we can pinpoint the dysfunctional part in 
glioma, which is not available in structural MR images. 

However, there are some limitations in the proposed method. The present image resolutions of DWI 
and fMRI can’t reach the T1-weighted or T2-weighted MRI and some details are missing. Another 
problem is that our method may fail when the size of gliomas too small to be distinct from noises. The 
robustness of the threshold selection in some steps also needs to be verified by testing additional 
samples. The purpose for studying glioma segmentation in the perspective of DWI and fMRI is not to 
replace the routine protocols, but to provide a supplement to improve the diagnosis of glioma. Our 
work is also easy to extend with other imaging modalities. 

5. Conclusion 

This paper describes morphological analysis of tumors from 2 MRI modalities of DWI and fMRI, 
and proposes a non-model automatic segmentation scheme of the pathological regions with brain 
glioma. Our approach utilizes preexisting knowledge of imaging intensity and combines it with 
topological structure in the brain tissues. A promising advantage of our work is to provide an effective 
and adequate subdivision of the related pathological regions with glioma, which could compensate for 
the vulnerability of the traditional T1-weighted or T2-weighted MRI to some extent. By testing real 
data of patients with glioma and using the manual segmentation as “ground truth”, the average overlap 
ratios of the proposed approach have reached 83.6% in the whole tumor region and 82.5% in the 
peritumoral edema region. The average Hausdorff distances are 6.60 voxels for the whole tumor 
region and 9.80 voxels for the peritumoral edema region. In addition, it would be considered as a 
helpful and necessary procedure for other further researches, such as grading of gliomas, and 
analyzing changes of peritumoral fibers or influences on brain functional activities. 
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